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The small GTPase Ran regulates the interaction of transport receptors with a number

of cellular cargo proteins. The high affinity binding of the GTP-bound form of Ran

to import receptors promotes cargo release, whereas its binding to export receptors

stabilizes their interaction with the cargo. This basic mechanism linked to the asymmetric

distribution of the two nucleotide-bound forms of Ran between the nucleus and the

cytoplasm generates a switch like mechanism controlling nucleo-cytoplasmic transport.

Since 1999, we have known that after nuclear envelope breakdown (NEBD) Ran and

the above transport receptors also provide a local control over the activity of factors

driving spindle assembly and regulating other aspects of cell division. The identification

and functional characterization of RanGTP mitotic targets is providing novel insights into

mechanisms essential for cell division. Here we review our current knowledge on the

RanGTP system and its regulation and we focus on the recent advances made through

the characterization of its mitotic targets. We then briefly review the novel functions of the

pathway that were recently described. Altogether, the RanGTP system has moonlighting

functions exerting a spatial control over protein interactions that drive specific functions

depending on the cellular context.
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HISTORICAL PERSPECTIVE ON THE CHROMATIN DEPENDENT
MT ASSEMBLY PATHWAY

The first hints of the existence of a chromosome-dependent MT assembly mechanism in the
dividing cell were obtained in the 1970–1980s when several groups reported that MT nucleation
occurred close to or at the kinetochores (McGill and Brinkley, 1975; Telzer et al., 1975; Witt et al.,
1980; De Brabander et al., 1981) and a spindle like structure formed around lambda DNA injected
into metaphase arrested Xenopus eggs (Karsenti et al., 1984). In 1996, DNA coated beads were
shown to trigger bipolar spindle formation when incubated in Xenopus egg extracts (Heald et al.,
1996), providing further support to the idea that chromatin carries all the information required to
direct MT assembly and organization in the M-phase cytoplasm. Shortly after, the identification of

Abbreviations: γTuRC, γTubulin Ring Complex; K-Fiber, Kinetochore-Fiber; KANLS, KAT8-associated nonspecific lethal

complex; MT, Microtubule; NEBD, Nuclear Envelope Breakdown; NES, Nuclear Export Signal; NLS, Nuclear Localization

Signal; NPC, Nuclear Pore Complex; NTR, Nuclear Transport Receptor; RanGAP, Ran GTPase Activating Protein; RanGEF,

Ran Guanine nucleotide Exchange Factor; SAF, Spindle Assembly Factor.
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the small Ran GTPase as driver of chromatin-dependent
MT assembly in the M-phase cytoplasm provided a major
breakthrough to understand the underlying mechanism (Carazo-
Salas et al., 1999; Kalab et al., 1999; Ohba et al., 1999; Wilde
and Zheng, 1999; Zhang et al., 1999). Today, we know that the
chromosomes driveMT assembly and organization into a bipolar
spindle in a RanGTP dependent manner in most cells (Karsenti
and Vernos, 2001; Rieder, 2005).

In this mini-review we will describe briefly how the RanGTP
system regulates the nucleo-cytoplasmic shuttling of components
in interphase and, after NEBD, the activity and/or localization of
specific factors to drive spindle assembly. We will briefly review
our current knowledge on the identity and function of RanGTP
regulated factors and the recent advances on understanding novel
mechanisms regulated by RanGTP. Finally we will provide an
overview of the regulation of the RanGTP pathway itself during
mitosis, its conservation in different organisms and cell types, and
its role in other cellular functions. For additional information
we refer the reader to excellent reviews (Ciciarello et al., 2007;
O’Connell and Khodjakov, 2007; Clarke and Zhang, 2008; Kalab
and Heald, 2008; Roscioli et al., 2010; Forbes et al., 2015).

THE NUCLEO-CYTOPLASMIC
TRANSPORT AND THE SMALL GTPase
RAN

Eukaryotic cells are compartmentalized and have specific
transport systems for the communication between the cytoplasm
and the different membrane-bound organelles. The nucleo-
cytoplasmic transport system is essential to connect functionally
the transcription of the genome that occurs within the nucleus,
with protein translation that takes place in the cytoplasm
(Figures 1A,B). The transport of molecules in and out of the
nucleus occurs through the nuclear pore complex (NPC), a
big protein complex of ∼60 MDa inserted into the nuclear
membrane (Sorokin et al., 2007). Small cargos (<40 kDa) diffuse
rapidly through the NPC. Instead, proteins larger than 40 kDa
require an active transport through the NPC that involves
soluble nuclear transport receptors (NTRs) that belong to the
karyopherin-β protein family. NTRs that facilitate the transport
of cargo proteins into the nucleus are called importins and
interact with their cargo through a nuclear localization signal
(NLS) rich in basic residues. NTRs facilitating the export of
proteins out of the nucleus are called exportins and interact
with their cargo through a nuclear export signal (NES) rich
in hydrophobic residues such as leucine. The karyopherin-β
importin β1 often interacts with the cargo through an adaptor
of the importin α family (Sorokin et al., 2007). Importin α binds
directly to the NLS of the cargo protein and to importin β1
through an IBB domain (importin β binding domain), leading
to the formation of a trimeric complex.

NTRs associate with the small GTPase Ran that acts as
a molecular switch. In its GTP bound form, Ran (RanGTP)
interacts with karyopherin-β proteins with high affinity, while it
dissociates in its GDP bound form (RanGDP). RanGTP binding
to importins and exportins have very different consequences: it

stabilizes the exportin-cargo interaction whereas it destabilizes
the importin-cargo interaction (Figure 1A).

The RanGEF (guanine nucleotide exchange factor) RCC1
associates with the chromatin inside the nucleus, whereas
RanGAP (GTPase activating protein) is cytoplasmic. As a
consequence the predominant form of Ran in the nucleus is
bound to GTP, while in the cytoplasm it is bound to GDP.
Thereby NLS proteins transported to the nucleus by importins
are released and accumulate in the nucleoplasm, whereas NES
proteins in complex with exportin-RanGTP are transported out
of the nucleus (Figures 1A,B).

Although the nucleo-cytoplasmic transport is no longer
needed when a cell enters into mitosis, its complex molecular
machinery is recycled to promote MT assembly around the
chromatin and to direct the organization of the bipolar spindle
(Clarke and Zhang, 2008).

THE RanGTP PATHWAY DURING CELL
DIVISION

As RCC1 remains associated with the chromatin after NEBD,
RanGTP is highly enriched in the proximity of the chromosomes.
As RanGTP diffuses away from the chromatin, RanGAP in the
cytoplasm converts it into RanGDP (Figure 1C). The resulting
gradient has been directly visualized in cells and Xenopus egg
extracts (Kalab et al., 2002, 2006) and its properties in MT
nucleation and stabilization tested and modeled (Caudron et al.,
2005). Like in interphase, this system provides a spatial control
over the stability of NTRs-cargo complexes. The cargos are
NLS and/or NES containing proteins with specific functions
related to spindle assembly and function. The NLS-proteins with
a role in spindle assembly have been named SAFs (Spindle
Assembly Factors).

The discovery and characterization of the RanGTP pathway
prompted a re-examination of the Search and Capture model for
spindle assembly proposed in 1986 (Kirschner and Mitchison,
1986). This model postulates that centrosomal MTs grow
and shrink exploring the cytoplasmic space until a stochastic
encounter with a kinetochore promotes their capture and
attachment. However, it has been now clearly established that
animal cells experimentally deprived from their centrosomes
do assemble a functional mitotic spindle (Debec et al., 1995;
Khodjakov et al., 2000). Moreover, mathematical simulations
suggested that the Search and Capture mechanism could not
account for the short division time observed in most animal
cells (Wollman et al., 2005). By promoting MT nucleation and
stabilization in the proximity of the chromosomes, the RanGTP
pathway most certainly favors MT capture by the kinetochores
increasing the efficiency of the Search and Capture mechanism.
However, the role of the RanGTP pathway must go beyond
MT capture by the kinetochores and kinetochore-fiber (K-fiber)
formation since it also promotes MT organization in the absence
of chromosomes, kinetochores, and K-fibers (Carazo-Salas et al.,
1999). The identification of the direct and indirect RanGTP
targets in the M-phase cytoplasm is therefore an essential step to
fully understand the several roles this pathway fulfills during cell
division.
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FIGURE 1 | The Ran system and its moonlighting functions. (A) Schematic representation of the Ran system for the spatial control of NLS and NES carrying

proteins. In cells Ran is found in two forms, RanGTP (green), and RanGDP (light green). RCC1 (light blue) promotes the exchange of GDP to GTP, while

RanGAP1-RanBP2 (in pink and purple) promote the hydrolysis of GTP into GDP. RanGTP binds to the importins (turquoise green) and exportins (light purple).

Exportins in complex with RanGTP can associate to the NES-proteins (in brown). On the other hand, the binding of RanGTP to importins trigger their dissociation from

NLS-proteins (yellow). (B) During interphase, the Ran system controls the nucleo-cytoplasmic shuttling of proteins, because RanGTP is predominant in the

nucleoplasm and RanGDP is predominant in the cytoplasm (Sorokin et al., 2007). (C) During mitosis the association of RCC1, the RanGEF, with the chromosomes

defines a gradient of RanGTP concentrations that promote the release of SAFs and MT nucleation around the chromatin. The Ran system is converted into a pathway

for MT assembly and organization that is essential for mitotic spindle assembly. The RanGTP pathway depends on the establishment of a concentration gradient of

RanGTP that peaks around the chromosomes (Kalab et al., 2002; Caudron et al., 2005). (D) At the end of mitosis, the Ran system also regulates nuclear membrane

(Continued)
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FIGURE 1 | Continued

and NPC reassembly by controlling membrane fusion and releasing NPC components (Walther et al., 2003; Harel et al., 2003). (E) In ciliated cells RanGTP

accumulates in the cilioplasm and promotes the transport and accumulation of Kif17 and retinis pigmentosa 2 to the cilioplasm (Dishinger et al., 2010; Fan et al.,

2011; Hurd et al., 2011). (F) In neurons many SAFs have a function. Furthermore, importins localize to the dendritic synaptic space and are involved in the transport of

cargos to the nucleus (Jordan and Kreutz, 2009; Panayotis et al., 2015). The Ran system is also active in the axon of the sciatic nerve, where upon injury importins

promote the transport of cargos toward the neuron cell body (Hanz et al., 2003; Yudin et al., 2008).

UNDERSTANDING THE RanGTP PATHWAY
THROUGH THE IDENTIFICATION AND
FUNCTIONAL CHARACTERIZATION OF ITS
TARGETS

Adirect read out of the role of RanGTP in theM-phase cytoplasm
was obtained in Xenopus egg extracts devoid of chromatin and
centrosomes. Addition of RanGTP to these extracts is indeed
sufficient to trigger MT nucleation, promote MT stabilization,
and induce the organization of MT assemblies named mini-
spindles (Carazo-Salas et al., 1999, 2001). Therefore, one or more
SAFs maybe involved in these different events.

Since the identification of the first SAFs in 2001 (Gruss
et al., 2001; Nachury et al., 2001; Wiese et al., 2001; Clarke
and Zhang, 2008; Meunier and Vernos, 2012), the number
of proteins controlled by RanGTP in mitosis has been slowly
growing and several novel SAFs were identified recently (CDK11,
CHD4, ISWI, Kif14, Kif2a, MCRS1, Mel28, Anillin, APC;
Silverman-Gavrila et al., 2008; Yokoyama et al., 2008, 2009, 2014;
Dikovskaya et al., 2010; Meunier and Vernos, 2011; Samwer
et al., 2013; Wilbur and Heald, 2013). Currently, 22 proteins
have been validated as SAFs (Table 1). In addition, a number
of proteins with established roles in various aspects of spindle
assembly are nuclear and could therefore be targets for RanGTP
regulation (i.e., Kif4a/Klp1, Ino80, Reptin), but further studies
should address this possibility.

Interestingly, the functional characterization of some of the
SAFs is providingmechanistic insights into the RanGTP pathway
functions in the dividing cell. The mechanism by which RanGTP
promotes MT nucleation de novo in the M-phase cytoplasm
was recently described (Scrofani et al., 2015). By releasing
TPX2 from importins, RanGTP promotes its interaction with
Aurora A and with a RHAMM-NEDD1-γTURC (γTubulin
Ring Complex) complex. In this new complex the activated
Aurora A phosphorylates NEDD1, an essential requirement for
MT nucleation. Another SAF, Mel28, was shown to interact
with the γTuRC and it was proposed to play a role in
RanGTP dependent MT nucleation (Yokoyama et al., 2014).
The potential cooperation of Mel28 with the TPX2-dependent
pathway described above remains to be established.

The RanGTP pathway also contributes to centrosome
maturation and its MT assembly activity (Carazo-Salas et al.,
2001). In fact two SAFs, CDK11, and Mel28 were shown to favor
MT assembly at the centrosome (Yokoyama et al., 2008, 2014).

The identification and characterization of another SAF,
MCRS1, has revealed a novel and important mechanism for
the regulation of K-fiber MT minus-end dynamics (Meunier
and Vernos, 2011) and novel insights on the roles of the

RanGTP pathway in spindle assembly and cell division (Meunier
and Vernos, 2012). MCRS1, in complex with members of
the chromatin modifier KAT8-associated nonspecific lethal
(KANSL) complex (Meunier et al., 2015), is targeted to the
minus-end of RanGTP-dependent MTs protecting them from
depolymerisation. Within the spindle MCRS1 also associates
specifically with the minus-ends of K-fiber MTs and regulates
their depolymerisation rate playing an essential role in K-fiber
dynamics and chromosome alignment (Meunier and Vernos,
2011; Meunier et al., 2015). The specific association of MCRS1
with the MTs nucleated by the RanGTP dependent pathway
also suggests that these MTs have specific characteristics that
distinguish them from the MTs nucleated by the centrosomes.
If this turns out to be true, the chromosomal MTs would not
be merely a local supply of MTs favoring an efficient Search
and Capture mechanism, but they could provide essential unique
functionalities required for the assembly and function of the
bipolar spindle (Meunier et al., 2015).

Recently the MT depolymerizing kinesin Kif2a was shown
to be regulated by RanGTP in mitosis, revealing an important
mechanism for the scaling of the spindle to the cell size during
the early development of Xenopus embryos (Wilbur and Heald,
2013). Kif2a is maintained inactive by importin α until stage
8 of embryonic development. As the soluble concentration of
importin α decreases, Kif2a is released and function as a MT
depolymerase promoting spindle shortening.

Although, most of the SAFs identified so far were found
to play a role in the early phases of cell division, a number
of recent reports indicate that the RanGTP pathway has other
essential roles not directly related to spindle assembly. Indeed,
the characterization of the SAF ISWI suggests functions for the
RanGTP pathway during anaphase (Yokoyama et al., 2009).

Multiple lines of research also indicate that it plays a role
in spindle positioning. Indeed, before entry into anaphase, the
RanGTP gradient restricts the localization of the LGN-NuMa
complex to cell cortex areas further away from the chromosomes,
contributing to the control of spindle position and orientation
(Kiyomitsu and Cheeseman, 2012).

In addition, RanGTP also regulates non-MT related targets.
Indeed, it controls Anillin localization and triggers asymmetric
membrane elongation during anaphase, defining spindle
positioning at the center of the dividing cell (Silverman-Gavrila
et al., 2008; Kiyomitsu and Cheeseman, 2012). Finally, during
cytokinesis the RanGTP pathway regulates the activity of
the kinesin Kif14/Nabkin in actin bundling (Carleton et al.,
2006; Samwer et al., 2013) and coordinates nuclear membrane
and NPC reassembly (Harel et al., 2003; Walther et al., 2003;
Ciciarello et al., 2010; Roscioli et al., 2010; Forbes et al., 2015;
Figure 1D).
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It is therefore clear that the identification and functional
characterization of the RanGTP mitotic targets is providing
novel insights into the mechanism of spindle assembly and cell
division. However, it is unclear whether many or only a few more
RanGTP targets remain to be identified. This number could be
potentially high as the number of nuclear proteins is in the order
of hundreds or thousands (Dellaire et al., 2003), at least one
order of magnitude above the current number of known RanGTP
targets in the dividing cell (Table 1).

Most of the proteomic studies aimed at identifying novel SAFs
have focused on importins α1 and β1 (Nachury et al., 2001;
Wiese et al., 2001; Yokoyama et al., 2008), which are two of the
most abundant importins in Xenopus egg extracts (Bernis et al.,
2014; Wuhr et al., 2014). However, there are five additional α-
importins and eight additional β-importins in humans (Cautain
et al., 2015).

Although still scarce, some data indicate that indeed other
importins also play a role during cell division. The RanGTP
regulation of NuSAP was shown to depend on importin-β1 and
importin-7 (Ribbeck et al., 2006) and that of Mel28, Nup107-
160, and Nup98 on importin-β1 and transportin/importin-β2
(Lau et al., 2009). Transportin was also specifically shown to
negatively regulate spindle assembly and nuclear membrane and
NPC reassembly (Bernis et al., 2014). However, there are no
described mitotic factors exclusively regulated by importin-7
or transportin.

The characterization of possible transportin specific targets
and, more generally, of the other importins α and β represents an
open field for exploration. This could be important to understand
the regulation of the RanGTP pathway, especially considering
that importins expression patterns change significantly in
different developmental stages and tissues (Hosokawa et al.,
2008).

REGULATION OF THE RanGTP SYSTEM
DURING CELL DIVISION

Beyond the specificities of NTR-SAF interactions, several
mechanisms may directly impinge upon the RanGTP pathway
during cell division. Several data suggest that RCC1 itself is
a key component under fine regulation. Human cells have
three isoforms of RCC1, that are expressed in a tissue specific
manner (Hood and Clarke, 2007). The isoforms differ at their N-
terminus, a region involved in importin binding and regulated by
phosphorylation, which was proposed to influence chromosome-
coupled RanGTP production (Hood and Clarke, 2007; Li et al.,
2007). Moreover, the level of RCC1 expression also varies in
different cells and correlates with the steepness of the RanGTP
gradient (Hasegawa et al., 2013). This may have important
consequences as it was proposed that the steepness of the
RanGTP gradient determines the length of prometaphase and
metaphase which in turn may be relevant for chromosome
segregation fidelity (Silkworth et al., 2012; Hasegawa et al.,
2013).

Other mechanisms, such as post-translational modifications
and alternative splicing are also potential strategies to control the

NLS of SAFs. However, these mechanisms would rather affect a
particular protein than the whole RanGTP pathway.

Recently, an alternative mechanism for the regulation of
SAFs independently of RanGTP was proposed. The targeting
of the Golgi protein GM130 to fragmented Golgi membranes
in mitosis may compete out locally TPX2 from the importin
α1 binding, thus favoring MT assembly in the vicinity of Golgi
fragments (Wei et al., 2015). This competition-based mechanism
could be another strategy to locally control SAFs sequestered by
importins.

THE ROLE OF OTHER COMPONENTS OF
THE NUCLEO-CYTOPLASMIC SHUTTLING
MACHINERY DURING MITOSIS

The binding of RanGTP to exportins stabilizes its interaction
with NES-cargo proteins. The major exportin, CRM1, was
shown to be involved in the targeting of NES-proteins to the
kinetochore or the centrosomes. At the kinetochore, CRM1
recruits the RanBP2-RanGAP1-SUMO complex that is required
for the interaction betweenMTs and the kinetochore (Arnaoutov
et al., 2005). However, it is still mechanistically unclear how
this complex favors the MT-kinetochore interaction (Forbes
et al., 2015). CRM1 also promotes the recruitment of RanGAP1-
RanBP2 to the spindle in a RanGTP dependent manner (Wu
et al., 2013) and it is involved in tethering the Chromosome
Passenger Complex to the centromere through its direct
interaction with survivin (Knauer et al., 2006). CRM1 has
also been shown to promote the recruitment of BRCA1 and
pericentrin to the mitotic centrosomes, thus promoting the MT
assembly activity of the centrosomes (Liu et al., 2009; Brodie
and Henderson, 2012). Recently, the transcriptional repressor
Bach1 was found to play a role in chromosome arm alignment
during mitosis and to be excluded from the chromosomes during
metaphase in a CRM1-dependent way (Li et al., 2012).

However, the significance of these targeting events is not
entirely clear mechanistically (Yokoyama and Gruss, 2013). A
major problem is that during mitosis the putative role of exportin
mediated interactions may be difficult to untangle from that
of importin mediated interactions, as they involve proteins
having both NES and NLS [i.e., Pericentrin (Liu et al., 2010)].
Nevertheless, it seems evident that the RanGTP regulation of
CRM1 has several roles during mitosis and it will be interesting
to test whether other exportins are also important for mitotic
events.

CONSERVATION OF THE RanGTP
PATHWAY IN DIVIDING CELLS

In the last 15 years the RanGTP pathway has been studied
in several organisms and cell types. It was found to present
variations on some details or in some cases to be unnecessary.
Indeed, in some meiotic systems the contribution of the RanGTP
pathway appears to be non-essential. For instance, Drosophila
spermatocytes can assemble the meiosis I spindle in the complete
absence of chromosomes (Bucciarelli et al., 2003). The assembly
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of the acentrosomal spindle of meiosis I in mice and frogs oocytes
was also shown to be only partially dependent on the RanGTP
pathway, although the pathway is strictly essential for spindle
assembly during meiosis II (Dumont et al., 2007).

Even in systems relying on RanGTP for spindle assembly there
are some variations at least at the level of the machinery. For
instance, TPX2, which is essential in frogs and mammals, is not
present in Caenorhabditis elegans and Drosophila melanogaster.
Although proteins with some of the TPX2 characteristics have
been identified in these systems (Ozlu et al., 2005; Goshima,
2011), they lack essential features of TPX2, like an NLS that is
at the basis of the RanGTP regulation. This example indicates
that the effectors of the RanGTP pathwaymight vary from system
to system, although the main principles are probably maintained
and conserved.

THE RanGTP PATHWAY: A
MOONLIGHTING PATHWAY WITH A ROLE
IN SEVERAL CELLULAR FUNCTIONS

The RanGTP pathway is an example of a whole pathway
that accomplishes essential functions in different parts of the
cell cycle. In interphase, it orchestrates the nucleo-cytoplasmic
transport, while in mitosis it drives spindle assembly and
later nuclear membrane and NPC reassembly (Figures 1B–D).
Individual proteins that have different functions at different
times are defined as moonlighting proteins (Jeffery, 1999).
The RanGTP pathway could therefore be an example of a
moonlighting pathway.

The RanGTP pathway is particularly interesting, because it
shows how the function of a protein depends on its context: most
of the SAFs have nuclear functions and are kept separated from
tubulins and others cytoskeleton proteins during interphase.
Upon NEBD, the general context changes and the SAFs exert
important functions related to the MTs.

Some data point toward a moonlighting function of the
RanGTP pathway in cilia formation and in transport into the
cilium. RanGTP has been shown to control the accumulation
of Kif17 and retinis pigmentosa 2 to the cilioplasm (Dishinger
et al., 2010; Hurd et al., 2011), where RanGTP is concentrated
(Fan et al., 2011). The current working model is that the RanGTP
pathway orchestrates the transport of cargos carrying a cilia
localization signal through the cilia pore complex, which has been
proposed to be located at the base of the cilium (Kee et al., 2012;
Figure 1E). However, further studies are needed to understand
how the RanGTP gradient is established in cilia and what other
cargos it transports into the cilia.

Interestingly, the RanGTP pathway moonlights also in
differentiated neurons, where many SAFs also have a function
[TPX2, MCRS1, NuMa, Rae1, HSET (Ferhat et al., 1998;
Davidovic et al., 2006; Mori et al., 2009; Tian et al., 2011; Pannu
et al., 2015)]. Furthermore importins α and β accumulate at
the dendritic synaptic space and have a role in the transport of
cargos from the synapses to the nucleus (Jordan andKreutz, 2009;

Panayotis et al., 2015). Finally, a RanGTP regulated mechanism
has been shown to be at play in response to sciatic nerve injuries
(Hanz et al., 2003; Yudin et al., 2008; Figure 1F).

CONCLUSIONS

The identification of the role played by the RanGTP pathway
during cell division occurred more than 15 years ago. We know
now that the RanGTP pathway has additional functions and
could be considered a moonlighting pathway controlling various
important cellular processes (Figure 1). During cell division
it drives essential mechanisms that we start to understand
thanks to the identification and functional characterization of
its direct targets. However, several open questions still need to
be addressed. The total number of SAFs is difficult to anticipate
and therefore we do not know how many still remain to
be identified. Furthermore, most of our current knowledge is
restricted to the role of only some components of the nucleo-
cytoplasmic transport machinery. For instance, very little is
currently known about the putative role in cell division of the
different importins present in the human cell. Specific importins
may regulate the activity of novel SAFs and their different
expression patterns in different cell types and tissues may provide
a relevant combinatorial mechanism. We also know little on
the putative role of the components of the export machinery in
spindle assembly and in the other novel functions of the pathway.
Although, there are data suggesting various points of regulation
of the pathway itself, the consequences on cell division and other
processes are not clear yet, nor how it may be adapted to the
requirements of different cell types or tissues. The study of the
RanGTP pathway will certainly provide exciting new insights in
the next few years, revealing some essential mechanisms for cell
organization and function.
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