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In order to reduce the subjectivity of preoperative diagnosis and achieve accurate and rapid classification of idiopathic scoliosis
and thereby improving the standardization and automation of spinal surgery diagnosis, we implement the Faster R-CNN and
ResNet to classify patient spine images. In this paper, the images are based on spine X-ray imaging obtained by our radiology
department. We compared the results with the orthopedic surgeon’s measurement results for verification and analysis and
finally presented the grading results for performance evaluation. The final experimental results can meet the clinical needs, and
a fast and robust deep learning-based scoliosis diagnosis algorithm for scoliosis can be achieved without manual intervention
using the X-ray scans. This can give rise to a computerized-assisted scoliosis diagnosis based on X-ray imaging, which has
strong potential in clinical utility applied to the field of orthopedics.

1. Introduction

Adolescent idiopathic scoliosis (AIS) is the most common
three-dimensional spinal deformity, accounting for about
80% of the total number of idiopathic scoliosis. In my coun-
try, the prevalence of scoliosis is still increasing year by year
[1]. The incidence rate among 6-year-old adolescents is 1%-
3%, which not only seriously affects the physical appearance
of adolescents but also impairs their respiratory function,
motor function, mental state, and overall quality of life. In
addition, spinal surgery is time-consuming and risky, and
the instruments used for surgical correction are complicated,
difficult, traumatic, and complicated (major orthopedic sur-
gery). Moreover, the preoperative diagnosis is subjective,
which can lead to different diagnoses. Therefore, how to
standardize and automate the diagnosis of spine surgery is
the significance of this paper.

Generally, orthopedic surgeons manually measure and
calculate the Cobb (which relates to the surgeon by the name
of John Robert Cobb) angle according to the shape of the
spine presented by the X-ray film taken by the patient to
determine whether the patient has scoliosis and its severity.
Judging from the current research status of the Cobb angle
measurement method of scoliosis images, the Cobb angle
measurement method has been researched and applied to a
certain extent, but more are based on manual and semiauto-
matic measurement methods proposed for the Cobb angle
measurement of scoliosis images. Now, the manual measure-
ment of Cobb angle for scoliosis images still has certain
shortcomings and challenges. Notably, manual diagnosis
method will increase the workload of the doctor at the same
time and waste a large amount of medical resources. With
the continuous development of computer hardware and arti-
ficial intelligence technology, computer-aided diagnosis
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based on deep learning has become an important means to
assist doctors [2], and certain results have been achieved,
which provides a new direction for the medical status of sco-
liosis diseases. In this paper, we choose X-ray imaging and
study the screening method for scoliosis diseases based on
the convolutional neural network [3].

2. Methods

2.1. Target Localization Method Based on Convolutional
Neural Network

2.1.1. Faster R-CNN Model (Target Localization Model in the
Spine Area) Construction. The Faster R-CNN model [4] con-
sists of two parts: region proposal networks (RPN) and fast
region-based convolutional network method (Fast R-
CNN). The Faster R-CNN used in this paper obtains the fea-
ture map through the basic network structure composed of
multiple layers of conv and ReLU (small 5-layer deep ZF
network model with low video memory requirements or
large 16-layer deep VGG-16 network model with high video
memory requirements), and the feature map is shared in the
following two parts of the network. The first part is to input
the feature map into the RPN to get the region proposal on
the feature map. The second part uses Fast R-CNN to clas-
sify and accurately locate the region proposal. Finally, the
location information and category information of the target
can be obtained. Figure 1 shows the detailed network struc-
ture of the spine X-ray image positioning based on Faster R-
CNN.

The experimental data used in this paper is the X-ray
image of the patient’s spine, and the size of the image is
224 x 224 x3 (3 is the number of channels of the image).
A 5-layer deep ZF network is used to extract features,
including 5 conv layers, 2 ReLU layers, 2 LRN layers, and
2 maxpool layers. As shown in Figure 1, each conv layer is
connected to the ReLU layer, using the ReLU activation
function [5].

The basic structure of the first depth of the Faster R-
CNN has four layers. The first layer is the conv layer, con-
sisting of 96 7 x 7 x 3 convolution kernels, using stride as
2, padding as 3, and get a result of size 112 x 112 x 96; the
second layer is the ReLU layer, and the size of the output
result is still 112 x 112 x 96; the third layer is the LRN layer,
drawing on the concept of lateral inhibition in biology to
achieve local inhibition in the neural network. LRN is used
in conjunction with ReLU to enhance pixels with large
response, suppress pixels with small response, achieve local
normalization, improve the generalization ability of the net-
work, and improve the recognition rate; the fourth layer is
the maxpool layer, using a 3 x 3 pooling window, stride is
2, padding is 1, and the size of the output result is 56 x 56
x 96. The structure of the second layer depth of the network
is the same as the first depth. The first layer conv layer uses
256 5x5x 3 convolution kernels, stride is 2, padding is 2,
and the size of the result is 28 x 28 x 256; the second layer
is the ReLU layer; the third layer is the LRN layer; the fourth
layer is the maxpool layer, using a 3 x 3 pooling window,
stride is 2, padding is 1, and the size of the output result is

Computational and Mathematical Methods in Medicine

28 x 28 x 256. The third layer depth, fourth layer depth,
and fifth layer depth of the network have the same structure.
They all use the basic conv layer combined with the ReLU
layer. The conv layer uses 384, 384, and 256 3 x 3 convolu-
tion kernels, respectively, stride is 1, padding is 1, and the
depths of the third and fourth layers of the network are both
14 x 14 x 384. The fifth layer depth of the network gets a
result with a size of 14 x 14 x 256. Therefore, through the
calculation of a simple neural network, a 14 x 14 x 256 fea-
ture map is finally obtained.

The RPN is composed of a simple convolutional neural
network. First, convolution is performed through 256 3 x 3
convolution kernels to produce a result of 14 x 14 x 256.
Then pass two 1x1 convolution kernels to form two
branches. The first branch is composed of 18 convolution
kernels and produces a result of 14x14x18
(14 x 14 x (9 x 2): 9 anchors, each with two parameters, rep-
resenting the foreground and background, a total of 18
dimensions). The second branch is composed of 36 convolu-
tion kernels and produces a result of 14x14x36
(14 x 14 x (9 x 4): 9 anchor boxes, each with four parame-
ters, representing the coordinate center, width, and height
of the anchor boxes, a total of 36 dimensions). Before enter-
ing the ROI Definition network, reshape the result obtained
from the first branch (while changing the dimension of the
input data without changing the data content) to obtain
the required vector.

The RPN is composed of a three-layer network of soft-
max, reshape, and proposal to generate ROI Definition.
Input the 18-dimensional feature vector into softmax to get
the probability that each anchor box is foreground and not
foreground. After the calculation of this layer is completed,
the calculation result is reshaped again to obtain a vector
of 14 x 14 x 18. The input of the Definition layer includes
the original image (224 x 224 x 3), the vector obtained from
the previous layer, and the result obtained by the second
branch of the eighth layer depth, as shown in Figure 2.
According to the overlap ratio of the real boxes and the pre-
dicted boxes, a candidate set of the boxes is generated, and
the boxes that exceed the edge and the boxes that do not
meet the overlap criterion are discarded.

The R-CNN is composed of ROI pooling, softmax, and
four fully connected layers. The feature map and the anchor
boxes calculated by the RPN are input to the ROI pooling
layer, the feature of the anchor boxes is calculated, and the
fully connected layer and the softmax layer are connected.
The pooling parameters of this layer are 6 x 6, stride is 6,
and the spatial scale is selected to be 1/16 of the original
image. The maximum pooling is still selected. Finally, a 6
x 6-dimensional feature vector is obtained. Each anchor
area has four parameters, which represent the position infor-
mation relative to the original image [x;, y,, x,, y,]. To input
the result into the final classification network, only four fully
connected layers and one softmax layer are needed. The fully
connected layers fc6 and fc7; both use the dropout method
to reduce the parameters in the connected layer with a cer-
tain probability and reduce the calculation amount of the
model [6]. Then connect the fully connected layers boxes_
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FIGURE 1: Network structure diagram of spine image positioning based on Faster R-CNN.
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map.
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FIGURE 3: The expression of anchor boxes in the CT image.

pred and cls_score, respectively. boxes_pred outputs the
position information of the precise target box, and cls_score
connects the softmax layer to output the probability of the
category corresponding to each target, as shown in Figure 3.

The RPN obtains preliminary anchor boxes after passing
the IoU restrictions. These anchor boxes cannot correctly
detect the position of the target. If you fine-tune the anchor
boxes, you can get anchor boxes that are more similar to the
ground truth bound so that the frame position information
will be more accurate. This paper uses bounding-box regres-
sion to fine-tune the anchor boxes. In the current algorithm,
input N sets of data {(P!, G')} where i=1,2, ---, N, of which
P'=(P,P,P,,P,), G=(G, G;, G ,G}). As shown in
Figure 4, G represents the ground truth bound, and P repre-
sents the anchor boxes filtered out.

The idea of bounding-box regression is to input the four
values of G=(G,,G,,G,,G,) of the ground truth bound

and the four values of P=(P,,P,P,,P,) of the anchor

boxes to represent the center coordinates, width, and height
of the input box and continue to learn to find the appropri-
ate function f so that (G, G, G,,G)=f(P,,P), P, Py)

and make the prediction window G as close to the real win-

dow G as possible. Four transformation methods d,(P), d,(

P),d,(P),d,(P) are used, where d,(P),d,(P) refer to the

translation of the center position without changing the scale,
and d,(P), d,(P) are the translation of the width and height
of the specified anchor boxes. Mainly by learning Equation
(1), the network translates and zooms the screened anchor
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FIGURE 4: Schematic diagram of border regression.

boxes to obtain the position information of the prediction
window G.

G,=P,d.(P)+P,

G, =P,d,(P)+P, "
E\;w :Pw exp (dw(P))’

G, =P, exp (d,(P)).

In Equation (1), d, (P) = wl¢(P) where * represents x,
¥, w, h. When the anchor boxes are close to the ground truth
bound, they can become a linear function to achieve regres-
sion. The objective function of the regression is defined
according to the training data (P, G). As in Equation (2),
the translation scale and scaling scale (t,,¢,,t,,t,) of the

x> by
optimized model can be obtained.

£ = (Gx_Px)

x Pw >
_(6-P)

y Ph ’

G
t.=log (P—“’),
G
th = lOg (P—:> .

Linear regression is Y = WX, input vector X, and contin-

uously learn parameter W so that output Y' is constantly
close to the true value Y. In d, (P) = wl¢(P)(*represents x
,¥,w, h) in this paper, ¢(P) is the linear feature vector
obtained by convolution operation, and w, is a vector used
to represent the parameters that can be learned in the model.
The calculation formula of w, is Equation (3), which is
learned by the least square method of optimization regular-
ization.

N
w, = arg min Z (t, - LT)Zgb(Pi))z + M@, | (3)

i

For the Faster R-CNN training method, this paper uses a
5-layer ZF network and adopts the 4-step alternating train-
ing method to train the spine images of patients with scolio-
sis. Such a method can optimize training parameters and
improve network efficiency. The training process of the
entire Faster R-CNN can be divided into four stages, as
shown in Figure 5.

(1) Use the first 5 layers of basic network (conv+ReLU)
in the ZF network model to extract the required fea-
ture map to train the RPN 1 network model of stage
1

(2) Still use the first 5 layers of the basic network (conv
+ReLU) in the ZF network model, but use the output
of the RPN 1 network model (region proposal) as the
input of the training network, and train the Fast R-
CNN 1 network model of stage 1. At this stage,
RPN and Fast R-CNN do not share convolutional
layers

(3) Use the Fast R-CNN 1 network parameters of stage 1
to reinitialize the RPN model, fine-tune the unique
network layer in RPN, and generate the RPN 2 net-
work model of stage 2. In this way, the two networks
of RPN and Fast R-CNN can share the convolutional
layer and reduce the number of parameters

(4) Fix the shared convolutional layer, and merge the
PRN 2 network model generated by stage 2 with
the unique layer in the Fast R-CNN model to form
a unified network. Continuous iteration, fine-
tuning the unique parameters of the Fast R-CNN
model, and finally generating the required target
positioning model

2.1.2. ResNet Model (Grading Screening Model for Scoliosis
Disease) Construction. The ResNet (residual network) con-
volutional neural network consists of 5 groups of convolu-
tions. Since the number and parameters of each group of
convolutions are different, a ResNet convolutional neural
network with different layers is formed. There are five forms:
ResNet18, ResNet34, ResNet50, ResNet101, and ResNet152.
As shown in Figure 6, all ResNet convolutional neural
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FIGURE 6: Scoliosis hierarchical network structure diagram based on ResNet.

networks include three main parts: the input part, the con-
volution part of each stage in the middle (the blue box in
the figure contains four stages from Conv2_x to Conv5_x),
and the output part. Although there are different variants
of ResNet convolutional neural networks, they basically fol-
low the structural characteristics shown in the figure. The
number of network layers is different, mainly because of
the differences in the number of convolutional parameters
and building block parameters in the middle groups.

As shown in Figure 6, the input part of the ResNet con-
volutional neural network is composed of conv layer, batch
normalization (batch norm, BN) layer, ReLU layer, and
maxpool layer. The experimental data used in this paper is
the medical image of the patient’s spine area generated by
the Faster R-CNN. The size of the image is 128 X 128 x 3

(3 is the number of image channels). The first layer of the
input part is the conv layer, which is composed of 64 7 x 7
x 3 convolution kernels, using stride as 2, padding as 3,
and getting a result of size 65 x 65 x 64; the second layer is
the BN layer, called the batch normalization layer, which
can accelerate the convergence speed of the network,
improve the gradient dispersion in the network, and prevent
the network from overfitting. It is generally used after the
convolutional layer; the third layer is the ReLU layer, and
the output result is still 65 x 65 x 64; the fourth layer is the
maxpool layer, using a 3 x 3 pooling window, stride is 2,
no padding, and the output result is 32 x 32 x 64.

The second to fifth depths of the network are composed
of different numbers of building blocks. Different numbers
of building blocks can form convolution operations of
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Layer
name ResNet 18 ResNet 34 ResNet 50 ResNet 101 ResNet 152 Output
7 X 7, 64, stride 2 32 %32 %
Convl 64
3 x 3, max pooling, stride 2
1x1,64 1x1,64 1x1,64
3x3,64 3x3,64
Conv2_x X2 X3 3x3,64 X3 3x3,64 X3 3x3,64 X 3 16 x 16
3x3,64 3x3,64
1x1,256 1x1,256 1x1,256
1x1,128 1x1,128 1x1,128
3x3,128 3x3,128
Conv3_x X2 x4 | 3x3,128 |x4 | 3x3,128 X 4 3x3,128 x 8 8x8
3x3,128 3x3,128
1x1,512 1x1,512 1x1,512
1x1,256 1x1,256 1x1,256
3x 3,256 3x3,256
Conv4_x x 2 X 6 3% 3,256 X 6 3% 3,256 x 23 3x 3,256 X 36 4x4
3x3,256 3 x 3,256
1x1,1024 1x1,1024 1x1,1024
1x1,512 1x1,512 1x1,512
3x3,512 3x3,512
Conv5_x X2 X3 3x3,512 X3 3x 3,512 X3 3x3,512 X3 2x%x2
3x3,512 3x3,512
1x1,2048 1x1,2048 1x1,2048
Output Average pooling, softmax Ix1

FiGURE 7: ResNet structure details.

different depths (as shown in Figure 7, the four stages of
convolution operations in the blue box). The data in the
red box in Figure 7 {2,2,2,2}, {3,4,6,3}, {3,4,6,3}, {3,4
,23,3}, and {3, 8,36,3} are the repeated stacking times of
building blocks in ResNetl8, ResNet34, ResNet50,
ResNet101, and ResNetl52, respectively. For example,
ResNet50 is composed of an input layer, each module from
Conv2_x to Conv5_x corresponding to {3, 4, 6, 3} repeated
stacking, and the final output layer (calculation process: 1
+3%x3+3x4+3%x6+3x3+1=50). As you can see in
Figure 7, there are two different forms of building blocks
(purple boxes in the figure). They are the two-layer comput-
ing building block in ResNet18 and ResNet34 and the three-
layer computing building block in ResNet50, ResNet101,
and ResNet152.

Figure 8 shows the detailed structure diagram of differ-
ent building blocks. Figure 8 (left) shows the original build-
ing block structure. The input feature map is divided into
two data streams. One data stream undergoes two 3 x 3 con-
volution operations. After the first layer of convolution oper-
ation, there is a ReLU operation. The number of convolution
kernels is 64. The stride is 1, the padding is 1, and the output
result is 32 x 32 x 64. The other data stream is the input
data, 32 x 32 x 64; both have the same dimension and can
be added directly across two levels so that the ReLU calcula-
tion can be output to the next building block structure.
Figure 8 (right) shows that the building block structure
introduces 1 x 1 convolution. Through the 1 x 1 convolution
operation, the feature map can be arbitrarily increased or
reduced in dimension while keeping the size of the feature
map unchanged, which reduces the complexity of the convo-
lution operation. The input feature map is still divided into

two data streams. One data stream is subjected to three-
layer convolution operations. The first layer is 64 1 x 1 con-
volution kernels, using stride as 1, no padding, and the out-
put result is 32 x 32 x 64. Then, perform a ReLU operation;
the second layer is 64 3 x 3 convolution kernels, using stride
as 1, padding as 1, and the output result is 32 x 32 x 64, per-
forming a ReLU operation; the third layer is 256 1 x 1 con-
volution kernels, using stride as 1, no padding, and the
output result is 32 x 32 x 256. The other data stream is the
input data. After 256 1x 1 convolution cores, the original
32 x 32 x 64 is upgraded so that the data dimensions in the
two data streams are the same, and they are directly added
across three levels to perform ReLU calculations. Then, these
are output to the structure of the next building block.

2.1.3. Stochastic Gradient Descent Method in ResNet Model.
In the ResNet convolutional neural network, the method of
batch stochastic gradient descent [7] is generally selected
for training. In this way, it is possible to avoid gradient oscil-
lations or falling into local optimal conditions to a certain
extent. In ResNet convolutional neural network, the objec-
tive function is generally concave function. The gradient
descent algorithm is to find the smallest point in the concave
function through continuous calculation. Derivatives are
very useful for maximum or minimum problems in func-
tions. For the function y = f(x), the derivative is denoted
as f'(x). Use a sufficiently small ¢ to make f(x — ¢ sign (f'
(x)) smaller than f(x), so move a small step in the opposite
direction of the derivative to reduce f(x). This technique is
gradient descent. The gradient descent method used in this
paper is the stochastic gradient descent algorithm. Its core

idea is to randomly select a small sample of B={x), .-,
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FiGure 9: Four-classification model for scoliosis disease.

TaBLE 1: Statistical table of samples of X-ray images of the patient’s
spine.

Cobb Category Number of Label
angle samples

0°~10° No disease 991 1
11°~25° Mild scoliosis disease 890 2
26" 45’ Modere}te scoliosis 20 3

disease
>45° Severe scoliosis disease 899 4

x<’”/)} from the training set, and the value of m’ is generally
small. When the entire training set m grows, m' is fixed. In
this way, only m' samples are needed for each update, which
greatly reduces the computational cost of a large training set.
The calculation process of the gradient is Equation (4). The
calculation process of stochastic gradient descent is Equation
(5), where ¢ is the learning rate.

1 m’ . .
g= er ;L(x(’),y(’), 0), (4)

(5)

2.2. Patient’s Spine Image Data and Screening. The X-ray
images of the patient’s spine used in this paper were col-

0—0-¢g.

lected over a period of nearly 3 years from 2019 to 2021.
There are two different labels for scoliosis screening data.
One is used as a four-classification model for scoliosis dis-
ease, as shown in Figure 9, including no disease (Cobb angle
is 0°-10%), mild scoliosis (Cobb angle is 11°-25°), moderate
scoliosis (Cobb angle is 26°-45°), and severe scoliosis
(Cobb angle > 45°) [8], as shown in Table 1. The other is
based on the actual needs of patients with scoliosis, with
three levels of two categories. Among them, the binary clas-
sification model of scoliosis disease is to check whether the
patient is sick; the binary classification model of mild scoli-
osis disease is to check whether the patient has mild scoliosis
disease; the binary classification model of severe scoliosis
disease is to judge whether the patient has severe scoliosis
disease, as shown in Figures 10-12. In this paper, in order
to effectively judge the degree of scoliosis in patients, a large
number of comparative experiments have been carried out,
and different experimental data have been used. A total of
6834 X-ray images of the patient’s spine were used in this
paper. After preprocessing the data, excluding duplicate data
and poor quality data, there are a total of 3600 experimental
data.

In order to have all the data used as the training set and
test set, increase the reliability of the model, improve the
generalization ability of the model, and avoid problems such
as overfitting of the model; the experiments in this paper
adopt the fourfold cross-validation method for training
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TaBLE 2: Faster R-CNN fourfold cross-validation data allocation table.
Faster R-CNN model Model 1 Model 2 Model 3 Model 4
Target Spine Spine Spine Spine
. L. 2700 2700 2700 2700
Number of samples in the training set (sample label) @3, 4) (1,3, 4) (1,2, 4) (1,2, 3)
. 900 900 900 900
Number of samples in the test set (sample label
P (sample labeD 1) @) ©) )
TasLE 3: Fourfold cross-validation data allocation table for scoliosis disease binary classification.

T . e Model 1 Model 2 Model 3 Model 4
Scoliosis disease binary classification ResNet50 model (1982) (1982) (1982) (1982)
Number of samples in the training set 1534 1537 1537 1538
(1/2 sample size) (768/322) (768/323) (768/323) (769/323)
(3/4 sample size) (322/322) (323/323) (323/323) (323/323)
Number of samples in the test set 448 445 445 444
(1/2/3/4 sample size) (223/75175175) (223/74/74174) (223/74/74174) (222/74/74174)

TaBLE 4: Fourfold cross-validation data allocation table for mild scoliosis disease binary classification.

. T . I Model 1 Model 2 Model 3 Model 4
Mild scoliosis disease binary classification ResNet50 model (1780) (1780) (1780) (1780)
Number of samples in the training set 1384 1384 1385 1387
(2/3/4 sample size) (692/346/346) (692/346/346) (693/346/346) (693/347/347)
Number of samples in the test set 396 396 395 393
(2/3/4 sample size) (198/99/99) (198/99/99) (197/99/99) (197/98/98)

TaBLE 5: Fourfold cross-validation data allocation table for severe scoliosis disease binary classification.
T . e Model 1 Model 2 Model 3 Model 4
Severe scoliosis disease binary classification ResNet50 model (1719) (1719) (1719) (1719)
Number of samples in the training set 1339 1339 1339 1340
(3/4 sample size) (640/699) (640/699) (640/699) (640/700)
Number of samples in the test set 380 380 380 379
(3/4 sample size) (180/200) (180/200) (180/200) (180/199)

TABLE 6: Actual testing situation table.

True positive (TP)
False positive (FP)
True negative (TN)
False negative (FN)

Predicted scoliosis disease and actual scoliosis disease
Predicted scoliosis disease and actually no scoliosis disease
Predict no scoliosis disease and actually no scoliosis disease

Predict no scoliosis disease and actually have scoliosis disease

and testing. Fourfold cross-validation [9-14] refers to the
use of the nonrepetitive sampling method in simple random
sampling to divide the entire data into four parts; each of
which three parts is selected for training the model, and
the other one is used for testing the model. In this way, four
model training can be performed, four models can be
obtained, and four sets of test results can be obtained.
Verification of the target positioning of the spine area is
shown in Table 2. In the table, no disease, mild scoliosis dis-
ease, moderate scoliosis disease, and severe scoliosis disease

[15-19] are represented by 1, 2, 3, and 4, respectively. Model
1, Model 2, Model 3, and Model 4 are four models generated
by the fourfold cross-validation.

In order to verify the scoliosis classification screening
experiment, the training data and test data distribution of
the scoliosis disease binary classification model, mild scolio-
sis disease binary classification model, and severe scoliosis
disease binary classification model is shown in Tables 3-5.
In the table, no disease, mild scoliosis disease, moderate sco-
liosis disease, and severe scoliosis disease are represented by
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TABLE 7: Main evaluation indicators.

TP
itivity TPR R
Sensitivity TP T EN

TN
ificity T R
Specificity TNR P I TIN

EN
FNR —_—
TP + FN
FPR 7FP
FP+TN

Precisi TP
recision TP+ TP

1, 2, 3, and 4, respectively. Model 1, Model 2, Model 3, and
Model 4 are four models generated by the fourfold cross-
validation.

2.3. Classic Feature Extraction Method and SVM Classifier.
In order to make the experiment more convincing, this
paper uses traditional machine learning methods and Sup-
port Vector Machine (SVM) classifiers as comparative
experiments to verify the effect of using Faster R-CNN and
ResNet convolutional neural network in the grading experi-
ment of scoliosis disease. This experiment uses the feature
extraction of the texture feature and Local Binary Pattern
(LBP) to detect the region of interest and uses the SVM clas-
sifier to classify scoliosis disease in detail.

Texture feature is used to describe the relationship
between different pixels in an image. This paper uses the cal-
culation of a single point pixel and its surrounding point
pixels to extract the texture features of the image.

Local Binary Pattern (LBP) can describe the local texture
features of the image and extract the local features of the
image through different LBP operators. This paper uses the
traditional LBP calculation method, defines a 3 x 3 window,
sets the gray value of the center of the window as a thresh-
old, and compares the gray values of the 8 pixels around
the center with it. If the pixel value is greater than the center,
it is marked as 0; otherwise, it is marked as 1. In this way, an
8-bit binary number can be obtained, that is, the LBP code of
the center pixel (usually the 8-bit binary code is converted to
a decimal code). This paper uses the decimal code of the cen-
ter pixel to reflect texture information and complete feature
extraction.

Support Vector Machine (SVM) is a binary classification
classifier commonly used in machine learning. Using this
method, this paper fits three binary classification problems
of scoliosis disease. In a specific data set, manually label pos-
itive and negative samples, find a hyperplane, separate two
different types of samples as much as possible, and find the
optimal decision surface for data classification. For the
binary classification problem of medical images, this paper
uses Receiver Operating Characteristic (ROC) curve and
Area Under the Curve (AUC) to evaluate the pros and cons
of the binary classification classifier. The data can be divided
into positive samples and negative samples. In the binary

Computational and Mathematical Methods in Medicine

classification model of scoliosis disease, there is scoliosis dis-
ease, which is called positive, and there is no scoliosis dis-
ease, which is called negative. In the actual data detection
process, four situations will occur, as shown in Table 6.

Sensitivity can also be called recall rate or true positive
rate (TPR). The specificity is the proportion of all samples
without scoliosis that are predicted to be free of scoliosis.
The abscissa of the ROC curve is FPR, which is the propor-
tion of all samples without scoliosis that are predicted to
have scoliosis. The ordinate of the ROC curve is TPR, which
is the proportion of all samples with scoliosis that are pre-
dicted to have scoliosis and actually have scoliosis. Ideally,
it is expected that FPR is 0 and TPR is 1. If the value of
AUC is 1, it is an ideal classifier, and the classification effect
is perfect. Therefore, the closer the AUC value is to 1, the
better the classification effect. The calculation process of
the main evaluation indicators is shown in Table 7.

3. Results

Figure 13 shows the four-level labels of the scoliosis screen-
ing data, which are operated spine, mild scoliosis, moderate
scoliosis, and severe scoliosis.

For the binary classification model of scoliosis disease,
from the overall point of view of image classification, the
combination of Faster R-CNN and ResNet convolutional
neural network has the best classification effect. The AUC
value is 0.9087, which fully illustrates that the combination
of Faster R-CNN and ResNet convolutional neural network
has a better classification effect on scoliosis diseases than tra-
ditional machine learning methods. The texture features of
the image are TX, combined with the SVM classifier, and a
good classification result is also obtained, with an AUC value
of 0.8553. The combination of LBP and SVM classifier has
the worst effect, with an AUC value of 0.8142.

In Figure 14, for the binary classification model of mild
scoliosis disease, the combination of Faster R-CNN and
ResNet convolutional neural network has the best classifica-
tion effect, with an AUC value of 0.8659. The TX of the
image combined with the SVM classifier also got a good
classification result, with an AUC value of 0.8884. The com-
bination of LBP and SVM classifier has an AUC value of
0.8432.

For the binary classification model of severe scoliosis dis-
ease, the combination of Faster R-CNN and ResNet convo-
lutional neural network has the best classification effect,
and the AUC value is 0.8603. The combination of LBP and
SVM classifier also got a good classification result, with an
AUC value of 0.8316. The TX of the image, combined with
the SVM classifier, has the worst effect, with an AUC value
of 0.8219.

It can be seen from Tables 8-10 that the binary classifi-
cation model of scoliosis disease, the binary classification
model of mild scoliosis, and the binary classification model
of severe scoliosis using Faster R-CNN combined with
ResNet convolutional neural network are better than using
traditional feature extraction combined with SVM classifier
in terms of accuracy, sensitivity, and specificity.
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FIGURE 14: ROC curve of (a) nonsevere and (b) severe scoliosis disease binary classification model comparison experiment.

4. Discussion

In this paper, we use the method of combining traditional
feature extraction and SVM classifier to conduct compara-
tive experiments. Analysis of the experimental results shows
that the combination of Faster R-CNN and ResNet50 convo-
lutional neural network has a better screening effect for sco-
liosis diseases. The final experimental results can meet
clinical needs.

At present, the preoperative diagnosis of Lenke [20-24]
type surgery for idiopathic scoliosis in major domestic hos-
pitals is performed by doctors observing the patient’s spine
X-rays, using markers and rulers to manually measure the
Cobb angle for diagnosis. Different doctors may have devia-
tions in the observation results, and the angle of measure-
ment will also change, so there will be errors between
observers. However, the same doctor may have different
measurement results every time the same patient is
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TaBLE 8: Quantitative index results of scoliosis disease binary
classification model.

Faster R-CNN+ResNet ~ TX+SVM LBP+SVM
Precision 0.9132 0.7554 0.7123
Sensitivity 0.8722 0.7426 0.6721
Specificity 0.9140 0.7856 0.8576

TaBLE 9: Quantitative index results of mild scoliosis disease binary
classification model.

Faster R-CNN+ResNet ~ TX+SVM LBP+SVM
Precision 0.8693 0.7780 0.7397
Sensitivity 0.8415 0.7540 0.6902
Specificity 0.9336 0.7461 0.7373

TaBLE 10: Quantitative index results of severe scoliosis disease
binary classification model.

Faster R-CNN+ResNet  TX+SVM  LBP+SVM
Precision 0.8243 0.7545 0.7784
Sensitivity 0.8604 0.7212 0.7203
Specificity 0.9352 0.7853 0.8839

measured, so there are errors within the observer. The error
between the observer and the observer affects the accuracy of
the operation. The main reason is that the angle is manually
measured. In order to replace the doctor in the Cobb angle
measurement and classification, to achieve accurate and
rapid classification of idiopathic scoliosis, this paper uses a
popular deep learning framework and validates and analyzes
the results measured by doctors under the test set and shows
the classification results. The final experimental results can
meet clinical needs. A new algorithm for scoliosis diagnosis
based on deep learning that is fast and robust without man-
ual definition is obtained. Note that predictive control algo-
rithms [25, 26] can be used to improve medical image
diagnostics and facilitate treatment procedures.

5. Conclusion

This paper includes two parts: the location of the region of
interest in the X-ray image of the patient’s spine and the
detailed classification of scoliosis disease using X-ray imag-
ing. In the study of locating the region of interest in the
upright image of the patient’s spine, this paper chooses the
Faster R-CNN convolutional neural network to locate the
patient’s spine region. In the grading study of scoliosis dis-
eases, this paper first combines the clinical experience of
orthopedics experts and divides the patients into four grades
according to the size of the Cobb angle of the spine. At the
same time, the ResNet convolutional neural network is used
to classify scoliosis diseases in detail, and then, the network
is optimized. Finally, this paper compares the convolutional
neural network method and the classic feature extraction
method in machine learning (texture composite features,
local binary mode) with the combination of Support Vector

Computational and Mathematical Methods in Medicine

Machine (SVM) method, which increases the reliability of
the model and improves the generalization ability of the
model. From the research results, the combination of Faster
R-CNN and three ResNet binary classification models stud-
ied in this paper can be used as a reference for orthopedic
surgeons to diagnose scoliosis diseases.
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