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Abstract

Hydroxymethylcytosine (5hmC) methylation is a well-known epigenetic mark that is involved

in gene regulation and may impact genome stability. To investigate a possible role of 5hmC

in cancer development and progression, one must be able to detect and quantify its level

first. In this paper, we address the issue of 5hmC detection at a single base resolution, start-

ing with consideration of the well-established 5hmC measure Δβ and, in particular, with an

analysis of its properties, both analytically and empirically. Then we propose several alterna-

tive hydroxymethylation measures and compare their properties with those of Δβ. In the

absence of a gold standard, the (pairwise) resemblance of those 5hmC measures to Δβ is

characterized by means of a similarity analysis and relative accuracy analysis. All results

are illustrated on matched healthy and cancer tissue data sets as derived by means of bisul-

fite (BS) and oxidative bisulfite converting (oxBS) procedures.

Introduction

DNA methylation is known to play a crucial role in the development of diseases such as diabe-

tes, schizophrenia, and some forms of cancer; for details see, e.g., [1–7] and references therein.

In order to address the possible impact of DNA methylation on the various biological func-

tions and processes, an entire strand of extensive biological, bioinformatical, and statistical

analyses has been developed in the past years. Some of those analyses, most relevant for our

setting, were discussed in [8–15]. A substantial part of the methods introduced in those analy-

ses aims at quantifying the actual level of DNA methylation, in particular on a single nucleo-

tide resolution in genomic DNA.

At some point, this research indicated that the obtained DNA methylation level, sometimes

referred to as “total DNA methylation” [16, 17], can be split, inter alia, into 5-hydroxymethyl-

cytosine (5hmC) and 5-methylcytosine (5mC) components, with 5mC playing an important

PLOS ONE | https://doi.org/10.1371/journal.pone.0218103 June 13, 2019 1 / 22

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Slynko A, Benner A (2019) Statistical

methods for classification of 5hmC levels based on

the Illumina Inifinium HumanMethylation450

(450k) array data, under the paired bisulfite (BS)

and oxidative bisulfite (oxBS) treatment. PLoS ONE

14(6): e0218103. https://doi.org/10.1371/journal.

pone.0218103

Editor: Robert Dante, Centre de Recherche en

Cancerologie de Lyon, FRANCE

Received: December 4, 2018

Accepted: May 27, 2019

Published: June 13, 2019

Copyright: © 2019 Slynko, Benner. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: https://zenodo.org/

record/2639285#.XLYzNKZS_XE.

Funding: This project was supported by grants

from the German Federal Ministry of Education and

Research (01ER1505a, 01ER1505b) and the

Interdisciplinary Research Program of the National

Center for Tumor Diseases (NCT), Germany. The

funders did not play any role in the data analysis,

decision to publish, or preparation of the

manuscript.

http://orcid.org/0000-0001-6746-9039
https://doi.org/10.1371/journal.pone.0218103
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0218103&domain=pdf&date_stamp=2019-06-13
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0218103&domain=pdf&date_stamp=2019-06-13
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0218103&domain=pdf&date_stamp=2019-06-13
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0218103&domain=pdf&date_stamp=2019-06-13
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0218103&domain=pdf&date_stamp=2019-06-13
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0218103&domain=pdf&date_stamp=2019-06-13
https://doi.org/10.1371/journal.pone.0218103
https://doi.org/10.1371/journal.pone.0218103
http://creativecommons.org/licenses/by/4.0/
https://zenodo.org/record/2639285#.XLYzNKZS_XE
https://zenodo.org/record/2639285#.XLYzNKZS_XE


role in gene silencing and genome stability [18]. The second component, 5hmC methylation,

was first discovered in 2009 as another form of cytosine modification [19–21]. Since then, its

function as an intermediate in active DNA demethylation and an important epigenetic regula-

tor of mammalian development which is strongly associated with genes and regulatory ele-

ments in the genome, as well as its role as a possible epigenetic mark impacting genome

stability has come into the spotlight [16, 18, 22–38]. At that point, the questions concerning

reliable identification and accurate quantification of 5hmC levels emerged.

Until now, a number of techniques for the quantification of 5hmC levels have been estab-

lished [16–18, 24, 28, 31, 39–41]. Two key techniques to be named here are the TET-assisted

bisulfite (TAB) technique and the oxidative bisulfite (oxBS) technique. The TAB technique is

based on the conversion of 5mC to 5hmC in mammalian DNA by means of TET emzymes

[17, 31]. When using the oxBS technique, 5hmC methylation levels can be obtained by means

of the paired bisulfite sequencing (BS) and oxidative bisulfite sequencing (oxBS) procedures

[18]. In particular, since the BS procedure can only differentiate between methylated and

unmethylated cytosine bases, and cannot discriminate between 5mC and 5hmC, the oxBS pro-

cedure must be applied, in order to determine the level of 5hmC at a considered nucleotide

position. This procedure yields Cs only at 5mC sites while oxidating 5hmC to 5-formylcytosine

(5fC) and later converting them to uracil. As a result, an amount of 5hmC at each particular

nucleotide position can be determined as the difference between the oxBS (which identifies

5mC) and the BS (which identifies 5mC+5hmC) readouts. In the present paper, all obtained

results are illustrated on paired BS and oxBS data.

In order to quantify the 5hmC level in the context of the oxBS technique, and, in particular,

to identify a given CpG site as being either hydroxymethylated or non-hydroxymethylated, the

following quantity was introduced in [41]

Db
oxBS
¼ bBS � boxBS ¼

MBS

MBS þ UBS þ 100
�

MoxBS

MoxBS þ UoxBS þ 100
: ð1Þ

Here, M denotes the intensity of the methylated allele, U is the intensity of the unmethy-

lated allele, βBS is the methylation level obtained from the BS method, and βoxBS is the methyla-

tion level derived by means of the oxBS method. As stated in [31, 41], the quantity ΔβoxBS

computed for each single CpG and sample can be interpreted as a “measure of hydroxymethy-

lation” and “a reflection of the 5hmC level at each particular probe location”. This measure can

then be applied in the screening step so as to exclude from further analysis those CpGs that do

not appear to be hydroxymethylated.

In [42], the authors introduced a related quantity ΔmoxBS, defined as a difference of the cor-

responding m-values [13], to be another measure for identification and quantification of the

5hmC levels. However, our discussion in S1 Appendix shows that in the context of the 5hmC

identification both measures, ΔβoxBS and ΔmoxBS, flag exactly the same cytosines as being sub-

stantially hydroxymethylated and thus can be used interchangeably.

Due to its definition, ΔβoxBS in (1) can take values between -1 and 1, with negative values of

ΔβoxBS representing “false differences in methylation score between paired BS-only and oxBS
data sets” and being interpreted as a “background noise” [41].

While applying ΔβoxBS for the identification of substantially hydroxymethylated cytosines,

the issue of an appropriate ΔβoxBS threshold arises; such threshold can be applied “to identify a

probe-set of substantially hydroxymethylated cytosines”. In [41], the threshold for ΔβoxBS has

been set to 0.3 or 30%. However, it is not evident, whether such threshold can be applied for

any given data set or should be specified for each particular setting.

Statistical methods for classification of 5hmC levels under the paired BS and oxBS treatment
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This paper is organized as follows. First, we address the applicability of the 5hmC measure

ΔβoxBS (in the following notation just Δβ) for detection of hydroxymethylated CpGs and then

indicate several limitations of this measure by discussing its properties, both analytically and

on data sets. Further, we propose several alternative hydroxymethylation measures which can

also be applied for the 5hmC identification and compare their properties and resemblance

with those of Δβ. Relative accuracy and resemblance of all three considered 5hmC measures

are discussed numerically, under the assumption that no gold standard is available. All data

analyses were performed on 38 matched samples, with cancer and healthy tissue available for

each sample.

Discussion

On the applicability of Δβ for 5hmC detection

According to [8], for a given methylated and unmethylated intensities M and U, the methyla-

tion level of the particular probe can be described by the methylation proportion

b ¼
M

M þ U þ 100
: ð2Þ

Thus, the 5hmC measure ΔβoxBS in (1) is just the difference of two methylation proportions

as derived from BS and oxBS treatment, respectively. This simple definition, while appearing

to be plausible at first, nevertheless leads to a number of ambiguities as discussed below.

The first ambiguity arising from (1) concerns the application of Δβ as a measure for the

identification of hydroxymethylated CpGs, and, in particular, its adequate interpretation as

such. Even if both components in the difference (1) do represent the respective methylation

proportions for BS and oxBS data, these proportions are evidently calculated on two different

bases: the proportion βBS represents the methylation proportion based on the global BS inten-

sity MBS + UBS, whereas the proportion βoxBS represents the methylation proportion based on

the global oxBS intensity MoxBS + UoxBS. Thus, a direct comparison of these two proportions is

difficult to justify and, as a result, the interpretation of Δβ as “a reflection of the 5hmC level at

each particular probe” suggested in [41] is not well founded.

Further, while identifying hydroxymethylated CpGs in the context of the screening step,

the outcomes of Δβ are interpreted as follows [41]: Positive values of Δβ are taken as an indica-

tor for a substantial 5hmC level and “represent potential sites of 5hmC”, whereas small values

of Δβ should indicate no or only nonsubstantial hydroxymethylation levels. Negative values of

Δβ are considered as resulting from background noise; for the 5hmC measure Δm, the same

view is shared in [42]. To analyze this interpretation, let us first refer to Fig 1. As the left-hand

panel of that figure shows, all ten simulated data points s1, s2, . . ., s10 satisfy both conditions

Mi
BS < Mi

oxBS and Ui
BS < Ui

oxBS; i ¼ 1; 2; . . . ; 10 ð3Þ

simultaneously which intuitively should be interpreted as “no substantial 5hmC level

observed”. Nevertheless, the condition Δβ> 0 holds for each of these ten data points as well;

see the right-hand panel of Fig 1 for an illustration.

Further, the left-hand panel of Fig 2 introduces another ten simulated data points s1, s2, . . .s10

that satisfy both

Mi
BS > Mi

oxBS and Ui
BS > Ui

oxBS; i ¼ 1; 2; . . . ; 10: ð4Þ

At the same time, the condition Δβ< 0 holds for each of s1, s2, . . .s10 as well; see the right-

hand panel of Fig 2 for an illustration. Thus, even though the data points s1, s2, . . .s10 in Fig 2
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actually appear to exhibit a substantial 5hmC level due to their BS intensities exceeding their

oxBS intensities, they will not be selected by the measure Δβ as being hydroxymethylated.

One of the main advantages of the measure β, which has definitely contributed to its com-

mon application as a methylation measure, is its intuitive interpretation as an approximation

Fig 1. On the interpretation of Δβ as a 5hmC measure in case with Δβ> 0. Negativity of the differences on the left-hand panel implies

that none of the data points s1, s2, . . .s10 shows any substantial 5hmC level, but, due to Δβ> 0, all these points will nevertheless be flagged

by Δβ as being hydroxymethylated.

https://doi.org/10.1371/journal.pone.0218103.g001

Fig 2. On the interpretation of Δβ as a 5hmC measure in case with Δβ< 0. Due to the positivity of the differences on the left-hand

panel, all ten data points s1, s2, . . ., s10 appear to exhibit a substantial level of 5hmC, whereas the right-hand panel shows negative Δβ
values.

https://doi.org/10.1371/journal.pone.0218103.g002

Statistical methods for classification of 5hmC levels under the paired BS and oxBS treatment

PLOS ONE | https://doi.org/10.1371/journal.pone.0218103 June 13, 2019 4 / 22

https://doi.org/10.1371/journal.pone.0218103.g001
https://doi.org/10.1371/journal.pone.0218103.g002
https://doi.org/10.1371/journal.pone.0218103


of the percentage of methylation [13]; thereby β = 0 indicates unmethylated probes and β = 1

denotes fully methylated probes. Unfortunately, this interpretation does not carry over to the

measure Δβ. Indeed, in (1) the condition Δβ = 0 solely implies

MBS

MoxBS
¼

UBS þ 100

UoxBS þ 100
ð5Þ

and it is unclear how this last equality should be interpreted in terms of the observed 5hmC

level. In particular, Fig 3 demonstrates that we can obtain Δβ = 0 in cases with “no substantial

5hmC level observed”, i.e., in cases where the conditions

Mi
BS < Mi

oxBS and Ui
BS < Ui

oxBS; i ¼ 1; 2; . . . ; 10 ð6Þ

hold. Similar results can be derived in cases with “a substantial 5hmC level observed”, i.e., in

cases with

Mi
BS > Mi

oxBS and Ui
BS > Ui

oxBS; i ¼ 1; 2; . . . ; 10: ð7Þ

Altogether, our analyses of the conditions Δβ> 0, Δβ = 0, and Δβ< 0 show that their inter-

pretations as indicators for substantial hydroxymethylation, no hydroxymethylation, and

background noise may become problematic in certain situations.

Another ambiguity arising from (1) is related to the choice of the number 100 in the

denominators MBS + UBS + 100 and MoxBS + UoxBS + 100 of the expression (1) for Δβ. This

choice seems to stem from the practical convention in the definition of β values [13], and just

being transferred at the definition of Δβ [31, 41]. As a matter of fact, there is no strong reason

why the correction term 100 in the denominator of (2) should not be replaced with any other

value α> 0. In fact, such replacement would lead to the following more general definition of

Fig 3. On the interpretation of Δβ as a 5hmC measure in case with Δβ = 0. Negativity of the differences on the left-hand panel implies

that none of the data points should show any substantial 5hmC level.

https://doi.org/10.1371/journal.pone.0218103.g003
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the methylation proportion

bðaÞ ¼
M

M þ U þ a
; with a > 0: ð8Þ

While one can safely argue that the actual choice of the parameter α is not crucial for the

interpretation of the methylation proportion β(α) itself [13], this choice may become critical

when using the sign of the measure

DbðaÞ ¼ bBSðaÞ � boxBSðaÞ ¼
MBS

MBS þ UBS þ a
�

MoxBS

MoxBS þ UoxBS þ a
; ð9Þ

as an indicator for hydroxymethylation in the screening step. In particular, under certain con-

ditions, the sign of Δβ(α) can change from positive to negative or vice versa as α varies; see the

left-hand panel of Fig 4 as well as Fig A in S1 Appendix for an illustration.

Further, Fig 5 shows changes in the density of Δβ(α) as well as the percentage of CpGs (for

each given sample) where Δβ(α) may change its sign as α increases.

In view of such dependence of Δβ(α) on the choice of α, a question concerning the possible

impact of this choice on the percentage of CpGs satisfying the condition Δβ(α) > 0 and thus

identified as being hydroxymethylated at the end of the screening step arises.

Alternative 5hmC measures

One of the limitations of the 5hmC measure Δβ(α) we discussed in the previous section con-

cerns its interpretation and robustness with respect to the choice of the correction term α. To

Fig 4. Sign change and convergence of the 5hmC measure Δβ(α). The left-hand panel: Δβ(α) changing its sign from positive to

negative (the dark blue curve, healthy tissue) and from negative to positive (the dark red dotted curve, cancer tissue) as α increases.

The result refers to a given CpG (cg00050873) and sample (sample 7). The right-hand panel: Convergence of Δβ(α) for healthy tissue,

a given sample (sample 7) and three CpGs (cg00050873, cg05480730, cg10698069).

https://doi.org/10.1371/journal.pone.0218103.g004
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overcome this limitation, we now introduce two alternative measures which can be used in the

screening procedure while indicating CpGs with a substantial level of 5hmC; the basic proper-

ties of these measures are discussed in S2 Appendix.

We start our analysis by considering the behavior of Δβ(α) (and also Δm(α) as discussed in

S2 Appendix) for increasing values of α. As follows from (9), Δβ(α) vanishes as α increases; see

the right-hand panel of Fig 4 for an illustration. This convergence result is also transferable to

Δm(α), with the only difference that in case of Δβ(α) the limit will always be zero, indepen-

dently of the CpGs, sample, and the tissue chosen, whereas in case of Δm(α) the limit depends

on the CpG, sample, and tissue under consideration.

The convergence results for Δβ(α) and Δm(α) imply that the percentage of CpGs satisfying

the condition Δβ(α) > 0 and Δm(α) > 0 for a given sample, respectively, approaches a positive

constant as α increases. Standard computations verify this limit value to be just the percentage

of CpGs satisfying MBS>MoxBS for a given sample; see S2 Appendix for details.

Inspired by the convergence results obtained for the measures Δβ(α) and Δm(α), we next

propose

Dm1 ¼ log 2

MBS

MoxBS
ð¼ lim

a"1
DmðaÞÞ ð10Þ

as the first alternative 5hmC measure that can be used for the detection of hydroxymethy-

lated CpGs. Note that Δm1 is well-defined for all CpGs satisfying MBS> 0 and MoxBS> 0

simultaneously.

Fig 5. Density of Δβ(α) and the percentage of CpGs, where Δβ(α) may change its sign for varying values of α. The left-hand panel:

Density of Δβ(α), for a given CpG (cg00213748) and α = 0, 100, 500 and 2000 (the red, the dark blue, the blue and the dark green curves,

respectively). The right-hand panel: The percentage of CpGs, where Δβ(α) may change its sign for varying values of α. All results were

computed on cancer tissue and across all 38 samples.

https://doi.org/10.1371/journal.pone.0218103.g005
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The main advantage of the measure Δm1 in comparison to the measures Δβ(α) and Δm(α)

is its complete independence of the correction term α; this fact makes Δm1more robust for

application in the screening step. Furthermore, the sign of Δm1 has a very intuitive interpreta-

tion. Indeed, we get Δm1> 0 if MBS>MoxBS holds, i.e., if the global methylated intensity MBS

exceeds the “adjusted” methylated intensity MoxBS. In all other cases we will have Δm1� 0; for

instance, Δm1 = 0 implies MBS = MoxBS, which can intuitively be interpreted as “no substantial

5hmC level observed”.

In the context of our screening procedure, the most crucial question concerns a relation

between the subsets of CpGs satisfying Δm(α) > 0 and Δm1> 0, respectively. To answer this

question in a formal way, we divided the set of all CpGs with Δm(α)> 0 in several disjoint sub-

sets, and showed that, for a given sample and increasing α, the union of these subsets con-

verges to the subset of CpGs satisfying MBS>MoxBS; see S2 Appendix for more details.

Due to its definition, Δm1 does not take into account the unmethylated intensities UBS and

UoxBS. This may become an issue even if the role of these intensities in the detection of hydro-

xymethylated CpGs has not been clarified yet. We address this issue by proposing another

measure for selecting CpGs with a substantial level of hydroxymethylation, namely,

Dh ¼ 1 �
MoxBS þ UoxBS

MBS þ UBS
: ð11Þ

In (11), MBS + UBS is the global intensity obtained from the BS procedure and MoxBS +

UoxBS is the global intensity derived by means of the oxBS procedure.

For CpGs with MBS + UBS exceeding MoxBS + UoxBS, i.e., for those CpGs which can be intui-

tively interpreted as exhibiting a substantial level of hydroxymethylation, the measure Δh must

range between 0 and 1. In particular, the values of Δh close to zero correspond to MBS + UBS

being approximately equal to MoxBS + UoxBS and thus the global 5hmC level being (almost)

negligible. On the other hand, for Δh approximately equal to one we deduce that MoxBS +

UoxBS must be substantially smaller than MBS + UBS and thus the global 5hmC level has to be

high. Altogether, larger values of Δh correspond to larger proportions of the global 5hmC lev-

els and we can interpret Δh as the proportion of 5hmC in the global methylation.

Our intuition in the interpretation of the values of Δh is based on the assumption that a sub-

stantial 5hmC level is associated with a substantial decrease in the overall intensities M + U,

with MBS + UBS>MoxBS + UoxBS for a given CpG site. Such interpretation is induced by the

fact that, in contrast to the methylation process, a role of the unmethylated intensities U in the

hydroxymethylation process is unclear. Thus, negative values of Δh are currently treated as a

measurement error. Note that in (11) one has to assume that MBS + UBS is different from zero;

in other words, all CpGs with MBS + UBS equal to zero have to be excluded from the analysis as

exhibiting measurement error.

In view of the screening procedure, we also analyzed whether positive values of the measure

Δh lead to positivity of other 5hmC measures introduced above, and vice versa. As (11)

implies, the inequality Δh> 0 holds for

MBS þ UBS > MoxBS þ UoxBS: ð12Þ

However, the latter inequality is not sufficient to make a statement about the sign of the

measures Δβ(α) and Δm1, so that additional assumptions are needed; see S2 Appendix for

details.

Altogether, our discussion indicates that the application of Δh for the detection of hydroxy-

methylated CpGs can be of advantage, since this 5hmC measure overcomes the limitation of

both 5hmC measures considered earlier. In particular, this measure does not depend on the
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choice of the correction term α, has an intuitive interpretation of its outcomes in terms of the

observed 5hmC level, and can be computed directly from measured array data.

Materials and methods

Numerical analyses of the resemblance of Δβ(α), Δm1 and Δh
In the previous sections we considered three 5hmC measures, Δβ(α), Δm1 and Δh, as possible

tools for the classification of CpGs into hydroxymethylated and those which do not exhibit a

substantial level of hydroxymethylation. To estimate a possible classification error, one would

usually compare each of these 5hmC measures with a certain gold standard. However, no gold

standard is available in our case, since even the actual meaning of the formulations “a substan-

tial 5hmC level observed” or “no substantial 5hmC level observed” in terms of measured meth-

ylated and unmethylated intensities M and U is unclear so far. One of possible ways to evaluate

the accuracy of Δβ(α), Δm1 and Δh in the absence of a gold standard, as proposed in this sec-

tion, is to describe this accuracy in terms of relative sensitivities and specificities of these mea-

sures with respect to each other. On the other hand, the resemblance of the considered 5hmC

measures with respect to each other can also be addressed by means of a similarity analysis.

Numerical analyses of the present section were motivated by the discussions presented in

[24, 43–48].

Study cohort, 5hmC isolation, data preprocessing

All analyses were performed on 38 paired samples, with both (colorectal) cancer and normal

tissue available for each sample. All 38 patients were enrolled in the ongoing population-based

case-control study DACHS (Darmkrebs: Chancen der Verhütung durch Screening, http://

dachs.dkfz.org/dachs/), extensively described in [49]. Data collecting and patient recruitment

procedures as well as the processes of DNA isolation and methylation profiling using the Infi-

nium HumanMethylation450 BeadChip array (Illumina) are similar to those described in [50].

All data are publicly available at https://zenodo.org/record/2639285#.XLYzNKZS_XE.

All data analyses were performed using the computational environment R, V.3.5.2 (http://

www.r-project.org/). Raw data signals from each of the BS- and oxBS- converted samples were

preprocessed using the R/Bioconductor minfi-package [51]. In particular, the procedure pre-
processRaw from that package was applied in order to convert the red/green channel for an

Illumina methylation array into methylation signal.

Results

Prevalence of positive results

We applied all three considered 5hmC measures to both healthy and cancer tissue and com-

puted the percentage of CpGs satisfying Δβ(100) > 0, Δm1> 0 and Δh> 0 for each given

sample; Fig 6 illustrates the obtained results. Note that such prevalence of positive results is cru-

cial in the screening procedure and represents the most intuitive approach for the comparison

of any two 5hmC measures. Dependence of the prevalence of positive results of the measure

Δβ(α) on the choice of α is discussed in S1 Appendix.

Further, we adopted the statement in [24] on a reduction of 5hmC levels in cancer tissue to

the prevalence of positive results, by expecting this prevalence to be higher in healthy tissue

compared to cancer one. In a sample-wise analysis, this anticipation was indeed confirmed for

the 5hmC measure Δβ(100), but not for the measures Δm1 and Δh.

The same analysis, performed CpG-wise, i.e., with prevalence of positive results computed

for each single CpG across all 38 samples that provides the hydroxymethylation level for each
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given CpG, again showed a significant reduction in 5hmC levels as obtained on cancer tissue,

in particular for the measures Δβ(100) and Δm1. Contrary to our expectations, for the mea-

sure Δh, prevalence of positive results was significantly lower in healthy tissue compared to

cancer one.

Next, we compared prevalences of positive results of any two 5hmC measure on a given tis-

sue, in order to investigate the conservativeness of these measures when screening for hydroxy-

methylated CpGs. This analysis, performed sample-wise, resulted in the 5hmC measure Δm1

being less conservative than Δh on healthy tissue and less conservative than Δβ(100) on cancer

tissue; see Fig 6 for an illustration. The same analysis, performed CpG-wise, determined Δm1 as

being the least conservative 5hmC measure, on both considered tissues. Further, on healthy tis-

sue Δβ(100) appeared to be less conservative than Δh, whereas on cancer tissue, Δh was less con-

servative than Δβ(100). This result can be interpreted as an evidence of the tissue effect [41, 52].

We also analyzed the joint prevalence of positive results defined as the percentage of CpGs

with any two 5hmC measures being positive; such joint prevalence characterizes the agreement
between any two 5hmC measures in the context of the screening step. Sample-wise analysis

did not reveal any significant differences in these joint prevalences as calculated on healthy

and cancer tissue. On the other hand, the joint prevalence of the measures Δβ(100) and Δm1

appeared to exceed the joint prevalence of Δβ(100) and Δh significantly, on both considered

tissues. The same result, again for both tissues, holds for the joint prevalences of the measures

Δm1 and Δh as well as of the measures Δβ(100) and Δh. Finally, on cancer tissue, the joint

prevalence of the measures Δβ(100) and Δm1 significantly exceeded the joint prevalence of

the measures Δm1 and Δh. In total, we conclude that, in a sample-wise analysis performed on

cancer tissue, the 5hmC measures Δβ(100) and Δm1 demonstrate the strongest agreement,

followed by agreement between the measures Δm1 and Δh.

Fig 6. Sample-wise prevalence of positive results. The dark blue dots correspond to the percentage of CpGs with Δβ(100)> 0, the dark

red dots to Δm1> 0 and the grey dots to Δh> 0.

https://doi.org/10.1371/journal.pone.0218103.g006
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The same joint prevalence analysis, performed CpG-wise, revealed the joint prevalence of

the measures Δβ(100) and Δm1 on healthy tissue being significantly higher than the corre-

sponding joint prevalence on cancer tissue; similar result is true for the joint prevalence of the

measures Δβ(100) and Δh. As in case of a sample-wise analysis, the joint prevalence of the mea-

sures Δβ(100) and Δm1 significantly exceeded the joint prevalence of Δβ(100) and Δh, both on

healthy and cancer tissue; the same relation is true for the joint prevalences of the measures

Δm1 and Δh and of the measures Δβ(100) and Δh. On the other hand, in contrast to the results

of the sample-wise analysis above, the joint prevalence of the measures Δβ(100) and Δm1 is

significantly lower than the joint prevalence of the measures Δm1 and Δh, both on healthy

and cancer tissue. Altogether, the CpG-wise analysis showed the highest agreement between

the measures Δm1 and Δh, followed by the agreement between the measures Δβ(100) and

Δm1; the 5hmC measures Δβ(100) and Δh demonstrated the lowest pairwise agreement, con-

sistent with the results of the sample-wise analysis. Sample-wise joint prevalence of positive

results is visualized in Fig 7. Joint agreement between all three 5hmC measures is illustrated in

Fig 8; for more results see also Figs A and B in S3 Appendix.

To summarize the results of our discussion above, we state that the 5hmC measure Δβ(100)

demonstrates a higher agreement with Δm1 than with Δh. Moreover, the agreement between

the measures Δm1 and Δh exceeds the agreement between Δβ(100) and Δh.

Similarity analyses

In order to address the resemblance of the proposed 5hmC measures without making any

statement about their performance, similarity analyses can also be applied; the main tool of

Fig 7. Sample-wise joint prevalence of positive results. Orange squares correspond to the values for Δβ(100) and Δh, dark green circles to the values

for Δβ(100) and Δm1 and brown squares to the values for Δh and Δm1.

https://doi.org/10.1371/journal.pone.0218103.g007
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such analyses is a similarity coefficient. There is a variety of similarity coefficients proposed in

literature. For an overview see, e.g., [53–56] and references therein.

In order to quantify the pairwise similarity of the proposed 5hmC measures Δβ(α), Δm1,

and Δh in the context of the screening step, we first considered the similarity coefficient S, also

known as the simple matching coefficient [53, 54]. In particular, for a given CpG and two given

5hmC measures x1 and x2 we rewrite this similarity coefficient as

Sðx1; x2Þ ¼
1

n

Xn

i¼1

Ifxi
1
>0gIfxi

2
>0g þ

Xn

i¼1

Ifxi
1
�0gIfxi

2
�0g

 !

: ð13Þ

Here n is the number of samples under consideration, I{x>0} is the indicator function, with

I{x>0} = 1 for x> 0 and I{x>0} = 0 otherwise, and xi
j is the value of the measure xj(j = 1, 2) in the

ith CpG. Clearly, the similarity coefficient S in (13) ranges between 0 and 1, with 1 correspond-

ing to complete similarity and 0 to complete dissimilarity between the considered two measures

x1 and x2. Moreover, the similarity coefficient S represents an extension of the prevalence of

positive results introduced earlier, since it considers not only the CpG sites that were flagged

as hydroxymethylated but also those CpG sites that were identified as non-hydroxymethylated

by two considered 5hmC measures.

While performing the similarity analysis for each given sample, we could not state any sig-

nificant difference in the values of S as computed on healthy and cancer tissue. Further, the

5hmC measures Δm1 and Δh appears to be the most similar, whereas the measures Δh and Δβ
(100) are the least similar, both on healthy and cancer tissue. Finally, the 5hmC measure Δβ
(100) is less similar to Δh than to Δm1, both on healthy and cancer tissue. All these results are

visualized in Fig 9.

To describe the distribution of S for any two given 5hmC measures, we adapted the ideas of

[56, 57] and calculated the expected value of this similarity coefficient. The results of those cal-

culations are presented in the left-hand panel of Table 1. Due to that table, on cancer tissue the

measures Δm1 and Δh are again the most similar 5hmC measures; further, Δβ(100) and Δh
are the least similar to each other, both on healthy and cancer tissue.

Fig 8. The number of substantially hydroxymethylated CpGs as identified by all three 5hmC measures. The number of

substantially hydroxymethylated CpGs as identified by all three 5hmC measures, on healthy (the left-hand panel) and cancer (the

right-hand panels) tissues and across all 38 samples. A CpG site is considered to be substantially hydroxymethylated under a given

5hmC measure x, if at least 75% of all values of x computed for this CpG and across all 38 samples are positive.

https://doi.org/10.1371/journal.pone.0218103.g008
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The similarity coefficient S in (13) exhibits a number of advantages such as simple applica-

bility and intuitive interpretation of the obtained values. However, there are also some issues

related to this coefficient. One of these issues arises in situations with two 5hmC measures x1

and x2 characterized by

Xn

i¼1

Ifxi
1
>0gIfxi

2
>0g ¼ 0: ð14Þ

For such 5hmC measures, which should actually be considered as completely dissimilar in

the context of 5hmC detection, there is still a real possibility to get a positive value of the coeffi-

cient S as

Sðx1; x2Þ ¼
1

n

Xn

i¼1

Ifxi
1
�0gIfxi

2
�0g ð15Þ

Fig 9. Pairwise similarity of the 5hmC measures Δβ(100), Δm1 and Δh, in terms of the similarity coefficient S. Orange

rectangles correspond to the values of SðDbð100Þ;DhÞ, dark green dots to the values of SðDbð100Þ;Dm1Þ and brown rectangles to

the values of SðDh;Dm1Þ.

https://doi.org/10.1371/journal.pone.0218103.g009

Table 1. Expected values of the similarity coefficients S and SH .

E½Sð:; :Þ� E½SHð:; :Þ�
5hmC measures healthy tissue cancer tissue healthy tissue cancer tissue

Δβ(100), Δh 0.7946 0.7897 0.5892 0.5794

Δβ(100), Δm1 0.8052 0.8016 0.6104 0.6032

Δm1, Δh 0.8021 0.8060 0.6042 0.6120

Expected values of the similarity coefficients S and SH as applied for the pairwise comparison of the 5hmC measures Δβ(100), Δm1 and Δh.

https://doi.org/10.1371/journal.pone.0218103.t001
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which may indeed become misleading in the context of the screening step. This situation will

even deteriorate for
Pn

i¼1
Ifxi

1
�0gIfxi

2
�0g ! n:

To mitigate this issue, we consider the similarity coefficient of Hamann, SH; defined as

SHðx1; x2Þ ¼
1
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Clearly, SH is just a transformation of the simple matching coefficient S [53] that incorpo-

rates a correction for possible mismatches between the considered 5hmC measures x1 and x2.

While ranging in the interval [−1, 1], SHðx1; x2Þ ¼ � 1 can be interpreted as complete dissimi-
larity and SHðx1; x2Þ ¼ 1 as complete similarity between x1 and x2. Further, due to (13) and

(16), SHðx1; x2Þ � Sðx1; x2Þ for any two measures x1 and x2.

As in case with S, we calculated the expected value of SH for any two given 5hmC measures;

the results are presented in the right-hand panel of Table 1. As expected, this table shows the

similarity coefficient SH confirming the results obtained under S, e.g., with the 5hmC measures

Δm1 and Δh being most similar to each other on cancer tissue.

Altogether, we state that among three considered 5hmC measures Δβ(α), Δm1 and Δh, the

measures Δm1 and Δh appear to be most similar to each other on cancer tissue, both in terms

of S and SH . Further, as in case of the prevalence of positive results analysis, the measure Δm1

is more similar to Δβ(α) than the measure Δh is.

Relative accuracy analyses

A different aproach for addressing the pairwise resemblance of the proposed 5hmC measures

is to consider their relative sensitivities SEr, specificities SPr and false discovery rates FDRr.

Here, for any two 5hmC measures x1 and x2, we set SErðx1 j x2Þ ¼ Pðx1 > 0 j x2 > 0Þ as the rel-

ative sensitivity of x1 with respect to x2, SPrðx1 j x2Þ ¼ Pðx1 � 0 j x2 � 0Þ as the relative speci-

ficity of x1 with respect to x2 and

FDRrðx1 j x2Þ ¼ 1 �
Pðx1 > 0; x2 > 0Þ

Pðx1 > 0Þ
¼ 1 � SErðx2 j x1Þ ð17Þ

as the relative false discovery rate. The quantities SEr and SPr are also known as co-positivities
and co-negativities, respectively [58, 59].

We started our data analyses on relative accuracies by checking for a significant difference

in relative sensitivities as computed on healthy and cancer tissue. In a sample-wise analysis,

such difference was observed for the relative sensitivities SEr(Δβ(100)|Δh) and SEr(Δβ(100)|

Δm1), with the relative sensitivity on healthy tissue exceeding the corresponding relative sen-

sitivity on cancer tissue. The same analysis, performed CpG-wise, showed all relative sensitivi-

ties differentiating significantly between healthy and cancer tissue.

Further, in a sample-wise analysis, performed on healthy tissue, the 5hmC measure Δm1

demonstrated a higher sensitivity with respect to Δh than Δh did with respect to Δm1. This is

consistent with our results on prevalence of positive results, with the measure Δm1 being less

conservative than Δh on healthy tissue. Further, there was a trend for a significant increase in

the relative sensitivity SEr(Δm1|Δβ(100)) compared to the relative sensitivity SEr(Δβ(100)|

Δm1) on cancer tissue. This is also related to our result on prevalence of positive results, with

the measure Δm1 being less conservative than Δβ(100) on cancer tissue.

Statistical methods for classification of 5hmC levels under the paired BS and oxBS treatment

PLOS ONE | https://doi.org/10.1371/journal.pone.0218103 June 13, 2019 14 / 22

https://doi.org/10.1371/journal.pone.0218103


A CpG-wise analysis of relative sensitivities revealed, the 5hmC measure Δβ(100) showing a

lower sensitivity with respect to the measure Δh than the other way around, on cancer tissue.

This result changed to the opposite on healthy tissue. Further, the measure Δm1 showed a

higher sensitivity with respect to the measure Δβ(100) than Δβ(100) did with respect to Δm1,

both on healthy and cancer tissue. Analogous result was true for the measures Δm1 and Δh,

with SEr(Δm1|Δh) exceeding SEr(Δh|Δm1), both on healthy and cancer tissue.

While analyzed sample-wise for its relative specificity, the measure Δβ(100) demonstrated a

significantly lower specificity with respect to Δh on healthy tissue than on cancer tissue; similar

result holds for relative specificity of the measure Δm1 with respect to the measure Δh. The

same analysis, performed CpG-wise, showed all relative specificities differentiating signifi-

cantly between healthy and cancer tissue. Further, the 5hmC measure Δβ(100) demonstrated a

higher specificity with respect to the measure Δm1 than Δm1 did with respect to Δβ(100),

both on healthy and cancer tissue, with the difference being more substantial on cancer tissue.

This is again in correspondence with the measure Δm1 being less conservative than Δβ(100),

in particular on cancer tissue.

In a CpG-wise analysis, on healthy tissue the measure Δβ(100) demonstrated a significantly

lower specificity with respect to the measure Δh than Δh did with respect to Δβ(100); this result

changes to the opposite while considering the same relative specificities on cancer tissue. Fur-

ther, the measure Δm1 showed a lower specificity with respect to Δβ(100) than Δβ(100) did

with respect to Δm1, on both considered tissues; similar result is true for the measures Δm1

and Δh.

Due to its definition, the results on relative false discovery rates FDRr can be immediately

derived from the corresponding results on SEr. For instance, one can show that the measure

Δh has a higher false discovery rate with respect to Δβ(100) than Δm1, both on healthy and

cancer tissue.

We also computed expected relative sensitivities, specificities and false discovery rates of

each 5hmC measure with respect to two others; the results are presented in Tables 2–4 below.

Altogether, due to our relative accuracy analyses, the measure Δm1 again demonstrates

more resemblance with Δβ(100) than the measure Δh, both on healthy and cancer tissue.

Comparison of Δβ(α), Δh and Δm1 to the oxBS-MLE and OxyBS

procedures in the context of a screening step

When detecting CpGs with a substantial 5hmC level, one may compare the results provided by

each of the considered three 5hmC measures Δβ(α), Δh and Δm1 with those derived from the

oxBS-MLE and OxyBS procedures introduced in [44, 47]. When applied in a screening step,

both oxBS-MLE and OxyBS procedures will flag the same cytosines as being

Table 2. Expected relative sensitivities E½SErðx1 j x2Þ�.

healthy tissue cancer tissue

E½SEr� Δm1 Δβ(100) Δh Δm1 Δβ(100) Δh

Δm1 1.0 0.7739 0.8624 1.0 0.7827 0.8383

Δβ(100) 0.7456 1.0 0.5938 0.7133 1.0 0.5549

Δh 0.7940 0.5613 1.0 0.8199 0.5906 1.0

Expected relative sensitivities E½SErðx1 j x2Þ�, computed for any two 5hmC measures x1, x2 2 {Δβ(100), Δm1, Δh}. The measure x1 is in rows and x2 is in columns; e.g.,

the value 0.7456 corresponds to the expected relative sensitivity E½SErðDbð100Þ jDm1Þ� and the value 0.7739 to the expected relative sensitivity E½SErðDm1 jDbð100ÞÞ�,

both on healthy tissue. Since larger values in the table describe a higher relative sensitivity, our results in the table above indicate the measures Δh and Δm1

demonstrating the highest resemblance. At the same time, the measures Δβ(100) and Δh appear to be least similar to each other.

https://doi.org/10.1371/journal.pone.0218103.t002
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hydroxymethylated as the 5hmC measure Δβ(0) will do. This results follows immediately from

the problem formulations and the derivation of the MLEs as suggested by both procedures; see

S4 Appendix for details. Thus, the comparison of the 5hmC measures Δm1 and Δh with the

oxBS-MLE and OxyBS procedures in detection of hydroxymethylated cytosines can be traced

back to the comparison of these measures with the measure Δβ(0).

Conclusion

Presently, the measure most commonly used for the detection of hydroxymethylated CpGs is

the measure Δβ(α) and its derivatives as introduced in [31, 41, 42]. Well-established due to its

easy computation and alleged intuitivity, this 5hmC measure nevertheless exhibits a number

of limitations and has already been criticized due to its interpretation. This interpretation has

meanwhile been questioned in [44], where the authors discussed the “naive” estimation of the

5hmC level via the difference of two β values as proposed in [31, 41] and introduced a model

for describing the 5mC and 5hmC proportions by means of maximum likelihood estimation

and beta-distributed random variables. Such modeling disallows negative proportions in par-

ticular; the corresponding model was also implemented in the R-package OxyBS [44].

In this paper, we performed a detailed analysis of Δβ(α), both analytically and empirically,

and discussed a number of limitations of Δβ(α) which could make its practical applicability for

screening of hydroxymethylated CpGs questionable. These limitations concern in particular

the interpretation of Δβ(α) and its robustness with respect to the choice of α.

Further, we proposed two alternative 5hmC measures which can be applied in the screening

step. The first of these 5hmC measures is the measure Δm1. While intuitively interpretable

and independent of the correction term α, this measure does not incorporates the unmethy-

lated intensities UBS and UoxBS. Even though the role of these intensities in detection of the

Table 4. Expected relative false discovery rates E½FDRrðx1 j x2Þ�.

healthy tissue cancer tissue

E½FDRr � Δm1 Δβ(100) Δh Δm1 Δβ(100) Δh

Δm1 0.0 0.2544 0.2060 0.0 0.2867 0.1801

Δβ(100) 0.2261 0.0 0.4387 0.2173 0.0 0.4094

Δh 0.1376 0.4062 0.0 0.1617 0.4451 0.0

Expected relative false discovery rate E½FDRrðx1 j x2Þ�, computed for any two 5hmC measures x1, x2 2 {Δβ(100), Δm1, Δh}. The measure x1 is in rows and x2 is in

columns; e.g., the value 0.2261 corresponds to the expected relative false discovery rate E½FDRrðDbð100Þ jDm1Þ� and the value 0.2544 to E½FDRrðDm1 jDbð100ÞÞ�, both

on healthy tissue. Altogether, the measure Δm1 demonstrates a lower false discovery rate with respect to Δβ(100) than Δh.

https://doi.org/10.1371/journal.pone.0218103.t004

Table 3. Expected relative specificities E½SPrðx1 j x2Þ�.

healthy tissue cancer tissue

E½SPr � Δm1 Δβ(100) Δh Δm1 Δβ(100) Δh

Δm1 1.0 0.5698 0.6844 1.0 0.5669 0.7112

Δβ(100) 0.5982 1.0 0.3473 0.6455 1.0 0.3834

Δh 0.7890 0.3788 1.0 0.7422 0.3529 1.0

Expected relative specificities E½SPrðx1 j x2Þ�, computed for any two 5hmC measures x1, x2 2 {Δβ(100), Δm1, Δh}. The measure x1 is in rows and x2 is in columns; e.g.,

the value 0.5982 corresponds to the expected relative specificity E½SPrðDbð100Þ jDm1Þ� and the value 0.5698 to the expected relative specificity E½SPrðDm1 jDbð100ÞÞ�,

both on healthy tissue. As in Table 2, larger values correspond to a higher relative specificity, and thus Δβ(100) and Δm1 demonstrate a higher resemblance than Δβ
(100) and Δh.

https://doi.org/10.1371/journal.pone.0218103.t003
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5hmC levels has not been clarified yet, we took this fact into account and suggested the second

alternative 5hmC measure, Δh. Due to its definition, this measure does not depend on the

choice of α, has an intuitive interpretation in detecting hydroxymethylated CpGs, takes into

account all intensities, and can be computed directly from the observed data.

The main challenge to be handled in our analysis referred to a mutual comparison of the

considered 5hmC measures in the absence of a gold standard, as no biological or biochemical

criterion for a CpG to be considered as “hydroxymethylated”, e.g., in terms of methylated

and non-methylated intensities M and U, is available so far. To overcome this challenge

and to be able to address resemblance of the proposed 5hmC measures in the context of the

screening step, we first analyzed the prevalences of positive results for each single 5hmC

measure. Here, we first observed a decrease in this prevalence, while moving from healthy

to cancer tissue, for the measures Δβ(α) and Δm1. This result is also in accordance with the

observation on a depletion of 5hmC levels in tumors compared to corresponding normal

tissue as stated, e.g., in [24, 45, 60]. Moreover, the measure Δm1 appears to be the measure

with the largest prevalence of positive results, both on healthy and cancer tissue. In addition,

data-based analysis of the joint prevalence of positive results revealed the strongest agree-

ment between the measures Δm1 and Δh, followed by the agreement between the measures

Δβ(100) and Δm1; the 5hmC measures Δβ(100) and Δh demonstrated the lowest pairwise

agreement. In other words, a stronger resemblance between the measures Δβ(α) and Δm1

than between the measures Δβ(α) and Δh was observed so far. This result was also confirmed

in the context of a similarity analysis as performed for a pairwise comparison of the proposed

5hmC measures.

In order to estimate relative accuracies of Δβ(100), Δm1, and Δh with respect to each other,

we also used relative sensitivity and specificity analyses. As a result of those analyses, the mea-

sure Δm1 demonstrated a higher sensitivity and a lower specificity with respect to Δβ(100)

than vice versa; the same result holds for the measures Δm1 and Δh. Moreover, we observed

that the measure Δh has a higher false discovery rate with respect to Δβ(100) than Δm1.

Altogether, we concluded, that, in the context of the screening step, the 5hmC measure Δm1

exhibits more resemblance with the measure Δβ(α) than Δh does and thus this measure would

be the first choice if looking for a possible substitute for Δβ(α) with another 5hmC measure in

the screening procedure.

Our numerical analyses are based on raw data, with no normalization method applied.

There are a variety of reasons for this. First, some of our results (such as the convergence result

for Δβ(α)) were derived analytically and thus do not depend on the data used for their illustra-

tion. Second, there is no consistent normalization method to be applied when quantifying the

5hmC levels [42, 44]. Third, a possible impact of a particular normalization method on the

results of the 5hmC classification is currently not obvious to us and can in fact be considered

as a topic of future research.

Nevertheless, we did check our results on the data normalized by three different normaliza-

tion methods, funNorm, SWAN and Illumina, as available in the R-package minfi [51]; for

more details see S5 Appendix. As a consequence of such normalized data analyses, we do

observe some differences to our results as obtained on raw data. However, there is no evidence

that such differences have any biological meaning and are not just a product of the normaliza-

tion method applied. For instance, in some cases we observe a reduction in the prevalence of

positive results of a given 5hmC measure as calculated on normalized data compared to raw

data. On the other hand, a reduction in the 5hmC levels on cancer tissue as observed in terms

of the measure Δβ(100) is confirmed for all three normalized data sets as well. The same is

true for the measure Δm1 being less conservative than Δh on healthy tissue. Further, the mea-

sures Δm1 and Δh are the ones that are most similar to each other (in terms of the similarity
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coefficient S) followed by the measures Δβ(100) and Δm1, both on raw and normalized data;

this result holds both for healthy and cancer tissue.

There are also differences in results on detection of the hydroxymethylated CpGs provided

by different normalization procedures. For instance, on cancer tissue, the measure Δβ(100)

shows a significant reduction in the prevalence of positive results calculated on the Illumina
data compared to the prevalence computed on the funNorm data. Further, both on healthy

and cancer tissue, the measures Δβ(100) and Δm1 demonstrate the strongest similarity (in

terms of the similarity coefficient S) on the funNorm normalized data, followed by the SWAN
normalized data; the similarity between Δβ(100) and Δm1 on the Illumina normalized data is

the lowest one.

In the present paper we discussed the possible applicability of the considered 5hmC mea-

sures for detection of hydroxymethylated CpGs in the screening procedure. The immediate

question arising in this context is the question about the applicability of these measures for

the quantification of the observed 5hmC levels, similar to the applicability of β values used for

quantification of the methylation levels. Even if the measure Δh appears to provide the most

intuitive interpretation in contrast to the remaining two 5hmC measures, this question is still a

topic of future research.
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6. Pries LK, Gülöksüz S, Kenis G. DNA methylation in schizophrenia. In: Neuroepigenomics in Aging and

Disease. Springer; 2017. p. 211–236.

7. Xu X, Gammon MD, Hernandez-Vargas H, Herceg Z, Wetmur JG, Teitelbaum SL, et al. DNA methyla-

tion in peripheral blood measured by LUMA is associated with breast cancer in a population-based

study. The FASEB Journal. 2012; 26(6):2657–2666. https://doi.org/10.1096/fj.11-197251 PMID:

22371529

8. Bibikova M, Barnes B, Tsan C, Ho V, Klotzle B, Le JM, et al. High density DNA methylation array with

single CpG site resolution. Genomics. 2011; 98(4):288–295. https://doi.org/10.1016/j.ygeno.2011.07.

007 PMID: 21839163

9. Dedeurwaerder S, Defrance M, Calonne E, Denis H, Sotiriou C, Fuks F. Evaluation of the Infinium Meth-

ylation 450K technology. Epigenomics. 2011; 3(6):771–784. https://doi.org/10.2217/epi.11.105 PMID:

22126295

10. Dedeurwaerder S, Defrance M, Bizet M, Calonne E, Bontempi G, Fuks F. A comprehensive overview of

Infinium HumanMethylation450 data processing. Briefings in bioinformatics. 2013; 15(6):929–941.

https://doi.org/10.1093/bib/bbt054 PMID: 23990268

11. Fan S, Huang K, Ai R, Wang M, Wang W. Predicting CpG methylation levels by integrating Infinium

HumanMethylation450 BeadChip array data. Genomics. 2016; 107(4):132–137. https://doi.org/10.

1016/j.ygeno.2016.02.005 PMID: 26921858

12. Li D, Xie Z, Le Pape M, Dye T. An evaluation of statistical methods for DNA methylation microarray data

analysis. BMC bioinformatics. 2015; 16(1):217. https://doi.org/10.1186/s12859-015-0641-x PMID:

26156501

13. Du P, Zhang X, Huang CC, Jafari N, Kibbe WA, Hou L, et al. Comparison of Beta-value and M-value

methods for quantifying methylation levels by microarray analysis. BMC bioinformatics. 2010; 11

(1):587. https://doi.org/10.1186/1471-2105-11-587 PMID: 21118553

14. Stevens M, Cheng JB, Li D, Xie M, Hong C, Maire CL, et al. Estimating absolute methylation levels at

single-CpG resolution from methylation enrichment and restriction enzyme sequencing methods.

Genome research. 2013; 23(9):1541–1553. https://doi.org/10.1101/gr.152231.112 PMID: 23804401

15. Triche TJ, Jr, Weisenberger DJ, Van Den Berg D, Laird PW, Siegmund KD. Low-level processing of Illu-

mina Infinium DNA methylation beadarrays. Nucleic acids research. 2013; 41(7):e90–e90. https://doi.

org/10.1093/nar/gkt090

16. Godderis L, Schouteden C, Tabish A, Poels K, Hoet P, Baccarelli AA, et al. Global methylation and

hydroxymethylation in DNA from blood and saliva in healthy volunteers. BioMed research international.

2015; 2015. https://doi.org/10.1155/2015/845041 PMID: 26090450

Statistical methods for classification of 5hmC levels under the paired BS and oxBS treatment

PLOS ONE | https://doi.org/10.1371/journal.pone.0218103 June 13, 2019 19 / 22

https://doi.org/10.1111/pedi.12521
http://www.ncbi.nlm.nih.gov/pubmed/28401680
https://doi.org/10.1186/s13148-015-0082-4
http://www.ncbi.nlm.nih.gov/pubmed/25908946
https://doi.org/10.1038/nrg2732
http://www.ncbi.nlm.nih.gov/pubmed/20125086
http://www.ncbi.nlm.nih.gov/pubmed/20521220
https://doi.org/10.1096/fj.11-197251
http://www.ncbi.nlm.nih.gov/pubmed/22371529
https://doi.org/10.1016/j.ygeno.2011.07.007
https://doi.org/10.1016/j.ygeno.2011.07.007
http://www.ncbi.nlm.nih.gov/pubmed/21839163
https://doi.org/10.2217/epi.11.105
http://www.ncbi.nlm.nih.gov/pubmed/22126295
https://doi.org/10.1093/bib/bbt054
http://www.ncbi.nlm.nih.gov/pubmed/23990268
https://doi.org/10.1016/j.ygeno.2016.02.005
https://doi.org/10.1016/j.ygeno.2016.02.005
http://www.ncbi.nlm.nih.gov/pubmed/26921858
https://doi.org/10.1186/s12859-015-0641-x
http://www.ncbi.nlm.nih.gov/pubmed/26156501
https://doi.org/10.1186/1471-2105-11-587
http://www.ncbi.nlm.nih.gov/pubmed/21118553
https://doi.org/10.1101/gr.152231.112
http://www.ncbi.nlm.nih.gov/pubmed/23804401
https://doi.org/10.1093/nar/gkt090
https://doi.org/10.1093/nar/gkt090
https://doi.org/10.1155/2015/845041
http://www.ncbi.nlm.nih.gov/pubmed/26090450
https://doi.org/10.1371/journal.pone.0218103


17. Yu M, Hon GC, Szulwach KE, Song CX, Zhang L, Kim A, et al. Base-resolution analysis of 5-hydroxy-

methylcytosine in the mammalian genome. Cell. 2012; 149(6):1368–1380. https://doi.org/10.1016/j.cell.

2012.04.027 PMID: 22608086

18. Booth MJ, Ost TW, Beraldi D, Bell NM, Branco MR, Reik W, et al. Oxidative bisulfite sequencing of 5-

methylcytosine and 5-hydroxymethylcytosine. Nature protocols. 2013; 8(10):1841. https://doi.org/10.

1038/nprot.2013.115 PMID: 24008380

19. Huang Y, Pastor WA, Shen Y, Tahiliani M, Liu DR, Rao A. The behaviour of 5-hydroxymethylcytosine in

bisulfite sequencing. PloS one. 2010; 5(1):e8888. https://doi.org/10.1371/journal.pone.0008888 PMID:

20126651

20. Kriaucionis S, Heintz N. The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons

and the brain. Science. 2009; 324(5929):929–930. https://doi.org/10.1126/science.1169786 PMID:

19372393

21. Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, Brudno Y, et al. Conversion of 5-methylcyto-

sine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science. 2009; 324

(5929):930–935. https://doi.org/10.1126/science.1170116 PMID: 19372391

22. Bachman M, Uribe-Lewis S, Yang X, Williams M, Murrell A, Balasubramanian S. 5-Hydroxymethylcyto-

sine is a predominantly stable DNA modification. Nature chemistry. 2014; 6(12):1049. https://doi.org/

10.1038/nchem.2064 PMID: 25411882

23. Ecsedi S, Rodrı́guez-Aguilera J, Hernandez-Vargas H. 5-Hydroxymethylcytosine (5hmC), or How to

Identify Your Favorite Cell. Epigenomes. 2018; 2(1):3. https://doi.org/10.3390/epigenomes2010003

24. Ficz G, Gribben JG. Loss of 5-hydroxymethylcytosine in cancer: cause or consequence? Genomics.

2014; 104(5):352–357. https://doi.org/10.1016/j.ygeno.2014.08.017 PMID: 25179374

25. Fu S, Wu H, Zhang H, Lian CG, Lu Q. DNA methylation/hydroxymethylation in melanoma. Oncotarget.

2017; 8(44):78163. https://doi.org/10.18632/oncotarget.18293 PMID: 29100458
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