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Computational Drug Repositioning 
for Gastric Cancer using Reversal 
Gene Expression Profiles
In-Wha Kim1, Hayoung Jang1, Jae Hyun Kim1, Myeong Gyu Kim2, Sangsoo Kim3 & Jung Mi Oh   1

Treatment of gastric cancer (GC) often produces poor outcomes. Moreover, predicting which GC 
treatments will be effective remains challenging. Computational drug repositioning using public 
databases is a promising and efficient tool for discovering new uses for existing drugs. Here we used a 
computational reversal of gene expression approach based on effects on gene expression signatures 
by GC disease and drugs to explore new GC drug candidates. Gene expression profiles for individual 
GC tumoral and normal gastric tissue samples were downloaded from the Gene Expression Omnibus 
(GEO) and differentially expressed genes (DEGs) in GC were determined with a meta-signature analysis. 
Profiles drug activity and drug-induced gene expression were downloaded from the ChEMBL and 
the LINCS databases, respectively. Candidate drugs to treat GC were predicted using reversal gene 
expression score (RGES). Drug candidates including sorafenib, olaparib, elesclomol, tanespimycin, 
selumetinib, and ponatinib were predicted to be active for treatment of GC. Meanwhile, GC-related 
genes such as PLOD3, COL4A1, UBE2C, MIF, and PRPF5 were identified as having gene expression 
profiles that can be reversed by drugs. These findings support the use of a computational reversal gene 
expression approach to identify new drug candidates that can be used to treat GC.

Gastric cancer (GC) is the fifth most common cancer worldwide and the third leading cause of cancer death, with 
1.3 million incident cases and 819,000 deaths occurring globally in 20151. Although GC rates have declined in 
most developed countries, the incidence of non-cardia GC among Caucasians aged 25–39 years has increased in 
the United States over the past two decades2.

Increased rates of early GC detection have increased survival rates for GC patients, but treatment outcomes 
for GC remain low and difficult to predict3. Moreover, GC is a highly heterogeneous disease as reflected by the 
numerous histological and molecular classifications4.

The development of new drugs to treat diseases, especially cancer, is dependent on the identification of novel 
drug targets. In recent years, an increasing number of innovations have promised to improve our understand-
ing of disease biology, provide novel targets, and catalyze a new era in the development of medicines. However, 
despite impressive advances in technologies, the situation has remained relatively static in terms of new molecu-
lar entities5. After some success in targeted therapies for the treatment of several human cancers6,7, research has 
focused more on new approaches for the identification of novel targets in cancer therapy. Although large numbers 
of potential targets have been identified by advanced technologies, it has proven difficult to find targets that are 
causally involved in the disease.

The number of drugs approved by the US Food and Drug Administration has continuously declined because 
traditional methods of drug development do not support highly efficient drug discovery. Traditional approaches 
to develop of new drugs are expensive and time-consuming, with an average of 15 years and a price tag of more 
than $2 billion necessary to bring a drug to market8,9. Over 90% of drugs fail during the early development stage 
due to safety concerns or a lack of efficacy10.

The increasing availability of large public datasets such as the Gene Expression Omnibus (GEO) at the National 
Center for Biotechnology Information (NCBI)11, the Cancer Cell Line Encyclopedia (CCLE)12, DrugBank13, and the 
Library of Integrated Network-Based Cellular Signatures (LINCS)14,15, which together catalog disease-specific and 
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drug-induced gene expression signatures, offers a time-efficient approach to reposition existing drugs for new indi-
cations9,16. Several computational methods, such as bioinformatics, system biology, machine learning, and network 
analysis can be used for drug repositioning or repurposing as well as to identify new indications for drugs17.

Most computational drug repositioning approaches are based on a “guilt by association” strategy18, wherein 
agents having similar properties are predicted to have similar effects. Many drug repositioning strategies are 
based on different data, including similar chemical structures, genetic variations, and gene expression profiles19. 
Recently, interest in the use of genomics-based drug repositioning to aid and accelerate the drug discovery pro-
cess has increased9. Drug development strategies based on gene expression signatures are advantageous in that 
they do not require a large amount of a priori knowledge pertaining to particular diseases or drugs20,21.

The purpose of this study is to predict drug candidates that can treat GC using a computational method that 
integrates publicly available gene expression profiles of GC patient tumors and GC cell lines and cellular drug 
response activity profiles.

Results
Short Overview of Included Studies.  The study selection process is outlined in Fig. 1. Following the 
search and selection steps, eight studies: GSE2689, GSE29272, GSE30727, GSE33335, GSE51575, GSE63089, 
GSE63288, and GSE65801, were included in the final analysis. An additional dataset, GSE54129, was excluded 
due to lower quantitative QC scores after a MetaQC analysis (Supplementary Table S1). Detailed information 
about the downloaded datasets is summarized in Supplementary Table S2. Tumor gene expression signatures 
were analyzed for 719 GC samples by comparing RNA expression data for 410 tumors and 326 adjacent normal 
tissues from the GEO. The samples originated from 410 patients, of whom 152 (37.1%) were Korean, 236 (57.6%) 
were Chinese, and 22 (5.4%) were Caucasians. The samples of patients who had no prior therapy were from 
GSE29272, GSE65801, and GSE63288. The sample information was not available in GSE30727 nor GSE26899, 
while the sample information was not mentioned in GSE33335 nor GSE51575. All patients received some type of 
pre-treatment in GSE63089.

Tumor Gene Expression Signatures.  The workflow for the exploration of compounds using the calcu-
lated RGES values is presented in Fig. 2. All probe sets were re-annotated with the most recent NCBI Entrez Gene 
IDs and then mapped manually to yield 9,113 unique common genes across the different platforms. A fixed-effect 
model method was utilized by combining the P values in the MetaDE package. Among the gene expression sig-
natures, 136 genes showed increased expression levels in tumors compared to normal tissues (adjusted P < 0.001, 

Figure 1.  Flowchart of the selected process to select gene expression datasets for meta-analysis of gastric 
cancer. GEO, Gene Expression Omnibus; GC, gastric cancer.
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log2foldchange >1.2), whereas 53 genes showed decreased expression levels in tumors compared to normal tis-
sues (adjusted P < 0.001, log2foldchange > 1.2; Supplementary Table S3).

Similarity in Gene Expressions between Tumor Samples and GC Cell Lines.  The degree of similar-
ity in the gene expressions between tumor samples from the GEO and GC cell lines from the CCLE was assessed 
by a ranked based Spearman’s correlation test. Gene expression profiles for 40 GC cell lines were included in the 
CCLE (Supplementary Table S4). The top 5000 genes in these cell lines were ranked according to their interquar-
tile range across all cell lines used. Among them, less than 0.3% of genes had expression levels in tumor samples 
from the GEO that did not correlate with those in all GC cell lines. These genes included the ECC10 (0.62%), 
ECC12 (0.34%), and HGC (0.32%) cell lines (adjusted P value < 0.05).

RGES Computation.  LINCS data for changes in the expressions of 978 landmark genes after treatment of 
AGS cell lines with 25 compounds used to treat human gastric adenocarcinoma were used for the RGES compu-
tations. The median IC50s values for 2025 compounds used to treat GC cancer cell lines listed in the ChEMBL were 
used for computation. Disease signatures including 189 DEGs after extraction from the set of LINCS landmark 
genes were also used for the RGES computation. Variations in the RGES outcomes were evaluated under various 
biological conditions. The RGES showed larger variations across different cell lines relative to those within dif-
ferent replicates of the same cell line when the same concentration and treatment duration for a compound were 
used (P < 2.2 × 10−16; Fig. 3A). In addition, longer treatment durations (≥24 h) were associated with lower RGES 
outcomes compared to shorter durations (<24 h) when a compound was tested on the same cell line at the same 
concentration (P < 2.2 × 10−16; Fig. 3B). Likewise, higher compound concentrations (≥10 µM) had lower RGES 
values than lower concentrations (<10 µM, P < 2.2 × 10−16; Fig. 3C). The RGES values for the compounds were 
evaluated by examining correlations with their activities in the same cell line. Finally, the RGES outcomes were 
correlated with the IC50 values (Spearman correlation rho = 0.3, P = 5.61 × 10−3; Fig. 4).

Figure 2.  Workflow to determine the reverse gene expression score (RGES) using disease and drug gene 
expression profiles. The public database GEO was used to create cancer gene expression signatures; LINCS 
L1000 was used as the drug signature database; ChEMBL was used as the drug activity database; and CCLE 
was used to map cell lines among databases. GEO, Gene Expression Omnibus; GC, gastric cancer; LINCS, The 
Library of Integrated Network-Based Cellular Signatures; ChEMBL, a chemical database of bioactive molecules 
maintained by the European Bioinformatics Institute of the European Molecular Biology Laboratory; CCLE, 
Cancer Cell Line Encyclopedia.
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RGES Summarization and Evaluation.  Summarized RGES (sRGES) values were computed by weighting 
various cell lines, compound concentrations, and treatment durations. A number of known methods were used to 
summarize the RGES and obtain sRGES values (Supplementary Table S5). The calculated sRGES scores for each 
compound were significantly correlated with drug activity (Spearman correlation rho = 0.27 and P = 1.04 × 10−2; 
Fig. 5). Additionally, CTRP was used as an external dataset to confirm the correlation between reversal potency 
and compound activity. Activity data expressed as AUC values for 546 compounds tested in GC cell lines were 
collected from CTRP. After the sRGES computation, the median AUC values across multiple cell lines were 

Figure 3.  Differences in RGES under the various biological conditions. (A) Standard deviation (s.d.) of RGES 
of individual compounds across different cell lines (grey) vs. across replicates within the same cell line (black 
grey). (B) RGES distribution between treatment durations <24 hr (grey) and ≥24 hr (black grey). (C) RGES 
distribution between drug concentrations <10 μM (grey) and ≥10 μM (black grey). Treatment duration and 
compound concentration were categorized based on compound profiles in LINCS. P values waere calculated 
using a Wilcoxon signed-rank test.RETRACTED A
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used to evaluate the sRGES. The sRGES values were significantly correlated with the AUC values (rho = 0.368, 
P = 3.8 × 10−8; Fig. 6).

Figure 4.  Correlation between drug activity and reverse gene expression score (RGES) in AGS cancer cell lines. 
(A) Correlation between RGES and drug activity (IC50) by linear regression and Spearman’s correlation tests.

Figure 5.  Correlation between drug activity (IC50) and summarized reverse gene expression score (sRGES) for 
all cancer cell lines using a linear regression and a Spearman’s correlation tests.
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Identification of Reversed Genes and Prediction of Compounds.  Using the correlation between 
the sRGES outcome and the compound activity, compounds having high reversal potency for GC were iden-
tified. Next, genes having expression levels that were reversed by the active compounds were predicted by a 
leave-one-compound-out approach. The five genes that showed significant reversals of expression following treat-
ment with the GC cell lines with the active compounds included: (i) the collagen type IV α1 chain (COL4A1); (ii) 
procollagen-lysine 2-oxoglutarate 5-dioxygenase 3 (PLOD3); (iii) ubiquitin conjugating enzyme E2 C (UBE2C); 
(iv) macrophage migration inhibitory factor (MIF); and (v) pre-mRNA processing factor 4 (PRPF4) (Fig. 7). 
Fifteen compounds, including sorafenib, olaparib, ponatinib, tanespimycin, selumetinib, and elesclomol, were all 
determined to be active compounds against GC (Supplementary Table S6).

Discussion
Methods to identify drug candidates that can reverse the expression states of disease-related genes can comple-
ment traditional target-oriented approaches in drug discovery9,22–25. In this study, we used public cancer genomic 
and pharmacologic databases to demonstrate the reversal potency relationship between DEGs and drug activity 
and to predict potential new drug candidates for GC.

Our results showed that the ability of drugs to reverse DEGs was correlated with drug activity in GC, although 
this correlation was highly dependent on the cell line as well as the drug concentration and treatment duration. 
The positive correlation between sRGES and IC50 values indicated that combining disease gene expression data 

Figure 6.  Correlation between AUC and sRGES of compounds. AUC data were retrieved from CTRP. 
Sensitivity were measured in the form of cellular ATP levels as a surrogate for cell number and growth using 
a CellTiter-Glo assay. A compound-performance score was computed at each concentration of compound. 
The AUC using percent-viability scores was computed as a metric of sensitivity. Median values were used to 
summarize AUC across all gastric cancer cell lines examined. A Spearman’s correlation test was used to analyze 
the correlation between sRGES and AUC. AUC, areas under the concentration-response curve.

Figure 7.  Genes having reversed expression in response to treatment with active and inactive  compounds. 
Low rank and high rank suggests that the gene expression is down- and upregulated, respectively, by the 
corresponding compound. The heatmap indicates the relative position of a gene in a ranked drug expression 
profile. Position are normalized and compound columns are ordered according to IC50. Red and green colors 
indicate up- and down-regulation, respectively, after compound treatment.
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derived from clinical samples with drug gene expression profiles obtained from results with in vitro cell lines 
could be used to predict drug activity.

In our study, five GC genes, COL4A1, PLOD3, UBE2C, MIF, and PRPF4, showed reversed expressions in 
response to 15 active compounds. To the best of our knowledge, this is the first study of drug repositioning using 
a computational reversal gene expression approach in GC. Among these genes, PLOD326 and COL4A127 were 
recently shown to be overexpressed in GC. Meanwhile, the overexpression of UBE2C was related to poor progno-
sis in GC28 and was a potential biomarker of intestinal type GC29. MIF could also be a potential prognostic factor 
for GC30. These genes showed reversed expression levels and thus may be feasible as therapeutic targets for GC. 
Additionally, PRPF4 as a pre-mRNA splicing factor has been suggested as a potential therapeutic target for cancer 
therapy31.

Among the active drugs identified by our analysis, the multiple tyrosine kinase inhibitor sorafenib32 and a 
poly (ADP-ribose) polymerase (PARP) inhibitor, olaparib33, have completed phase II and phase III clinical trials, 
respectively, for GC patients. Meanwhile, the heat shock protein 70 (Hsp70) inducer elesclomol, the novel tyrosine 
kinase inhibitor ponatinib, the heat shock protein 70 (Hsp90) inhibitor tanespimycin, and the mitogen-activated 
protein kinase inhibitor selumetinib have not been previously studied clinically for their effectiveness against GC.

GC is a heterogeneous disease that involves multiple factors associated with various molecular pathways that 
can function differently during the cancer development process. A limitation of this study is that the GC disease 
gene expression datasets from the GEO are not uniformly associated with clinical outcomes or GC etiologies. The 
drug activity of predicted compounds may also vary because the GC disease states varied for individual patients. 
Sampling time information is important, as samples obtained after the initial neo-adjuvant chemotherapy can 
affect the results of this meta-analysis. Nonetheless, such information was not available from some datasets.

Many recent projects focus on precision medicine to provide insights between diseases and genes. A repur-
posing strategy based on alterations of driver genes in each tumor can be used to identify therapeutic targets. The 
collection of therapeutic agents targeting driver genes and determining the connection between each patient and 
the targeted therapies can enhance promising drug repositioning opportunities and eventually benefit patients. 
Therefore, RGES may improve predictions of drug candidates because it is based on the molecular characteristics 
of actual tumors.

Therapeutic efficacy is more complex than a simple correlation of gene expression profiles with drugs and dis-
eases. Therefore, our findings with regard to drug candidates will require further preclinical testing and demon-
strations in clinical trials, although our results did validate that the method of the computational analysis of 
public gene expression databases is a potentially useful means of drug discovery. In summary, our computational 
approach combined disease gene expression with drug-induced expression profiles in GC to identify new drugs 
and target genes for GC therapy. This approach can also be used to predict the efficacy of new drug candidates 
with which to treat GC. This computational approach could be broadly applied to other diseases for which reliable 
gene expression data are available.

Materials and Methods
Collection of Gastric Adenocarcinoma Gene Expression Profiles.  Publicly available gene expression 
profiles for GC patients were downloaded from the GEO database of the NCBI (https://www.ncbi.nlm.nih.gov/geo),  
A search of the GEO database was conducted in July of 2018 using ‘gastric cancer’ as a key search phrase. The 
results for deposits made since January of 2015 were filtered using the search terms Homo sapiens, expression 
profiling by array, and expression profiling by high-throughput sequencing. Only original experimental datasets 
that compared the expression levels of mRNAs between GC tumors and normal tissue controls were selected. 
Datasets containing more than ten sets of normal and tumor samples were retained. Additionally, gene expression 
profiles of human gastric adenocarcinoma cell lines were downloaded from the CCLE (version 2.7. updated 2015 
https://portals.broadinstitute.org/ccle)12.

Gene Expression Data Preprocessing.  The GEO accession number, platform, sample type, numbers of 
cases and controls, references and expression data were extracted from each of the identified datasets, which were 
then individually preprocessed using a log2 transformation and normalization approach. If there were multiple 
probes for the same gene, the probe values were averaged for that gene expression level. All probe sets on different 
platforms were re-annotated to use the most recent NCBI Entrez Gene Identifiers (Gene IDs), and the Gene IDs 
were used to cross-map genes among the different platforms. Only genes present in all selected platforms were 
considered. To combine the results from individual studies and to obtain a list of more robust DEGs between 
GC and normal control tissues, guidelines outlined by Ramasamy et al.34 for meta-analyses of gene expression 
microarray datasets were followed. The R packages MetaQC35 was used for quality control (QC). MetaQC uses 
six quantitative QC parameters: (i) measures of internal QC; (ii) measures of external QC; (iii) accuracy QC of 
featured genes; (iv) accuracy QC of the pathway; (v) consistency of QC in the ranking of featured genes; and (vi) 
consistency QC in the ranking of the pathway. The mean rank of all QC measures in each dataset was also deter-
mined as a quantitative summary score by calculating the ranks of each QC measure among all included datasets.

Disease Gene Expression Signatures.  MetaDE36–38 was used to the identify DEGs in GC. A moderated 
t-statistic was used to calculate the P values for each dataset, and a meta-analysis was conducted with a fixed-effect 
model39 using the MetaDE package to identify DEGs. Additionally, similarities among gene expressions profiles 
between tumor samples from the GEO and GC cell lines from the CCLE were assessed.

Compound Gene Expression Profiles.  Level 4 gene expression profiles consisting of 978 landmark genes 
(L1000 genes) from LINCS as of May of 2018 were downloaded from LINCS cloud storage (https://lincscloud.org/),  
hosted by the Broad Institute40. Cell lines described in LINCS, CCLE, and ChEMBL (version 23 1st May 2017, 
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https://www.ebi.ac.uk/chembl/)41 were mapped using GC cell line names followed by manual inspections. 
Meta-information for compound-induced gene expressions, including the cell line types as well as the treatment 
durations and drug concentrations was retrieved. Only small-molecule perturbagens having high-quality gene 
expression profiles (is_gold = 1, annotated in the meta-information) were used for further analysis.

Compound activity profiles.  Compound response activity data, described as the half-maximal inhibi-
tory concentrations (IC50) in GC cell lines, were retrieved from ChEMBL. As the IC50 values for a given com-
pound could vary for the same cell line across different studies, the median IC50 value was used. Compounds 
included in the ChEMBL and LINCS were mapped using The International Union of Pure and Applied Chemistry 
International Chemical Identifier keys. Additionally, the area under the curve (AUC) values for compound activ-
ity data in GC cell lines were retrieved from the Cancer Therapeutic Response Portal (CTRP ver 2, https://portals.
broadinstitute.org/ctrp.v2.1/)42. Sensitivity levels were measured in the form of cellular ATP levels as a surrogate 
for cell number and growth using CellTiter-Glo assays43. A compound-performance score was computed at each 
concentration of compound. The AUC using percent-viability scores was computed as a metric of sensitivity given 
that AUC reflects both relative potency and the total level of inhibition observed for a compound across CCLs. 
Median AUC values across multiple cell lines were used. Compounds were categorized into active (IC50 < 10 μM) 
and inactive groups (IC50 ≥ 10 μM) based on their activities in cell lines. An IC50 value of 10 μM was chosen as an 
activity threshold because compounds with IC50 ≥ 10 μM in primary screenings are often not pursued44.

Reverse Gene Expression Score (RGES) Computation and Summarization.  The method used to cal-
culate RGES outcomes was adapted from the previously described Connectivity Map method45. Briefly, genes were 
initially ranked by their expression values for each compound. An enrichment score for each set of upregulated 
and downregulated disease genes was computed based on the positions of the genes in the ranked list. RGES values 
emphasize the reversal correlation by capturing the reversal relationship between the DEGs and compound-induced 
changes in gene expressions. Therefore, a lower negative RGES indicates a greater likelihood of reversing changes in 
disease gene expressions, and vice versa. In addition, Spearman’s correlation coefficient, Pearson correlation coef-
ficient, and cosine similarity were computed between the DEGs and compound activities as an alternate means of 
computing the reversal relationship between DEGs and active compounds46. The databases can list multiple gene 
expression profiles associated with one compound due to testing in various cell lines, compound treatment concen-
trations, and compound treatment durations, which resulted in multiple RGES outcomes for one compound that 
could reverse disease gene expression. Given these variations, sRGES were weighted and calculated. Results obtained 
for 10 μM drug concentrations and 24 h treatments were used to define the reference conditions. The analysis code 
and an example are provided at https://github.com/Bin-Chen-Lab/RGES.

Identification of Reversed Genes.  In cases for which multiple compound activity IC50 data were availa-
ble for one compound, median IC50 values were calculated. In cases for which multiple gene expression profiles 
yielded multiple RGES values for one compound, a median RGES value was calculated from the GC cell lines. 
Each gene expression profile was sorted according to its expression value. Upregulated genes were ranked high 
(i.e., on the top), whereas downregulated genes were ranked low (i.e. on the bottom). Among the upregulated 
genes, reversal genes were defined as those that were ranked lower in the inactive group (IC50 < 10 μM) than in 
the inactive group (IC50 ≥ 10 μM). In contrast, among the downregulated genes, the reversal genes were defined 
as those that were ranked higher in the active group than in the inactive group. A leave-one-compound-out 
cross-validation approach was used to find genes having reversed expressions47. For each trial, one compound 
was removed and the reversed genes were then identified using the approach described above. Only those genes 
that were significantly reversed in all trials were retained. Genes having P < 0.1 in all trials were considered as 
reversal genes.

Statistical Analysis.  The degrees of similarity in the gene expressions between tumor samples from the GEO 
and GC cell lines from the CCLE were assessed by Spearman’s rank correlation testing, as was the similarity of 
RGES and IC50 from ChEMBL or AUC from CCLE. A Wilcoxon signed-rank test was used to assess differences 
between RGES across the same and different cell lines, longer (fferent cell lines, <24 h) treatment durations, 
and higher (≥10 μM) and lower (<10 μM) drug concentrations. P values were adjusted with a Benjamini and 
Hochberg’s false discovery rate method to correct for multiple testing.

Data Availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author on reasonable request.
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