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INTRODUCTION 

Renal cell carcinoma (RCC) originates from the renal 

tubular epithelial system and is the most common 

malignant tumor of the urinary system, accounting 

for approximately 80–90% of malignant renal tumors. 

In the United States, RCC ranked the eighth most 

common malignant tumor, accounting for 4.2% of novel 

diagnoses [1, 2]. Clear cell renal cell carcinoma (ccRCC) 

was the most common histological type of RCC. 
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ABSTRACT 

Accumulating pieces of evidence suggested that immunotypes may indicate the overall immune landscape in the 
tumor microenvironment, which were closely related to therapeutic response. The purpose of this study was to 
classify and define the immune subtypes of clear cell renal cell carcinoma (ccRCC), so as to authenticate the 
potential immune subtypes that respond to immunotherapy. Transcriptome expression profile and mutation 
profile data of ccRCC, as well as clinical characteristics used in this study were obtained from TCGA database. 
There were significant differences in the infiltration of immune cells, immune checkpoints, and antigens between 
ccRCC and para-cancerous tissues. According to immune components, patients with ccRCC were divided into three 
immune subtypes, with different clinical and molecular characteristics. Compared with other subtypes, IS2 
showed cold immune phenotype, and was associated with better survival. IS1 represented complex immune 
populations and was associated with poor overall survival (OS) and progression free survival (PFS). Further 
analysis indicated that expression of immune checkpoints also differed among the three subtypes, and was 
abnormally up-regulated in IS3. Pathway enrichment analysis indicated that the mTOR signaling pathway was 
abnormally enriched in IS3, while the TGF_BETA, ANGIOGENESIS and receptor tyrosine kinase signaling pathways 
were abnormally enriched in IS2. Furthermore, there was an abnormal enrichment of the epithelial-to-
mesenchymal transition (EMT) signaling pathway in IS1, which may be associated with a higher rate of metastasis. 
Finally, SCG2 was screened as a specific antigen of ccRCC, which was not only related to poor prognosis, but also 
significantly associated with immune cells and immune checkpoints. In conclusion, the immune subtypes of ccRCC 
may provide new insights into the tumor biology and the precise clinical management of this disease. 
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Additionally, ccRCC caused approximately 175,000 

deaths each year, and approximately 30–35% of patients 

with ccRCC undergoing surgery developed distant 

metastases [3]. Although localized ccRCC may be cured 

by surgical resection, the probability of local recurrence 

or distant metastasis within 5 years was approximately 

30% [4]. Due to the lack of sensitivity to conventional 

radiotherapy and chemotherapy, immunotherapy and 

targeted therapy were used as first-line treatment for 

patients with ccRCC metastases, but the prognosis 

remained poor [4]. Therefore, in order to provide better 

treatment for patients, it was urgent to obtain a deeper 

understanding of the biological mechanisms of ccRCC. 

 

Recently, immune checkpoint inhibitors (ICIs), including 

antibodies targeting programmed death-1 (PD-1) 

receptor, its ligand (PD-L1), and cytotoxic T lymphocyte 

associated protein 4 (CTLA-4), have become the main 

means of cancer treatment [5, 6]. Immunotherapy has 

been proven to be an effective and important new 

strategy for the management of patients with ccRCC  

[7–9]. However, only a few patients with ccRCC 

benefited from immunotherapy. This phenomenon may 

be attributed to the complex and different immune 

microenvironment among individuals with this type of 

tumor [10, 11]. In reality, it was difficult to predict the 

response of patients with ccRCC to immunotherapy. The 

predictive value of tumor PD-L1 expression and tumor 

mutational burden (TMB) as auxiliary diagnostic 

biomarkers for other tumor types remained doubtful in 

cases of ccRCC [12], since many studies have shown that 

this did not correlate with the response of patients with 

ccRCC to immunotherapy [13]. Consequently, the 

identification of reliable biomarkers for immunotherapy 

response was urgent, to promote the improvement of 

clinical efficacy for these therapies [14]. 

 

The purpose of this study was to describe the immune 

characteristics of ccRCC and define each population, to 

propose new treatment options. Based on the clustering 

of immune related genes, we defined three immune 

subtypes. Each immune subtype corresponded to diverse 

clinical and molecular characteristics. Our findings 

revealed the complex tumor immune microenvironment 

in each patient with ccRCC and screened antigens  

for subtype classification, which provided a theoretical 

basis for the selection of appropriate patients for 

immunotherapy. 

 

RESULTS 
 

Identification of immune characteristics of ccRCC 

and para-cancerous renal tissues 

 

We first used single sample gene set enrichment 

analysis (ssGSEA) to identify differences in immune 

cell infiltration between normal and ccRCC tissues.  

As shown in Supplementary Figure 1A, all immune cells 

had diverse degrees of differential expression between 

normal and ccRCC tissues. Moreover, by uploading  

the normalized ccRCC expression matrix to the 

CIBERSORT website, we obtained the relative 

proportions of 22 types of immune infiltrating cells in 

ccRCC. Then, the Wilcoxon test was applied to ascertain 

the differences in infiltrating immune cells, with P <0.05 

as the threshold. The result indicated that there were 

significant differences in the expression of infiltrating 

immune cells between ccRCC and normal tissues 

(Supplementary Figure 1B). Previous studies have shown 

that immune checkpoints (ICPs) and immunogenic cell 

death (ICD) modulators play important roles in tumor 

immunity. Therefore, in order to explore the immune 

characteristics of normal and ccRCC patients, the 

expression of ICPs and ICD modulators was evaluated. 

Similar to the previous results, almost all ICPs and ICD 

modulators were differently expressed in the two groups 

(Supplementary Figure 1C, 1D). These results confirmed 

that there were significant differences in the immune 

environment between ccRCC and normal tissue. In order 

to further verify our results, the algorithm of estimation 

of stromal and immune cells in malignant tumors using 

expression data (ESTIMATE) was used to calculate the 

immune microenvironment scores, including the immune 

score, stromal score, and estimate score. It was obvious 

that the immune score, stromal score, and estimate score 

were significantly more expressed in ccRCC tissues, 

which indicated that the immune microenvironment was 

more complex in cancer than normal tissue samples 

(Supplementary Figure 1E). 

 

Identification of immune subtypes of ccRCC 

 

Given that there were significant differences in the 

immune environment between ccRCC and normal 

tissues, 186 differentially expressed genes were screened 

from 1307 immune-related genes with a criterion of 

|LogFC| >2, p <0.05, and then these genes were used to 

construct immune subtypes. Non-Negative Matrix 

Factorization (NMF) and Principal Component Analysis 

(PCA) are both decomposition algorithms, used to  

find optimal linear projections of data onto lower 

dimensional space without losing much information 

about the structure within the data [15]. Another well-

known manifold learning algorithm is t-Distributed 

Stochastic Neighbor Embedding (t-SNE), which allows 

visualization of data in low dimensional space without 

losing too much information [16]. Compared to other 

algorithms, NMF provides “meta features” (or “meta 

genes”) that represent the main characteristics of the 
whole data, enabling more effective characteristic 

clustering [17–19]. PCA and t-SNE are generally used 

for dimensionality reduction and visualization. NMF can 
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also be used for dimensionality reduction, but it is more 

suitable for clustering [20]. Eventually, three immune 

subtypes (e.g., IS1, IS2, IS3) were identified based on 

the NMF algorithm (Figure 1A, 1B). Supplementary 

Table 1 showed the subtypes for the samples. The 

overall survival (OS) results showed that patients in the 

IS1 subgroup had the worst survival, while patients in 

the IS2 subgroup had the best survival. This result  

was consistent with progression free survival (PFS) 

(Figure 1C), which confirmed that the molecular 

subtypes not only play well-differentiated roles in 

patients with ccRCC, but may also serve as prognostic 

biomarkers. Additionally, we downloaded the E-MTAB-

1980 data set from ArrayExpress to further verify the 

stability and reliability of the immune subtypes of 

ccRCC. Three immune subtypes were identified by the 

NMF algorithm (Supplementary Figure 2A). The 

Kaplan-Meier (KM) survival analysis indicated that 

there were significant differences in survival among the 

three immune subtypes (Supplementary Figure 2B). 

 

Identification of the association between mutation 

characteristics of immune subtypes with other 

biological biomarkers 

 

In addition, differences in clinicopathological 

characteristics between immune subtypes were further 

analyzed. In IS1 patients, the proportion of advanced 

clinicopathological characteristics was significantly 

higher than that of IS2 and IS3 patients, but there was 

no significant difference in the degree of lymph node 

involvement among the three groups (Figure 2A). The 

distribution of the top ten mutants in each population 

was plotted (Figure 2B). TMB was an effective marker 

for predicting the response to immunotherapy, and was 

applied to identify the characteristics of each immune 

subtype. As shown in Figure 2C, the IS1 group had a 

higher TMB, followed by the IS2, and the IS3 had a 

lower TMB, which suggested that IS3 patients  

were more likely to respond to immune checkpoint 

inhibitors. However, there was no significant difference 

in TMB among these three immune subtypes (p =0.28, 

Figure 2C). After appraising the mRNA expression-

based stemness index (mRNAsi), which referred to  

the similarity between tumor cells and cancer stem cells 

(CSCs), the results suggested that IS3 had the highest 

mRNAsi, followed by IS1 and IS2 (p <0.001, Figure 

2D). Microsatellite instability (MSI) was characterized 

by a high frequency of insertions/deletions due to 

unrepaired DNA polymerase slippage in microsatellite 

sequences, and may be applied to predict immunotherapy 

response. The results suggested that IS3 patients had the 

highest MSI (p =0.94), indicating IS3 patients display a 

better immunotherapeutic response (Figure 2E). 

 

 
 

Figure 1. Identification of three distinct immune-related molecular subtypes of ccRCC in the TCGA-ccRCC dataset by NMF.  
(A) Cumulative distribution function curve and (B) delta area of immune-related genes in the ICGC cohort. (C) Kaplan-Meier curves showing 
OS and PFS of ccRCC immune subtypes in the TCGA cohort. 
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Identification of the immune characteristics of each 

immune subtype 

 

To explore the immune characteristics of the three 

immune subtypes, we used the CIBERSORT and 

ssGSEA algorithms to analyze the distribution and 

expression differences of immune cells. After assessing 

immune cell infiltration in ccRCC samples by ssGSEA, 

most immune cells were significantly over-expressed in 

the IS3 group, while in the IS2 group a large number of 

these immune cells were significantly under-expressed 

(Figure 3A). Furthermore, we used CIBERSORT to 

assess the expression of 22 immune infiltrating cells in 

immune subtypes. Individual immune infiltrating cells 

were substantially varied in these three subtypes. The 

expression of regulatory T cells (Tregs) and M0 

macrophages was significantly increased in IS1, while 

the expression of B cells, NK cells, and mast cells was 

higher in IS2 (Figure 3B). The association between ICPs, 

ICD modulators, and these three immune subtypes was 

also explored. Most of the immune checkpoints were 

highly expressed in IS3, such as PDCD1 and CTLA4 

(Figure 3C). Concomitantly, there were also significant 

differences in the expression of ICD regulators between 

the three immune subtypes, with higher expression  

in IS3 (Figure 3D). These results suggested that IS3 was 

a “hot” immune phenotype, IS2 was a “cold” immune 

phenotype, and IS1 was an “intermediate” immune 

phenotype. Therefore, this immune subtype may be used 

to distinguish the immune status of patients with ccRCC. 

 

Identification of immunotherapy regimens for each 

subtype 

 

Given the high level of immune complexity of the  

three immune subtypes, we calculated differences in 

 

 
 

Figure 2. Identification of mutations, immune, and clinicopathological differences among three distinct ccRCC immune-
related molecular subtypes. (A) Distribution ratio for grades, stages, T stages, N stages, and M stages across IS1–IS3 in the TCGA cohort. 
(B) Distribution landscape of mutation and CNV among IS1–IS3 in the TCGA cohort. (C) Distribution landscape of tumor mutation burden 
among IS1–IS3 in the TCGA cohort. (D) Distribution landscape of mRNAsi status among IS1–IS3 in the TCGA cohort. (E) Distribution landscape 
of MSI status among IS1–IS3 in the TCGA cohort. 



www.aging-us.com 6921 AGING 

expression of the most common targets (PD-1, PD-L1, 

and CTLA4) across immune subtypes, in order to 

identify potential immunotherapeutic regimens for 

patients. In IS3, the expression of PD-1, PD-L1, and 

CTLA4 were higher than in IS1 and IS2 (Figure 4A). 

Moreover, the ccRCC samples were divided into 

positive and negative groups, according to the median 

value of the most common target expression. The ratio 

plot revealed that the number of highly expressed 

targets (PD-1+, PD-L1+, and CTLA4+) had the highest 

proportion in IS3 (Figure 4B). In addition, mammalian 

target of rapamycin (mTOR), a multi-tumor therapeutic 

target, was also evaluated. We discovered the 

abnormally high expression of mTOR in IS3, and the 

proportion of highly expressed mTOR was the highest 

in IS3 (Figure 4C). Due to the significantly high 

expression of immune checkpoints and mTOR, patients 

in the IS3 group were considered suitable for the 

combination of immune checkpoints (PD-1, PD-L1,  

and CTLA4) and mTOR inhibitors, which has been 

 

 

 

Figure 3. Association between immune subtypes, immune cells, and immune checkpoints. (A, B) Differential expression of 
immune cells among the ccRCC immune subtypes (A) ssGSEA; (B) CIBERSORT. (C) Differential expression of immune checkpoints among the 
ccRCC immune subtypes in TCGA cohorts. (D) Differential expression of ICD modulators among the ccRCC immune subtypes in TCGA 
cohorts. 
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clinically proven to be one of the best immunotherapy 

regimens available. We further analyzed the differences 

in biological pathways among the three subtypes, and 

found that the TGF_BETA_SIGNALING pathway was 

significantly enriched in the IS2 subtype (Figure 5A). 

Additionally, the TGF_BETA_SIGNALING pathway 

and key regulatory genes (SMAD3 and SMAD2)  

were also observably over-expressed in the IS2  

subtype compared to IS1 and IS3 (Figure 5B). We 

further analyzed expression differences for the 

ANGIOGENESIS pathway and major regulatory genes 

among immune subtypes. The results showed that the 

expression of the ANGIOGENESIS pathway and major 

regulatory genes were the highest in IS2 (Figure 5C). 

The same trend was observed in the REACTOME 

SIGNALING BY RECEPTOR TYROSINE KINASES 

 

 
 

Figure 4. Identification of differential expression of immune checkpoints and mTOR among immune-related subtypes.  
(A) Differential expression of PDCD1, PD-L1, and CTLA4 among the ccRCC immune subtypes in TCGA cohorts. (B) Differential proportion of 
PDCD1+, PD-L1+, and CTLA4+ among the ccRCC immune subtypes in TCGA cohorts. (C) Differential expression and proportion of mTOR+ among 
the ccRCC immune subtypes in TCGA cohorts. 
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pathway. Then, we inspected the expression of the 

tyrosine kinase inhibitor (TKI) pathway targets in the 

IS2 subtype. It was obvious that the expressions of 

VEGFA, VEGFR1, VEGFR2, VEGFR3, PDGFRB, and 

KIT were significantly over-expressed in the IS2 

subtype (Figure 5D). Therefore, patients with IS2 

ccRCC may be treated with a combination of TKI 

targeted therapy and antiangiogenic therapy. Given that 

cases in the IS1 subtype have a higher proportion of 

patients with a metastatic propensity, we therefore 

compared the IS1 subtype with the IS2 and IS3 

subtypes. The results showed that the DNA_REPAIR, 

MYC_TARGETS_V2 (MYC), and epithelial-to-

mesenchymal transition (EMT) pathways were 

significantly enriched in IS1 (Figure 6A). Given that 

IS1 had the highest proportion of metastases, we 

focused on pathways significantly associated with 

tumor metastasis (MYC and EMT). Then, we further 

analyzed the expression differences for EMT and MYC 

among immune subtypes, which showed that EMT and 

MYC were the highest in IS1 (Figure 6B). In order to 

develop a treatment plan for patients with IS1 ccRCC, 

we analyzed the receptors and drug targets of these 

signaling pathways, and found that E-cadherin, MMP2, 

MMP3, and VIM were significantly highly expressed in 

the IS1 subtype, while TJP1 (ZO-1) had significantly 

lower expression (Figure 6D–6H). These results 

revealed that the IS1 population may respond to a 

combination of EMT inhibitors with c-Myc inhibitors. 

These subtype characteristics may provide the basis for 

future clinical treatment. 

 

Identification of antigens as molecular predictor of 

immune subtypes 

 

Although we have identified the immune characteristics 

and the treatment regimens for each subtype, we also 

need to identify a tumor antigen that can predict patient 

 

 
 

Figure 5. Analysis and definition of biological and immunological characteristics of IS2. (A) Differential enrichment analysis of 

signaling pathways in IS2 compared with IS1 and IS3 in TCGA cohorts. (B) Differential expression of the TGF-β pathway and key regulators 
(SMAD2 and SMAD3) among immune-related subtypes. (C) Differential expression of the ANGIOGENESIS pathway and major regulatory 
genes among immune-related subtypes. (D) Differential expression of the REACTOME SIGNALING BY RECEPTOR TYROSINE KINASES pathway 
and major regulatory genes among immune-related subtypes. 
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prognosis and differentiate the three immune subtypes. 

The volcano plot presented the distribution of 

differentially expressed immune-associated genes 

(IAGs) (Figure 7A). Histograms showed the number of 

fraction genome altered and mutations in ccRCC 

samples (Figure 7B, 7C). Among these differentially 

increased IAGs, combined with screening conditions 

such as fraction genome altered >0.1, and total mutation 

number >5, we finally identified the most likely 

potential tumor antigen: SCG2 (Figure 7D). Thus, the 

KM curve revealed that high expression of SCG2 was 

associated with poor OS and disease-free survival 

(DFS) prognoses (Figure 7E, 7F). Furthermore, the 

association of Tregs and cancer-associated fibroblasts 

(CAFs) with SCG2 in various tumors was assessed  

by multiple algorithms. Interestingly, SCG2 was 

significantly positively associated with Tregs and  

CAFs (Figure 7G). We also investigated the expression 

of SCG2 in three immune subtypes, and we found  

that SCG2 may distinguish the subtypes well, which 

may help define new patient subtypes in the future 

(Figure 7H). 

 

Identification of the immunological and clinical 

characteristics of SCG2 

 

To further investigate the immune signature of SCG2, 

we first scored immune cells in tumor tissues from 539 

patients with ccRCC. The results indicated that SCG2 

was significantly positively correlated with immune 

 

 
 

Figure 6. Analysis and definition of biological and immunological characteristics for IS1. (A) Differential enrichment analysis of 

signaling pathways in IS1 compared with IS2 and IS3 in TCGA cohorts. (B) Differential enrichment analysis of EMT and Myc signaling pathways 
among the ccRCC immune subtypes in TCGA cohorts. (C) Heatmap showing the distribution of key regulators of the EMT signaling pathway 
among the three immune subtypes. (D–H) Differential expression of molecules in the EMT signaling pathway among the three immune 
subtypes in TCGA cohorts. 
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cells, especially MDSC, macrophages, and Tregs 

(Figure 8A–8C). Then, CIBERSORT, EPIC, TIDE, and 

XCELL algorithms were employed to analyze the 

correlation between SCG2 and CAFs. The results 

revealed that SCG2 was positively correlated with 

CAFs (Figure 8D–8G). Then, to further validate  

the key events leading to tumor development, we 

analyzed the correlation between SCG2 expression and 

clinicopathological variables. In the Cancer Genome 

Atlas (TCGA) cohort, a high expression level of SCG2 

was significantly associated with more severe clinical 

predictors, including histological grade (p <0.001), T 

stage (p <0.001), and M stage (p <0.05) (Supplementary 

Figure 2C–2F). The results from the same calculations 

in the GSE17895, GSE53537, GSE73731, and 

GSE40435 datasets revealed that SCG2 was significantly 

over-expressed in patients with ccRCC and the higher the 

histological grade and pathological stage, the higher the 

expression of SCG2 (Supplementary Figure 2G–2K). 

DISCUSSION 
 

ccRCC is a heterogeneous disease with different ethnic 

characteristics, which originated from renal tubule 

epithelial cells [21]. It is estimated that ccRCC 

accounted for a considerable part of cancer related 

mortality [22]. Now more and more evidence shows 

that ccRCC has a unique immune microenvironment 

compared with other solid tumors. The resected ccRCC 

was usually extensively infiltrated by CD8+ T cells, 

which indicated the immune recognition of the tumor 

[23]. Therefore, the unique characteristics of ccRCC 

made it an attractive disease for the treatment with ICI 

[24]. The absence of VHL in most ccRCC led to the 

increase of VEGF, which promotes immunosuppression 

as well as angiogenesis [25]. An important area 

underway was to adapt ICI to these tumor-specific 

immune characteristics [26, 27]. Therefore, we 

investigated the immune microenvironment of ccRCC, 

 

 
 

Figure 7. Identification of potential tumor antigens in ccRCC. (A) Identification of potential tumor-associated antigens in ccRCC 

through differential expression analysis. Chromosomal distribution of up- and down-regulated genes in ccRCC, as indicated. (B, C) 
Identification of potential tumor-associated antigens in ccRCC through fraction of the genome altered and mutation analysis. (D) Combined 
analysis of multiple spectra to identify specific antigens. (E, F) The association of SCG2 with OS and PFS. (G) The correlation between SCG2 
and immune cells (Tregs and CAFs) in pan-cancer. (H) Differential expression of SCG2 among the ccRCC immune subtypes in TCGA cohorts. 
Tregs: regulatory T cell; CAFs: cancer associated fibroblast. 
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and stratified patients, in order to identify appropriate 

groups for immunotherapy. 

 

Three immune subtypes were clustered through the 

NMF algorithm, according to the immune gene 

expression profile, to select the appropriate population 

for immunotherapy. The three immune subtypes 

manifested different clinical, cellular, and molecular 

characteristics. In a previous study, two hypoxia-related 

molecular subtypes in ccRCC were constructed with the 

NMF algorithm, which presented different biological 

and immune signatures [28]. In addition, Zhang et al. 

analyzed the expression of pyroptosis-related genes in 

ccRCC tissues [29]. Based on the pyroptosis 

components, they divided ccRCC patients into four 

pyroptosis subtypes with distinct clinical, molecular, and 

pathway characteristics. The subtype can be used as a 

predictor of immunotherapy response. In a separate 

study, Wang et al. screened 49 adipose-related genes, 

which were differentially expressed between normal and 

ccRCC tissues [30]. Based on differentially expressed 

adipose-related genes (ARGs), patients with ccRCC 

were divided into two adipose subtypes, with distinct 

clinical, molecular, and pathway characteristics. ARG 

may aid in the development of novel biomarkers and 

immunotherapies for ccRCC patients. Unlike these 

studies, our study used immune-related genes. The 

subtypes established in this way are more closely related 

to immune characteristics, which is more suitable for 

finding potential populations for whom immunotherapy 

is applicable. 

 

Since tumor immune status is the determinant of 

immunotherapy response, we further characterized the 

immune cell components in different subtypes [31, 32]. 

Compared with IS2 and IS1, IS3 had abundant immune 

cell infiltration and complex immune microenvironment. 

These results indicated that IS3 was a “hot” immune 

phenotype, IS2 was a “cold” immune phenotype, and IS1 

was an “intermediate” immune phenotype. The molecular 

characteristics of these subtypes were consistent with the 

immune characteristics, indicating that patients with 

different immune subtypes have different treatment 

responses. Specifically, the IS3 subtype was associated 

with higher immune cell infiltration, suggesting more 

abundant immune components. Immune checkpoints are 

 

 
 

Figure 8. Identification of immunological characteristics of SCG2. (A–C) Correlation between SCG2 and immunosuppressive cells.  

(A) Tregs, (B) macrophage, (C) MDSC. (D–G) Correlation between SCG2 and CAFs in various algorithms. (D) EPIC, (E) MCPCOUNTER, (F) TIDE, 
(G) XCELL. 
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a class of immunosuppressive molecules that regulate 

immune responses to avoid the destruction of normal 

tissues [33, 34]. During tumorigenesis, immune 

checkpoints are important biomarkers of the immune cell 

phenotype in the immune microenvironment, which can 

induce immune cells to develop immune tolerance [35, 

36]. Our analysis showed that the IS3 subtype has a high 

expression of immune checkpoints (PD-1, PD-L1, and 

CTLA-4), which may afford it a better response to 

immune checkpoint inhibitors. Furthermore, we found 

that the mTOR signaling pathway was significantly 

enriched in the IS3 subtype, suggesting that immune 

checkpoint inhibitors combined with mTOR inhibitors 

may be used to treat patients in the IS3 subtype. 

 

Among the three subtypes, IS1 had the worst prognosis, 

which may be related to the highest proportion of 

patients with M1 stage in IS1. Studies have shown that a 

higher clinical stage may lead to poorer tumor prognosis 

[37, 38]. In addition, enrichment results showed that  

the EMT signaling pathway was abnormally enriched  

in IS1. EMT is a cellular process in which epithelial 

cells acquire the phenotype and behavior of stroma,  

after downregulating epithelial characteristics [39–41]. 

During EMT, tumor cells showed fibroblast-like 

morphology and cell structure, as well as increased 

migration and invasion abilities. Furthermore, we found 

that c-Myc was highly expressed in IS1. The c-Myc 

family of oncoproteins were the main driving force of 

human tumorigenesis, which is promoted by regulation 

of transcription mechanisms [42]. Previous studies have 

shown that c-Myc phosphorylation mediated by PIM1 

activates the expression of ZEB1, ZEB2, Snail 1, Snail 

2, and Twist transcription factors to promote EMT in 

RCC [43]. Intrinsically, these signaling pathways may 

be the underlying reasons for the high metastatic 

propensity and poor prognosis of IS1. 

 

To guide the differentiation and treatment of the three 

subtypes, we screened tumor antigens. The results of 

screening showed that SCG2 was associated with 

tumorigenesis and progression at multiple levels, and 

had good prognostic significance. SCG2 was a member 

of the chromogranin / secretory granulin family of 

neuroendocrine proteins, which was involved in 

packaging peptide hormones and neuropeptides into 

secretory vesicles. Simultaneously, SCG2 has been 

proven to be abnormal regulation in the occurrence and 

development of a variety of malignant tumors [44–48]. 

According to our analysis, SCG2 was differentially 

expressed among the three subtypes. We proposed a 

scientific assumption: in clinical transformation, 

patients may be classified and defined according to the 

expression of SCG2, and then be treated according to 

the treatment schemes of the three subtypes mentioned 

above. 

However, there were still some shortcomings in this 

study. On the one hand, TIMER 2.0 was utilized to 

evaluate the correlation between gene expression and 

immune/stromal cell infiltration. The number of tumor 

cases in TCGA and TIMER2.0 databases may be 

inconsistent. Fortunately, there are only a few 

inconsistent cases, and the deviation can be ignored to 

some extent. In addition, this immune correlation was 

also verified by TCGA data. On the other hand, the p-

value was used for screening differentially expressed 

genes rather than adjusted p-values. This may include 

false positive genes, but it also reduces the elimination 

of true positive genes. 

 

The current study systematically revealed the different 

immune landscapes in ccRCC and adjacent tissues 

through integrated bioinformatics methods. Furthermore, 

a novel immune subtype was established, and the 

biological characteristics of these subtypes were 

determined. In addition, a potential antigen (SCG2) 

related to immune subtypes was identified, which 

showed significant immune correlation. These findings 

provided new insights into the immunological 

mechanism of ccRCC biology and the refined disease 

management of patients. 

 

MATERIALS AND METHODS 
 

Acquisition of data 

 

Transcriptome data and somatic mutation information of 

patients with ccRCC were collected from the TCGA 

database (https://portal.gdc.cancer.gov/) as the training 

dataset, including 72 normal samples and 539 tumor 

samples. Meanwhile, the corresponding clinical data 

were recorded in Table 1. The gene expression data and 

clinical information retrieved from the International 

Cancer Genome Consortium (ICGC) database were 

utilized as the external validation dataset. A total of 2498 

immune genes were downloaded from the ImmPort 

database, of which there were only 1307 immune genes 

in the TCGA expression profile. The “Limma” package 

was used to correct the data and process the repeated 

gene expression data. The Wilcoxon test was applied to 

identify differentially expressed immune genes. 

Meanwhile, |LogFC| >2 and p <0.05 were used as the 

criteria for screening differentially expressed immune 

genes. 

 

Establishment of immune subtypes 

 

Based on the expression of the screened immune genes, 

we employed the NMF algorithm to cluster ccRCC 

samples. The “Brunet” method was applied to select the 

best number for clustering, and the number of iterations 

was 30. The point with the first greatest variation of 

https://portal.gdc.cancer.gov/
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Table 1. Clinical characteristics of included 
patients in the study. 

Variables Total (n=525) 

Age (year)  

<65 347(66.1%) 

≥65 178(33.9%) 

Gender  

FEMALE 182(34.67%) 

MALE 343(65.33%) 

Stage  

I 261(49.71%) 

II 56(10.67%) 

III 123(23.43%) 

IV 82(15.62%) 

unknow 3(0.57%) 

T stage  

T1 267(50.86%) 

T2 68(12.95%) 

T3 179(34.1%) 

T4 11(2.1%) 

N stage  

N0 237(45.14%) 

N1 16(3.05%) 

NX 272(51.81%) 

M stage  

M0 417(79.43%) 

M1 78(14.86%) 

MX 28(5.33%) 

unknow 2(0.38%) 

Grade  

G1 13(2.48%) 

G2 226(43.05%) 

G3 204(38.86%) 

G4 74(14.1%) 

GX 5(0.95%) 

unknow 3(0.57%) 

 

cophenetic value was considered the best number of 

immune subtypes. In addition, OS and PFS were used to 

evaluate the reliability of the clustering results. The KM 

method was employed to analyze differences in survival 

between different subtypes. All statistical p-values were 

two-sided, with p <0.05 as statistically critical. 

 

Identification of immune characteristics of subtypes 

 

The hallmark gene sets containing 50 different 

biological pathways including APOPTOSIS, MTORC1_ 

SIGNALING, etc. were downloaded from the MSigDB, 

and ssGSEA was applied to score the gene lists in  

these pathways. CIBERSORT was a deconvolution 

algorithm which used 547 tag gene expression values to 

characterize the composition of immune cells in tissues. 

To assess the association between these immune 

subtypes, the CIBERSORT algorithm was applied to 

estimate the relative proportion of 22 immune 

infiltrating cells in patients with ccRCC. We uploaded 

the corrected transcriptome data to the CIBERSORT 

website (http://cibersort.stanford.edu/) and set the 

algorithm to 1000 rows. P <0.05 was used as the criteria. 

The immune score and stromal score, which contained 

all stromal cells including CAFs, endothelial cells (ECs), 

mesenchymal stem cells (MCSs), and pericytes, were 

calculated by the ESTIMATE algorithm. 

 

TIMER analysis 

 

TIMER was an open resource for evaluating the 

proportion of various immune infiltrating cells across 

http://cibersort.stanford.edu/
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diverse cancer types. In this study, TIMER2.0 was 

employed to visualize the correlation between CAF 

infiltration, Tregs, and the identified potent antigens. 

The correlation between diverse immune infiltrating 

cells and the identified potent antigens was calculated by 

Spearman correlation analysis. P <0.05 was used as the 

criteria, and the correlation value varied from -1 to 1, so 

that the larger the absolute value, the more relevant. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 

 
 

Supplementary Figure 1. The atlas and landscape of immune infiltration in a ccRCC cohort. (A, B) Differential expression of 

immune-infiltrating cells in ccRCC and para-cancerous tissues (A) ssGSEA; (B) CIBERSORT. (C) Differential expression of immune checkpoints 
in ccRCC and para-cancerous tissues. (D) Differential expression of ICD modulators in ccRCC and para-cancerous tissues. (E) Characteristics of 
tumor microenvironment in ccRCC and para-cancerous renal tissue. 



www.aging-us.com 6934 AGING 

 
 

Supplementary Figure 2. Identification of clinical characteristics of SCG2. (A) Identification of three distinct ccRCC immune-related 
molecular subtypes in the E-MTAB-1980 dataset by the NMF algorithm. (B) Kaplan-Meier OS curve for three distinct ccRCC immune-related 
molecular subtypes. (C–F) Correlation analysis of SCG2 expression levels and different clinical features in the TCGA database. (C) Grade,  
(D) T stage, (E) M stage, (F) N stage. (G–I) Different expression of SCG2 in ccRCC tissues and normal tissues in the GEO database.  
(G) GSE17895, (H) GSE40435, (I) GSE53537. (J, K) Correlation analysis of SCG2 expression levels, histological grade, and pathological stage in 
the GSE73731 database. 
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Supplementary Table 
 

Please browse Full Text version to see the data of Supplementary Table 1. 

 

Supplementary Table 1. The group information separated by the expression of immune-associated genes. 


