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Abstract

Dissection of the genetic architecture of complex traits persists as a major challenge in biology; despite considerable efforts,
much remains unclear including the role and importance of genetic interactions. This study provides empirical evidence for
a strong and persistent contribution of both second- and third-order epistatic interactions to long-term selection response
for body weight in two divergently selected chicken lines. We earlier reported a network of interacting loci with large effects
on body weight in an F2 intercross between these high– and low–body weight lines. Here, most pair-wise interactions in the
network are replicated in an independent eight-generation advanced intercross line (AIL). The original report showed an
important contribution of capacitating epistasis to growth, meaning that the genotype at a hub in the network releases the
effects of one or several peripheral loci. After fine-mapping of the loci in the AIL, we show that these interactions were
persistent over time. The replication of five of six originally reported epistatic loci, as well as the capacitating epistasis,
provides strong empirical evidence that the originally observed epistasis is of biological importance and is a contributor in
the genetic architecture of this population. The stability of genetic interaction mechanisms over time indicates a non-
transient role of epistasis on phenotypic change. Third-order epistasis was for the first time examined in this study and was
shown to make an important contribution to growth, which suggests that the genetic architecture of growth is more
complex than can be explained by two-locus interactions only. Our results illustrate the importance of designing studies
that facilitate exploration of epistasis in populations for obtaining a comprehensive understanding of the genetics
underlying a complex trait.
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Introduction

The regulation of most biological traits is complex and results

from the action and interaction of multiple genes and environ-

mental factors. Phenotypic variability within populations resulting

from polymorphisms in the genes regulating these traits is the

key to evolutionary change of the phenotypes over time, resulting

from natural or artificial selection (selective breeding), as well as

differences in responses of individuals to e.g. environmental

challenges leading to disease. Identifying key polymorphisms and

how they contribute to trait expression, i.e. dissection of the

genetic architecture of the trait, is therefore of considerable interest

in fields such as evolution, agriculture and medicine. The

availability of affordable, large-scale assays of genome-wide genetic

variation has facilitated a large number of studies to elucidate the

genetic regulation of complex traits. The focus of studies has

generally been to identify the effect of individual polymorphisms

on trait expression, and in this way several individual genes and

polymorphisms making large contributions to trait expression

have been identified [1]. Thus, genetic interactions between

multiple factors (epistasis) have been largely ignored. Epistasis has,

however, been suggested as an explanation for several unexplained

empirical observations in quantitative genetics, including discrep-

ancies between heritability and the sum of the individual effects of

the loci shown to influence the traits [2–4], ability for populations

to respond to selection without a resulting loss in genetic variation

[5], difficulty to replicate and clone complex trait loci [6] as well as

inability to identify causative mutations for multifactorial disorders

[7]. Genetic interactions have also been suggested as a potentially

important mechanism in evolutionary genetics, partly due to their

effects on fixation rates of alleles under selection, but also on a

systems biology level. In particular, adaptability and robustness

are often explained in terms of epistasis [8,9]. Although there are

several theoretically possible explanations for the phenomena

described above, the potential importance of epistasis is consid-

erable and exploration of the role of interactions in the genetic

architecture of complex traits can provide insights for a wide range

of fields. To identify and understand the contribution of epistasis in

the genetic architecture of complex traits, larger datasets and more

involved statistical analyses are required. As a result, relatively few

studies have the potential to evaluate the contributions of epistasis

to multifactorial trait expression.
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Evidence for epistatic interactions in genomic studies
In genomics, gene interaction networks have been evidenced in

numerous biological systems using e.g. expression profiling [10],

protein-protein interaction [11] and gene-knockout [12] studies.

In genetics, although the theory is established and has been

discussed, replicable genetic evidence linking genetic polymor-

phisms in genetic networks to phenotypic expression has proven

difficult to obtain. In this paper, we describe the replication and

in-depth exploration of a multi-locus gene-interaction network

previously shown to explain nearly half of the long-term selection

response in a bi-directional selection experiment in chickens [13].

It was previously shown that this gene-interaction network did

not only explain responses to selection, but was also a likely

contributor to the smaller than expected decreases in genetic

variation in the selected lines [14] as well as the lower than

expected power to map individual loci determining body weight

(i.e. the selected trait) for which the lines showed an eight-fold

phenotypic difference [15]. The earlier results were obtained

using data from the original finding of the network in an F2 cross

between the selected lines [13]. As a result, the resolution of the

inferred QTL was limited to confidence intervals covering

.10 Mb in each identified locus. This did not allow for

discrimination of whether the estimated genetic effect estimates

were due to one interacting gene in each of the segments or if

they were a composite effect of a larger number of interacting

genes.

Objective of the present study
To replicate and study the QTL inferred in the original

population, an eight-generation advanced intercross line (AIL) was

bred from the founder individuals of the original F2 population

[13]. These data were recently used by Besnier et al [16] to screen

nine selected chromosomal segments for marginal (additive) QTL

effects, and ten loci in these segments had significant individual

effects on body weight. Six of the nine chromosome regions

contained loci involved in the radial network of epistatic QTL

reported by [13] and the central locus in that network, Growth9,

was shown to contain two independent QTL, which were then

designated Growth9.1 and Growth9.2.

Here, we used the large AIL pedigree to study whether the

original finding of strong epistatic interactions in QTL network

replicated in this independent dataset and to explore the network

further by extending the analyses to also include three-locus inte-

ractions. By replicating, fine mapping and extending the QTL-

network in this independent population, we show that the epistasis

can be stable across generations, i.e. the estimates of the QTL

interactions are similar, and that interactions higher than second

order are important in the genetic architecture of the selected trait.

The implications of the replication of epistatic interactions across

generations and novel insights that can be gained from also

studying three-locus interactions are discussed. Suggestions are

also given concerning designs of future studies to elucidate the role

of epistasis in the genetic architecture of complex traits. A new

method for performing genome wide scans for third order

interactions is also introduced.

Concepts of higher-order epistasis—capacitating
epistasis and genotype plane variances

When a locus acts as a capacitor, its genotype modifies the

genetic effects of other loci to be either smaller or larger. For third

order epistasis, capacitation can be studied by examining the

genotype-phenotype map for triplets of loci, and comparing

differences between the ‘‘planes’’ or ‘‘slices’’ of the three

dimensional map. Each plane is a two-locus genotype-phenotype

map and the effect of the third locus is observed as the distance

between the planes for the other two loci (Figure 1). Let us assume

a phenotype governed by three loci - Q1, Q2 and Q3 - where Q1

is the conditioning locus. If neither locus has any effect, the planes

corresponding to the ‘‘HH’’, and ‘‘LL’’ genotypes for Q1 should

be flat across the genotypes of Q2 and Q3 and also at the same

level (Figure 1a). If Q1, and only Q1, has a marginal effect the

planes will still be horizontal, with spatial separation due to the

marginal effect (Figure 1b). If all three loci have (non-interacting)

marginal effects (Figure 1c), or even if Q2 and Q3 interact with

each other but not with Q1 (Figure 1d), the planes will no longer

be horizontal, but they will have the same shape. If, however, Q1

is interacting with the other two loci, the shape of the planes will

differ, and result in them having different within-plane variances

(Figure 1e). In particular, if the locus has a capacitating effect, the

difference in variance between the planes should be substantial.

By measuring the ratio between the plane with the highest

variance and the plane with the lowest variance (henceforth Rp) the

capacitating epistatic effect of each locus in a given triplet can be

quantified. Calculating this type of measure is computationally

efficient compared to regression-based methods, which opens new

possibilities for developing more refined strategies for identifying

gene-gene interactions. However, scaling and significance testing is

not straightforward, as the range of the ratio is strongly affected by

the magnitude of the smallest variance. Screening for an effect of

loci on the variance rather than the mean appears to have a large

potential for identification of interacting loci and the computa-

tional efficiency should make exhaustive scans of large data sets

feasible in spite of the high dimensionality.

Results/Discussion

Identification of epistatic loci in QTL segments
From [16], it was known that the nine segments to be examined

in the AIL contained loci with either strong or suggestive evidence

of marginal effects on body weight. Here, we aim to explore

whether any of these loci also display epistatic effects. Of particular

interest was to determine if we could replicate the original radial

epistatic network around Growth9 [13], that was later shown in

Author Summary

This study provides evidence for a strong and persistent
contribution of epistatic interactions to the selection res-
ponse in two chicken lines subjected to 50 generations of
divergent selection for 8-week body weight. We show that
the genetic architecture of the trait involves genetic
interactions of both second- and third-order and that,
together, they explain a large portion of the phenotypic
divergence between the lines. By replicating a radial epis-
tatic network found in an independent intercross from the
same founder individuals, we show that the type of
genetic interactions affecting this complex trait is persis-
tent over time. In addition to replicating pair-wise interac-
tions, the size of the pedigree also facilitated evaluation
of third-order interactions, which allowed us to further
describe the complex genetic mechanisms underlying
growth phenotype in chicken. Moreover, a new approach
for measuring and detecting capacitating epistasis was
proposed. By showing the importance of third-order
epistasis in this system, we reinforce the importance of
taking it into account when designing experiments aimed
at elucidating the genetic architecture of complex traits.

Epistasis in a Chicken Advanced Intercross Line
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Figure 1. Schematic description of genotype-conditioned plane in different QTL patterns. a): neither locus has any effect. b): the
conditioning locus has a main effect but no interactions. c): all three loci have (non-interacting) main effects. d): the conditioning locus has a
capacitating effect, and the two other loci display synergistic epistasis in the HH background. The red and blue planes represent the HH and LL
genotype classes at the conditioning locus, respectively. The phenotype scale is arbitrary.
doi:10.1371/journal.pgen.1002180.g001
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[16] to contain two separate QTL: Growth9.1 and Growth9.2, was i)

also present in the AIL and ii) displayed the same type of

capacitating epistasis as in the F2 population.

Chromosome scans to select markers for further tests for

epistasis. Our first step in the analysis was to detect the marker

that represents the most likely location of an epistatic QTL in each

chromosomal segment. This was done using a two-dimensional

scan for interacting loci, where a statistical model including

marginal (additive and dominance) as well as epistatic (additive-

by-additive, additive-by-dominance, dominance-by-additive and

dominance-by-dominance) interactions was fitted for all pairs of

markers in the nine segments as in [17]. In each of the nine

segments, the marker location showing the strongest support for

interactions was selected for further significance testing for its

involvement in epistatic interactions with the selected markers in

the other segments. The locations of the nine selected markers (one

in each segment) are given in Table 1. The complete result of the

two-dimensional scan used to select these loci is shown in Figure

S1. The original Growth9 QTL was shown in [16] to contain two

linked, independent QTL. The two-dimensional scan (Figure S1)

did not indicate two loci with distinct epistatic interactions with

loci on other chromosomes. Therefore, we considered only

epistatic interactions with one marker on chromosome 7 (close

to Growth9.1) in the remainder of this report. The genotypes at the

markers that displayed the strongest interactions in each

chromosome segment (Table 1) were used in the further analyses

described below including estimation of multi-locus Genotype-

Phenotype maps and estimation of QTL interaction effects.

Replication and explorations of capacitating epistasis in a
multi-locus radial QTL network

Single-marker analysis to replicate capacitating epista-

sis. Strong epistasis was previously reported in a radial QTL

network with Growth9 at the center [13]. The epistasis was a

capacitating reciprocal interaction with two distinctive features:

First, that high-line alleles at the central locus (Growth9) released

the effects of the three radial loci (Growth4, Growth6 and Growth12)

and second, that high-line alleles at the radial loci released the

effects of the central locus. Consequently, the total effect of the

network could be released (or suppressed) by introduction of high-

weight (or low-weight for suppression) alleles either at the central

locus or at the radial loci. Here, we tested whether this radial

network architecture and capacitating reciprocal interaction could

be replicated, and potentially also extended, in the AIL pedigree.

Estimating contribution of pair-wise QTL effects in the

radial network. To evaluate the contribution of capacitating

epistasis to body-weight, one needs to estimate the contribution of

the loci in a fully capacitated network as well as in a fully

suppressed network. Assuming that the main capacitation occurs

in the radial network topology around Growth9 as in the original

study [13], the capacitation effect can be estimated by the

difference in the additive effects of the radial loci in the Growth9

high-line (HH) and low-line (LL) homozygote backgrounds and

reciprocally the additive effects of Growth9 in the HH- and LL-

backgrounds for the radial loci.

In the AIL, the additive effects differed in HH and LL

backgrounds at Growth9 for five (Growth2, Growth4, Growth6, Growth8

and Growth12) of the eight QTL. They differed either by being

significantly higher in the HH genetic background and/or by

being significant in one of the genetic backgrounds and non-

significant effect in the other (Table 2). Four of the five loci that

interacted with Growth9 (Growth2, Growth4, Growth6 and Growth12)

were part of the original epistatic QTL network detected in [13].

The sum of their effects was 4.7-times higher in a HH than LL

genetic background at Growth9 (Table 2) and explained approx-

imately 30% of the difference in body weight between the HWS

and LWS lines. The fifth locus that interacted with Growth9,

Growth8, was not part of the original network [13]. In the AIL,

Growth8 had a strong transgressive epistatic effect, i.e. the HWS

alleles at Growth8 increase body weight in a LL genetic background

at Growth9. The locus did not have a detectable effect in a HH

background (Table 2). A re-analysis of the data from the original

F2-cross shows that this transgressive effect can also be observed in

that population, although it did not reach genome-wide signifi-

cance in the original analysis. In total, the estimated effect of the

epistatic network is somewhat smaller in the AIL than in the

original study (about 30% vs 45% of the parental line difference

or, if measured as number of phenotypic standard deviations in the

analyzed pedigrees, 1.9 vs 2.2 sP). The decrease in effect is thus

much larger (33%) when compared against the parental line

difference than when compared to the available variation in the

analyzed pedigree (13%). This is a result of the small absolute size,

and thus variation, of the F8 generation, which constitutes a large

part of the pedigree; the standard deviation of the F8 generation is

127 g, compared to 187 g in the original F2 cross.

Analysis to evaluate robustness of epistatic interac-

tions. The regions that displayed capacitating epistasis in the

single marker analysis described above were subjected to further

analysis to evaluate the robustness of the pair-wise interactions in

the radial epistatic network. For this analysis, one-dimensional

QTL scans were performed in all the HH- and LL- stratified data

sets described in the Materials and Methods section. In this

analysis the chromosomal segments containing Growth2, Growth4,

Growth6 and Growth12 were screened using individuals that were

high-line homozygous for Growth9 (HH-Growth9 strata) and then

screened again using individuals that were low-line homozygous

for Growth9 (LL-Growth9 strata), and so on until all segments had

been screened for all data. The results of these scans are shown as

bootstrap-averages in Figure 2.

For the datasets conditioned on the radial loci (Growth2, Growth4,

Growth6 and Growth12), only the HH stratum (except a single

maker in the Growt6 LL stratum) showed a QTL signal above the

significance threshold across the Growth9 region (including both 9.1

and 9.2) (Figure 2). Growth4 and Growth9 exhibited a significant

reciprocal interaction as in the original study. In the AIL, Growth2,

Growth4 and Growth12 displayed a unidirectional capacitation of

Growth9. Although these results thus imply a replicable interaction

effect between these loci that is stable across the generations, the

Table 1. Marker locations with the strongest interactions in
the nine tested chromosomal segments.

QTL region
Start
(Mb)

Stop
(Mb)

Selected
marker

Position
(Mb)

Growth1 169.6 181.1 5 174.1

Growth2 47.9 65.5 33 61.3

Growth3 124.3 133.6 16 132.7

Growth4 24.0 68.0 25 33.9

Growth6 1.3 13.5 25 13.5

Growth7 85.5 88.8 13 88.4

Growth8 33.7 39.1 3 36.3

Growth9 10.9 35.5 44 21.8

Growth12 7.1 13.9 8 9.0

doi:10.1371/journal.pgen.1002180.t001

Epistasis in a Chicken Advanced Intercross Line
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capacitation effect of Growth9 is not as pronounced as in the

original study where it capacitated all radial loci. In the analysis we

also evaluated interactions between the radial loci in the

network. The results show that all the radial loci also interacted

with at least one other radial locus, indicating a more complex

network topology not limited to the originally evidenced pair-wise

radial network. To shed more light on this more complex

interaction network, we evaluated the potential impact of higher

order interactions on phenotypic expression. The first step in

understanding the contribution of the network is to estimate the

contribution of pair-wise interactions to the phenotype in a way

resembling that described in the F2 population [13].

Evaluation of multi-locus network effects using a non-

parametric genotype-phenotype map. To examine the

effects of higher order interactions, we estimated a partial,

model-free, genotype-phenotype map using the observed

phenotypic mean for each genotype. Here, the phenotypic

means were calculated for a subset of genotype classes to which

the studied individuals were assigned. Individuals were classified

based on the number of HH genotypes they carried in the four

non-transgressive radial loci (Growth2, Growth4, Growth6, and

Growth12); that is, the individuals were assigned to one of five

groups depending on whether they were HWS homozygous for 0,

1, 2, 3 or 4 of the radial loci. From these five groups, individuals

that were HWS or LWS homozygous at Growth9 were separated to

obtain in total 10 genotype-classes for which sex and generation

corrected phenotypic means were calculated. The results,

presented in Figure 3, show that i) the 5 locus HWS and 5 locus

LWS homozygote genotypes for Growth2, Growth4, Growth6,

Growth9 and Growth12 gave the highest and lowest phenotype

values, respectively; ii) Only in the Growth9 HH homozygous

genotypic background did the predicted phenotype increase with

the addition of HWS alleles at the radial loci.

The results from the predicted multi-locus GP-map is thus in

agreement with the results from analyses of the stratified data in

Table 2. Genetic effects of five epistatic QTLs for body weight
in the Viriginia AIL in alternate genetic backgrounds.

Tested
QTL

Stratification
QTL

a ± SE (g)
HH

a ± SE (g)
LL

P
a (HH).a (LL)

Additive

Growth2 Growth9 30.4617.9 234.7616.9 0.016

Growth4 Growth9 62.0617.0 22.7617.3 0.048

Growth6 Growth9 35.4617.6 4.3618.8 0.096

Growth9 Growth2 90.2618.8 21.7617.4 0.011

Growth9 Growth4 60.0617.3 21.4616.1 0.046

Growth9 Growth6 39.4622.9 9.0617.2 0.103

Growth12 Growth9 41.4616.7 19.1615.7 0.195

Growth9 Growth12 45.5616.0 22.0615.6 0.143

Sum A:
% population difference

404.3
30%

85.5
6%

6%

Transgressive P
a (HH),a (LL)

Growth8 Growth9 11.4618.9 54.1620.0 0.055

Growth9 Growth8 7.9621.7 50.8617.4 0.055

Sum A: Growth9 19.3 104.9

Growth9 Growth8 7.9621.7 50.8617.4 0.055

Sum A: 19.3 104.9

Estimated additive effects with standard errors (a6SE) are given for each QTL in
strata containing only individuals homozygous for HWS (HH) or LWS (LL)
derived alleles at the Stratification QTL. The QTL where the HWS alleles increase
the body-weight in the HH/LL strata respectively are given under the headings
Additive/Transgressive (see text for more explanation).
doi:10.1371/journal.pgen.1002180.t002

Figure 2. QTL scans on conditioned subsets of data. Panel a
contains the scan where Growth2 is the conditioning locus, in b, c, d and
e, the conditioning loci are Growth4, Growth6, Growth9 and Growth12,
respectively. Each panel shows the QTL profile in three data sets: HWS
background (blue), LWS background (green) and the entire pedigree
(red). Scans were performed for the non-transgressive loci in the radial
network. The significance threshold represents 95% study-wide
confidence based on a permutation test using 1000 replicates.
doi:10.1371/journal.pgen.1002180.g002

Epistasis in a Chicken Advanced Intercross Line

PLoS Genetics | www.plosgenetics.org 5 July 2011 | Volume 7 | Issue 7 | e1002180



that LWS homozygosity at Growth9 inhibits the growth-promoting

effects of HWS alleles in Growth2, Growth4, Growth6 and Growth12,

while HWS homozygosity at Growth9 releases growth promoting

effect at the same loci. Data also indicates that the interaction in

the radial network is reciprocal in this analysis, which is consistent

with the original observation in the F2 population. The HWS allele

in Growth9 had indeed lower growth promoting effects in the LWS

than HWS homozygote background of Growth2, Growth4, Growth6

and Growth12. In addition, we constructed a parametric version of

the genotype-phenotype map using the Natural and Orthogonal

InterAction (NOIA) framwork [18], which showed similar results

(see Text S1 and Figure S2). Figure 2 also shows that the additive

effect of Growth9, which can be detected in a QTL scan for

marginal effects, is caused by an individual genetic effect of

Growth9 in combination with capacitation by beneficial alleles at

the four radial loci. The same holds for the marginal additive

effects of Growth2, Growth4 and Growth12, which also supports the

original observation from [13].

Beyond the radial network—exploring the effects of all
detected QTL interactions

To move beyond the observations related to the original

network and understand the combined effect of all the identified

interacting QTL, we examined the phenotypic values for

individuals with a given set of genotypes for all possible pairs

and triplets of loci within a set of six loci; the radial network

(Growth2, Growth4, Growth6, Growth9 and Growth12) and the QTL

Growth1. Growth1 was included because it had a strong individual

marginal effect, displayed suggestive interactions in the exhaustive

2D-scan (Figure S1), and had significant interaction effects with

four of the other loci when used in a stratified scan of the same

type as described for the other loci above (data not shown).

Pair-wise epistasis. The results for the locus pairs are

presented in Figure 4, where shown are sex- and generation

corrected phenotypic means for all two-locus genotypes. To

correct for fixed effects, we compared the mean of each individual

to the subset of the pedigree that was of the same sex and belonged

to the same generation. The values presented are individual

deviations from the mean phenotype of the class (i.e. same sex and

generation) and are centered on zero. From these results we can

conclude that capacitating interactions are more than just a

feature of the radial QTL network. This is because most evaluated

locus pairs involved some degree of capacitating epistasis, where

the HH-genotype at Growth9 increased the effect of the other locus.

An exception to this is Growth2, because it appears to be a strong

capacitating locus with virtually no individual marginal effect; all

its influence on the phenotype was due to interactions.

Higher-order epistasis. If a complex trait determined by n

loci is considered, the phenotype of each individual in a population

will be the result of its individual n-locus genotype acting in its

internal and external environments. In our studies, we were

limited by neither knowing the true number of loci (n) affecting

growth nor how inter-dependent the genetic effects of these loci

were in determining growth. Therefore, in our genetic analyses we

first sought to detect loci determining the trait and then estimate

their effects by calculating phenotypic means for k-locus genotypes

(k. = 1). Although technically the upper bound is k = n, very high

order effects are not likely for mechanistic reasons and difficult to

detect due to the rarity of the individual genotypes for high n.

When k,n, the phenotypic means will be an average across the

genotypes of all the remaining (n-k) loci that affect the trait. If there

are no interactions between the k primary loci and the remaining

(n-k) loci, these analyses will provide estimates of genetic effects

that sum to the total genetic effects on the trait. If there are

interactions, however, they will not. To explore how results are

affected by taking averages over different subsets of loci, we

estimated the phenotypic means for the detected QTL using k = 1,

k = 2 and k = 3 (accurate estimates for higher values of k cannot be

obtained due to too few observations). Table 3 contains results for

one subset of three loci (Growth4, Growth9 and Growth12). The effect

of considering multi-locus genotypes for phenotypic predictions is

shown by the increase of explained variation with higher values

of k.

Figure 5 shows how higher order epistasis contributes to

phenotypic expression for two triplets of loci (a, c: Growth1-Growth6-

Growth12; b, d: Growth4-Growth9-Growth12). In the Growth4-Growth9-

Growth12 triplet, the difference in weight between the genotype

with the highest phenotypic value (HH-HH-HH) and that with the

lowest (HH-LL-LL) is 207 g. This number nearly doubles the

expectation from the summation of the individual effects of the loci

(Table 3).

The capacitating effect of Growth1 is illustrated in the results

presented in Figure 5a. Here, the LL genotype at Growth1

suppresses the effect of Growth6 and Growth12. As a reference,

the Rp-value for Growth1 in this triplet is 18, which is the highest

among the possible three-locus combinations of the six loci

(Figure S3), thus, in this picture, Growth1 displays the strongest

capacitating effect of the involved loci. In addition, Growth6 and

Growth12 are strongly affected by the genetic background at

Growth4; in this triplet the Rp value is 16. Figure 5 also illustrates

the joint effects of the QTL triplets (Growth1-Growth6-Growth12;

Figure 5c) and (Growth4-Growth6-Growth12; Figure 5d). Here, the

residual phenotypic distributions of individuals carrying either the

best or worst three-locus genotypes for these triplets are plotted

together with the additive expectations, illustrating the strong

capacitating effect of the interactions. For the Growth1-Growth6-

Growth12 triplet, the deviation from additivity is mainly due to the

phenotype in the high-weight genotype, which is unexpectedly

large. For the Growth4-Growth9-Growth12 triplet, the interaction

elevates the phenotype in the high-weight genotype and suppresses

the phenotype in the low-weight genotype. The phenotypic

Figure 3. Genotype-phenotype maps in HWS and LWS genetic
background at Growth9.1. Model free estimation of phenotypic
values. The values are plotted as a function of the degree of HWS and
LWS homozygosity at its interacting loci Growth2, Growth4, Growth6
and Growth12. The error bars represent s.e.m. Circles are Growth9 HH
and squares are Growth9 LL.
doi:10.1371/journal.pgen.1002180.g003

Epistasis in a Chicken Advanced Intercross Line
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distribution of the individuals in the pedigree is also shown, to

provide a point of reference as to the scale of the measure. Figure 5

thus provides a model-free visual measure of the total effects of the

triplets, and also a comparison with the phenotypic distribution

of the entire pedigree. The genotypes fall into distinct distribu-

tions, with larger mean differences than would be expected from

summing the marginal effects, or the pair-wise interactions, which

supports the conclusion that three-locus interactions are important

for body-weight in this system. However, due to the large number

of estimated, and thus uncertain, values that need to be combined

to calculate these numbers, it is not possible to state that this

observation is statistically significant; that would require a data set

at least one order of magnitude bigger than the, already large, one

used for this study.

The analyses reported in this paper all demonstrate a compli-

cated genetic architecture of the selected trait. The original radial

network of pair-wise epistasis, evidenced in the original report

[13], is in this more thorough investigation shown to be a part of

an even more complex structure. An additional important locus,

Growth1, is identified and new, higher order, interactions among

the previously identified loci are shown to make large contribu-

tions to body-weight. While the molecular mechanisms are still

Figure 4. Two-way interactions in the radial QTL network. Panel a shows the interaction between Growth9.1 and Growth2, where Growth2 on
average has virtually no effect in this pedigree. However, stratification reveals that it has an effect, in opposite directions, in both the HH and LL
background at Growth9.1. The remaining panels show the synergistic interactions between HH-alleles in the three pairings between Growth9.1 and
Growth4 (b), Growth6 (c) and Growth12 (d) in turn.
doi:10.1371/journal.pgen.1002180.g004
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unknown, the results suggest that some of the involved loci are

upstream regulators of the key metabolic pathways involved in

growth. Growth1, which has been linked to many associated

phenotypes [19,20] and show strong capacitating effects in this

study, is a likely candidate to in the same way as Growth9, act as a

key capacitor locus in the complete network.

Implications of capacitating epistasis for complex trait

genetics. In this study we identified abundant capacitating

epistasis in a network of loci important for the large selection

response in the body-weight selected Virginia chicken lines. As

capacitation has released selectable genetic variation in the HWS

line and suppressed genetic variation in the LWS line, it has made

it possible to obtain a response to selection far outside the range of

phenotypes in the common base-population. This change in the

total selectable additive genetic variance results from a release of

cryptic (or standing) genetic variation, which has earlier been

implicated as a source of Selection Induced Genetic Variation

(SIGV) [21]; something that was experimentally validated initially

[13] in these lines. Being able to estimate the level of capacitating

epistasis would also be useful for the ability to predict a

population’s potential for genetic change in selection programs

or adaption to new environments in an evolutionary time scale

[14].

The cryptic genetic variation that this epistatic mechanism can

hide in a population also has implications for estimation of the

heritability in that population, because the marginal genetic

(additive) effects of individual loci in a network involving

capacitating epistasis will be highly dependent on the allele-

frequencies at the other loci in the network. This is clearly

illustrated by the network studied here, where the sum of the

marginal genetic effects is much higher in a HWS genetic

background (i.e. a capacitated network), than in a LWS genetic

background (i.e. a suppressed network). The genetic potential

[14] - the allele-frequency independent ability of existing alleles in

a population to change the phenotype - of the population is thus

generally higher than the estimate of the heritability, which is

dependent on allele frequencies, in a population where capacita-

tion exist. As a consequence, the sum of the individual marginal

effects of the loci detected for a trait may be biased due to

capacitating epistasis.

Replication and cloning of complex trait loci becomes more of

challenge for loci in capacitation networks. As the effects of the loci

are context dependent, it is not possible to use traditional

approaches to identify single, main loci and then replicate and

clone these independently using standard methods. Instead, it

becomes necessary to first identify the interacting loci, which in

most cases is difficult due to the costs and work involved in

generating sufficiently large datasets, and then to thoroughly

identify the dependencies between the interacting loci. Only once

that is done, is it possible to develop an appropriate strategy for

simultaneous replication and cloning of the key loci. Due to the

complexities and the cost involved, we can expect that the ability

to identify and clone causative mutations using top-down

approaches will impede progress in identifying new loci for

multifactorial disorders where capacitation is important.

The potential impact of capacitating genetic interactions in

evolution is considerable. The existence of key loci that suppress

and release cryptic variation in response to selective forces will

allow populations to either stably maintain a robust phenotype

while adapted to an environment (a suppressed network displaying

little of the genetic potential of the population), or facilitate a rapid

phenotypic change in response to changing environments by

releasing the selectable genetic variation by capacitating the

genetic network through the master regulator loci. It will therefore

be of great interest to in a directed way search for capacitating

epistasis in evolutionary studies using the RP measure suggested

here, or variations thereof.

Conclusion
Using a large multigenerational pedigree we are able to

demonstrate replication of a multi-locus QTL interaction network

in vertebrates. Our results show that the type of interactions

detected in the original population replicate to a considerable

extent, both regarding the loci included as well as their combined

effects. Due to the large population size we were also able to

include analyses of higher order interactions that show that the

primary interaction mechanism, genetic capacitation, is a main

feature of the network that involves not only pairs but also triplets

of loci. Based on these results we introduce the idea that high order

epistasis can be studied by examining the variance differences

between genotypes in multi-dimensional genotype-phenotype

maps.

This study provides further evidence for the importance of

genetic interactions in determining complex phenotypes and

indicates that the value of epistatic analyses in studies aiming at

genetic dissection of the architecture of complex traits.

Materials and Methods

Animals
An eight generation Advanced intercross line (AIL) was

produced from two selected lines of chickens obtained by bi-

directional, single trait selection for bodyweight at 56 days of age

(referred to as the High Weight Selected ‘‘HWS’’ and Low Weight

Selected ‘‘LWS’’ lines). The lines originate from a common base

population, consisting of crosses of seven partially inbred lines of

White Plymouth Rock chickens [22,23]. All procedures involving

animals used in this experiment were carried out in accordance

with the Virginia Tech Animal Care Committee animal use

protocols.

Individuals from generation 40 of the HWS and LWS lines were

used as founders for the AIL. The sex-averaged 56-day body

weight at this generation was 1522 g (SE: 636 g) for the HWS line

and 181 g (SE: 65 g) for the LWS line. The observed mean

heterozygosity, H0, at all autosomal loci was calculated as 0.146

and 0.156 in the high and low lines, respectively [24]. The

husbandry of the intercross was identical to that of [19]. To

produce 100 F1 progeny, 10 HWS males were mated with 22 LWS

Table 3. Differences in total effects of the three loci Growth4,
Growth9.1, and Growth 12 based on their context.

Growth4 Growth9 Growth12 Total (g)

k = 1 33 43 28 104

k = 2 (106/2+63/2)/2
= 42

(106/2+93/2)/2
= 50

(63/2+93/2)/2
= 39

131

k = 3 207/3 = 69 207/3 = 69 207/3 = 69 207

The rows show the effect of the triplet when increasing numbers of loci are
taken into account. The first row (k = 1; only the primary locus) gives the
summation of the marginal effects of the three loci. The second row (k = 2;
primary locus with one background locus) gives the effect the loci calculated as
the average over the two pairs that it is part of (each locus is assumed to
contribute half the effect of the pair). The third row (k = 3; all three loci together)
gives the effect for each locus is a third of the entire triplet effect. As can be
seen, using either k = 1 or k = 2 leads to underestimation of the total impact of
the three loci.
doi:10.1371/journal.pgen.1002180.t003
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females and 8 LWS males were mated to 19 HWS females). About

100 individuals were produced in generations F2, F4, F5, F6 and F7

and 300 and 400 individuals in generation F3 and F8 respectively.

The F8 generation has undergone the most number of recombi-

nation events and should therefore give the best resolution, which

is why it is also the largest. The f3 generations was increased in

number in order to provide power to detect variation that might

be lost deeper in the pedigree.

DNA extraction, marker selection, and genotyping
Nine chromosome regions with significant or suggestive QTL

for body weight in the F2 generation [13,15,20] were selected for

further study in the AIL. The segments are abbreviated as in [15].

For all individuals in the AIL, DNA was extracted from blood by

AGOWA GmbH (Berlin, Germany). In addition, 15 individuals

from each parental line were genotyped for approximately 13,000

SNP markers, distributed genome-wide, as described in [15]. The

Figure 5. Three-way epistatic interactions. Panel a shows the mean phenotype values for each genotype for the triplet Growth1-Growth6-
Growth12; panel b shows the same for the triplet Growth4-Growth9.1-Growth12. The values shown are the mean (over all individuals with that
genotype) of the difference from the average for the class – that is all individuals with the same sex and belonging to the same generation. Thus,
positive values in the graph indicate that individuals carrying that genotype are, on average, larger than expected for their class. Panel c shows the
distribution of phenotype values for the Growth1-Growth6-Growth12 triplet, and panel d shows the same for the Growth4-Growth9.1-Growth12 triplet.
The red ‘‘+’’ symbols show individuals with the high-weight genotype, the blue ‘‘x’’-symbols indicate individuals with the low weight genotype. The
correspondingly coloured circles show the genotype mean. Phenotypic values for all individuals are shown as black circles and the inserted
histograms show the phenotype distributions for the high-weight (red) and low-weight (blue) genotypes. The expected range based on the additive
effects of the loci is shown as dashed grey lines.
doi:10.1371/journal.pgen.1002180.g005
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nine QTL regions include 384 segregating SNPs, selected out of

the 13,000 total SNPs. The average distance between the markers

was less than 1 cM. All individuals in the AIL (n = 1529) were

genotyped for the set of 384 markers using the GoldenGate assay

(Illumina, CA) at the SNP technology platform in Uppsala

(Sweden).

Replication of epistatic QTL
To study the effects of the radial network we used the

stratification based QTL interaction analysis employed in [13].

A brief description of the procedure is provided below. First, QTL

genotype contrasts (regression coefficients that are essentially re-

scaled probabilities [25]) were estimated at each marker in the 10

genomic regions evaluated. These contrasts, calculated from a

gametic IBD matrix [26–29], were used in a two-dimensional scan

for interacting QTL pairs where tests were performed using a two-

locus epistatic model [17]. Several types (single QTL at each locus,

two non-interacting QTL and two interacting QTL) of models

were fitted and the loci were considered to be interacting when the

interacting QTL model had a significant improvement over the

others. Significance was determined from a permutation test

procedure, as described in [17]. Based on this analysis, we selected

the marker location in each segment that showed the strongest

support for interactions as the locus to be tested for significant

epistasis.

We generated a series of stratified datasets, i.e. subsets of the data

that contained only the individual most likely to be homozygous at

a conditioning locus. Two strata for each conditioning locus (one

stratum with the LL homozygotes and one with the HH homo-

zygotes) was produced using the genotypic contrasts at the marker

position in each selected chromosomal segment that had the

strongest indication of epistasis in the two-dimensional QTL scan.

We stratified using six conditioning loci (Growth1, Growth2, Growth4,

Growth6, Growth9 and Growth12), yielding a total of 12 subsets. The

sizes of the strata varied between 229 and 377 individuals. These

stratified datasets were then used for the interaction analyses.

For pairs of loci where significant interactions were detected, the

additive genetic effects of the QTL were estimated separately in

each of the three strata. The estimates of the additive effects were

obtained using linear regression of residual body weight at 56 days

of age, corrected for the fixed effect of generation and sex, as in [13].

The robustness of potential interactions was evaluated using a

combined bootstrap and permutation testing strategy, designed to

control the type-I errors in this advanced intercross pedigree [30].

For each locus tested, the same analyses were performed for the

whole data set, as well as for the HH and LL strata separately. In

each dataset, 200 bootstrap samples were generated and analyzed

using a one-dimensional QTL scan [31]. For each marker, an

additive model was fitted, with sex and generation as fixed effects,

the results averaged over all bootstrap replicates. Bootstrap data

sets were sampled with replacement and were of the same size as

the original data set. The significance threshold was determined by

a permutation test, where 1000 datasets were generated by

permuting the genotypes of the individuals, while preserving the

relationship between phenotype and the two fixed factors, sex and

generation in the pedigree. The threshold was selected so that it

was above the maximal value found in 95% of the permutations.

One-dimensional scans, following the procedure described above,

were performed in each dataset, and the distribution of the

maximal F-scores from each replicate was used to determine an

empirical significance threshold.

Loci defined as epistatic in the two-dimensional scan were

included in a joint network analysis as follows: initially, all

marginal and two-way interactions for epistatic loci in the network

were estimated jointly using the NOIA framework [18]. The use of

the ‘‘statistical model’’ in NOIA provided an orthogonal model for

the estimation of genetic effects, even though the population did

not conform to an ideal F2 allelic frequency distribution at each

locus. From the orthogonal estimates, a multi-locus genotype-

phenotype (GP) map was constructed using the ‘‘transformation’’

operation in NOIA [18]. This GP-map provides estimates of the

genotype values (expected phenotypes) for all multi-locus genotype

combinations in the network that are useful for functional studies

of epistatic interactions.

In addition, phenotypic means of genotype classes were

estimated directly using a discretized version of the data set.

Genotypes of each individual were discretized at the marker

positions based on the genotype contrast value. The contrasts

ranged from 21 to 1, with 0.4/20.4 used as thresholds for

assigning a HH, HL, or LL genotype to a marker. These

thresholds are conservative (the HL interval is larger than that of

the homozygotes; 0.33/2033 would be most natural and split the

space evenly), to reduce the number of falsely assigned homo-

zygotes because they are most critical to the outcome. However,

because most individuals had accurately estimated genotype

probabilities, i. e. contrast values close to 21, 0 or 1, the choice

of cut off has little effect on the outcome. We also used the

discretized data in a second order interaction model-based NOIA-

approach, and constructed a partial GP map directly from the

phenotypic means of individuals with given genotypes. The

observed means of the genotype classes were then compared to

the expected ones from the NOIA model. Differences between

these values are an indication of the effect of higher order

interactions.

Discretized data were used to study three-way interactions. For

a set of triplets of loci, the phenotypic mean (again corrected for

sex and generation) for each three-locus genotype was calculated.

Thus, for each triplet of loci, means were calculated for 27 classes

of individuals, each corresponding to a three-locus genotype. Since

each genotype was scored separately, any type of interaction was

detected from the pattern of these values. For detection of

capacitating epistasis, the 27 means were grouped into three

‘‘planes,’’ where each plane consists of the nine genotypes that

shared a single genotype of the potentially capacitating locus (i.e.

there is one plane each for the ‘‘HH,’’ ‘‘HL’’ and ‘‘LL’’ genotypes

at that locus). Then, the variance within each plane was calculated

together with the ratio between the planes with highest and lowest

variance. This ratio measures the capacitating effect of the

conditioning locus.

Supporting Information

Figure S1 Complete 2D scan. The profile of an exhaustive 2D

QTL scan over all markers in the data set.

(PDF)

Figure S2 Parametric genotype-phenotype maps in HWS and

LWS genetic background at Growth9.1. The phenotypic values

were predicted using the NOIA model framework. The values

are plotted as a function of the degree of HWS and LWS

homozygosity at its interacting loci Growth2, Growth4, Growth6 and

Growth12. The error bars represent s.e.m.

(TIFF)

Figure S3 Distribution of Rp-values for all possible loci combina-

tions. Panel a shows all values, in decreasing order, from all possible

combinations within the six loci set. (60 values; 3 for each of 20

possible triplets). Panel b shows a histogram of these values.

(TIFF)
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