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Atherosclerosis (ATS), the change in structure and function of arteries with associated
lesion formation and altered blood flow, is the leading cause of cardiovascular disease, the
number one killer worldwide. Beyond dyslipidemia, chronic inflammation, together with
aberrant phenotype and function of cells of both the innate and adaptive immune system,
are now recognized as relevant contributors to atherosclerosis onset and progression.
While the role of macrophages and T cells in atherosclerosis has been addressed in
several studies, Natural Killer cells (NKs) represent a poorly explored immune cell type, that
deserves attention, due to NKs’ emerging contribution to vascular homeostasis.
Furthermore, the possibility to re-polarize the immune system has emerged as a
relevant tool to design new therapies, with some succesfull exmples in the field of
cancer immunotherapy. Thus, a deeper knowledge of NK cell pathophysiology in the
context of atherosclerosis and atherosclerosis-associated risk factors could help
developing new preventive and treatment strategies, and decipher the complex
scenario/history from “the risk factors for atherosclerosis” Here, we review the current
knowledge about NK cell phenotype and activities in atherosclerosis and selected
atherosclerosis risk factors, namely type-2 diabetes and obesity, and discuss the
related NK-cell oriented environmental signals.

Keywords: natural killer cells, atherosclerosis, atherosclerosis-related risk factors, type-2 diabetes, obesity
INTRODUCTION

Cardiovascular diseases (CVDs), the first cause of death worldwide, are characterized by an
inflammatory microenvironment (1–3). An altered immune response can govern and impact
both pathological resolution and/or progression of CVDs, as a consequence of systemic and tissue-
local environments (4–7). In this context, it is worth noticing that atherosclerosis (ATS), the leading
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cause of CVDs (8), is characterized by lipids accumulation, cell
apoptosis, endothelial cells (ECs) increased permeability, fibrosis,
and chronic inflammatory burden (9). In particular, EC
dysfunction in ATS leads to proinflammatory cytokines
production and immune cells recruitment within the
atherosclerotic plaque (9). This tight connection between
inflammation and CVDs has been recently reinforced by the
results of two clinical trials (Canakinumab Anti-inflammatory
Thrombosis Outcomes Study-CANTOS, and Low Dose
Colchicine for Secondary Prevention of Cardiovascular
Disease-LoDoCo) that show the benefit of targeting
inflammation to lower the risk of CV events (10, 11).
CANTOS investigators found that canakinumab (an
interleukin-1b, IL-1b, neutralizing antibody) exerts a protective
effect on thrombosis, targeting the IL-1b innate immunity
pathway. Interestingly, the study shows that compared to
placebo, the treatment also correlates with lower cancer
mortality. Furthermore, the LoDoCo trial showed a preventive
role of colchicine in the occurrence of cardiovascular events with
inhibition of neutrophil chemotaxis and activation within a
proinflammatory environment. In addition, another study
showed that heart failure–associated inflammatory markers,
including C‐reactive protein, at the same time had a clear
predictive value of new-onset cancer, independently of cancer
risk factors (12). These data suggest that cancers and CVDs share
some common mechanisms centered on inflammation and the
immune response that may represent valuable novel targets for
therapies. Moreover, ATS and cancer share risk factors such as
obesity, diabetes mellitus, and hypertension (13), and
pathophysiological pathways, such as chronic inflammation,
oxidative stress, and alterations in immune cells phenotype and
Abbreviations: AAV, adeno associated virus; ADCC, antibody dependent cellular
cytotoxicity; AOM, azoxymethane; ATS, atherosclerosis; BiP, binding
immunoglobulin protein; BMI, body mass index; CAR, chimeric antigen
receptor; CRC, colorectal cancer; CSF1R, colony-stimulating factor 1 receptor;
CXCL, chemokine ligand (C-X-C motif); CVDs, cardiovascular diseases; DC,
dendritic cell; dNK cells, decidual Natural Killer cells; ECs, endothelial cells;
EOMES, eomesodermin; ER, endoplasmic reticulum; FOXP3, forkhead box P3;
GM-1, ganglioside monosialic type 1; HbA1c, gycosylated hemoglobin; HFD, high
fat diet; HIF-1, hypoxia inducible factor 1; IAP, integrin associated protein; IFNg,
interferon g; IL-, interleukin-; ILCs, innate lymphoid cells; IRE1, inositol-requiring
enzyme 1; LADA, latent autoimmune diabetes in adults; MCP-1/CCL2, monocyte
chemoattractant protein-1; MHC, major histocompatibility complex; MICA,
MHC class I chain-related protein A; MIP1-b, macrophage inflammatory
protein 1-b; MPs, matrix metalloproteinases; mTOR, mammalian target of
rapamycin; NCAM, neural cell adhesion molecule; NCR, natural cytotoxicity
receptor; NK, natural killer; NKG2A/D, Natural Killer receptor Group 2 A/D;
NOD, non-obese diabetic; NLRP3, NOD-like Receptor Protein 3; oxLDL,
Oxidized Low-Density Lipoprotein; OxPhos, Oxidative Phosphorylation; PB,
Peripheral Blood; PDI, Protein Disulfide-Isomerase; PERK, Protein kinase R
(PKR)-like Endoplasmic Reticulum Kinase; PlGF, Placental Growth Factor;
RAE1, Retinoic Acid Early transcript 1; RAG, Recombinant Activating Gene;
RIP, Rat Insulin Promoter; ROS, Reactive Oxygen Species; SREBP, Sterol
regulatory Element Binding Protein; SMCs, Smooth Muscle Cells; sMICA,
soluble MHC class I Chain-related Protein A; STAT, Signal Transducer and
Activator of Transcription; sXBP1, spliced X-Box Binding Protein 1; TANKs,
Tumor Associated Natural Killer cells; T-bet, T-box expressed in T cells; TCR, T
Cell Receptor; TG, Transgenic; TINKs, Tumor Infiltrating NK cells; TNFa,
TumorNecrosis Factor-a; T2D, Type 2 Diabetes; UPR, Unfolded Protein
Response; VEGF, Vascular Endothelial Growth Factor.
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functions. Of note, immune cells, both of innate and adaptive
immunity, are characterized by extraordinary plasticity, thus
they can adapt their phenotype and response (referred as
immune cell polarization) to the hosting pathophysiological
micro-(tissue/local) and macro-(peripheral blood/systemic)
environment (14–19). These adaptation capabilities result in
the ability of immune cells to acquire contrasting activities, as
related to their “original commitment”, which is the defense of
the host organism. These peculiar features have been observed in
diverse chronic inflammatory-based disorders, ranging from
CVD (6, 20, 21), to autoimmune diseases (22–24), to cancers
(25–27).

The most investigated players in ATS are monocytes/
macrophages, which, upon activation, support the subsequent
specific T and B cells response (28, 29). However, recent
preclinical and clinical evidence point to a role in ATS also for
NK cells (30, 31), which are large granular lymphocytes of innate
immunity, primarily involved in the immunosurveillance against
virus-infected and malignant-transformed cells. NK cells can
infiltrate the vessel wall, promoting atherosclerotic lesion
development and producing perforin and granzyme B, thus
leading to more vulnerable atherosclerotic lesions for
atherothrombosis (32, 33).

Here, we review the current knowledge of NK cell phenotype
and activities, discussing the environmental cues that can
instruct NK cell behavior in ATS pathological context.

NK Cells
NK cells originate in the bone marrow from CD34+

hematopoietic stem cell (HSC) precursors, which generate
common lymphoid progenitors (CLP), further committed to
the NK cell progenitor (NKP), following the acquisition of IL-
2/IL-15Rb subunit (CD122) that makes NK cells responsive to
IL-15. Mature peripheral blood NK cells express CD16, CD57,
and NKG2D, and display the ability to release perforin,
granzyme, and IFNg (34–36).

The Neural Cell Adhesion Molecule/NCAM (CD56) and the
FC gamma receptor III molecule (CD16) are the two major
surface antigens used to discriminate NK cell subsets.
CD56+CD16+ NK cells (90-95% of total circulating NKs) are
endowed with cytolytic functions, via antibody-dependent
cellular cytotoxicity (ADCC), and release of perforin and
granzymes, thus mediating the immunological synapsis
between target and effector cel l complex (34, 37).
CD56brightCD16-, (5-10% of circulating NKs) (34, 37) act by
releasing pro-inflammatory and anti-tumor cytokines, such as
IFNg, TNFa. Several studies, in particular within the recent
single-cell era, demonstrated that NK cell subset classification
may extend beyond this classical dichotomy of CD56dimCD16+

and CD56brightCD16- NKs (38–41).
The local microenvironment, with its unique cellular

interactions, provide relevant signals to shape NK cell phenotype
and functions, both under physiological and pathological conditions
(18, 42–45). During fetal development, NK cells acquire a peculiar
phenotype, described as CD56superbrightCD16-, termed decidual NKs
(dNKs), endowed with increased ability to produce pro-angiogenic
factors, such as vascular endothelial growth factor (VEGF),
January 2022 | Volume 12 | Article 798155
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placental growth factor (PlGF), and CXCL8 (46, 47). Thus, in this
particular scenario, dNK cells shift from killer to builder effector
cells, being necessary for the appropriate formation of spiral arteries,
which deliver oxygen and nutrients to the developing fetus (46, 47).
Intriguingly, an expansion of pro-angiogenic, decidual-like NK cell
subset has been found in solid cancers: these dNK-like, termed
tumor-infiltrating (those present in tumor tissues-TINKs) and
tumor-associated (NKs in the peripheral blood-TANKs) NK cells
acquire a CD56brightCD16lowCD9+CD49a+ phenotype, can release
pro-angiogenic factors and support EC proliferation, migration and
ability to form capillary-like structures (18, 45, 48–51). Major
mechanisms governing the alterations of NK cell activity in
chronic inflammatory disorders include downregulation of the
activation molecule NKG2D and the Natural Cytotoxicity
Receptors (NCRs) NKp46, NKp44, and NKp30, together with
decreased or increased capability to release IFNg, TNFa, perforin,
and granzymes, according to the hosting environment (52–54).

NK Cells in Atherosclerosis and
Atherosclerosis-Related Risk Factors
ATS represents the most common pathophysiological alteration
leading to ischemic heart disease and stroke (55). NK cells have been
detected in atherosclerotic lesions in humans (56, 57) and mice (32,
33, 58, 59), mostly in advanced lesions, deep within plaques, and in
shoulder regions of plaque (32). In addition, patients with advanced
lesions show high levels of circulating NK cells (60). Here, we focus
on NK in ATS and selected ATS-associated risk factors, i.e. type-2
diabetes, and obesity, analyzing the inflammatory environmental
factors and signaling orchestrating different NK cells phenotype and
functions, together with their interactions with other cells of the
host organism.

NK Cells in Atherosclerosis
There is contrasting evidence on the direct contribution and
regulatory function of NK cells in ATS insurgence and
progression, mainly as a consequence of the different murine
models employed in various in vivo studies.

The first experiments investigating the role of NK cells in ATS
have been conducted in beige mice, an animal model of NK cell
functional deficient. In this murine model, Paigen et al. (61)
reported no difference in ATS lesion size, suggesting no crucial
role for NK cells in ATS. A second study using the NK cell
functional deficient beige mice, crossed with LDLR deficient
mice (beige, LDLr-/-), showed increased lesion size, as compared
to control LDLr-/- mice, fed a high-fat diet (HFD). When
reconstituted with the bone marrow (BM) of Ly49A transgenic
mice (a murine model overexpressing the Ly49A receptor under
the control of granzyme A promoter), LDLr-/- recipient animals
exhibited smaller sizes of the lesions (62).

Further studies performed in ApoE-/- mice, in which NK cells
were depleted by anti-asialo-GM-1 antibody, showed a
significant reduction of the atherosclerotic lesion development
(63). However, since several other cell types, such as myeloid
cells, epithelial cells, and T-cell subsets express the glycolipid
asialo-GM1 (64–67), the effects observed cannot be considered
restricted to NK cells.
Frontiers in Immunology | www.frontiersin.org 3
In another study, NK cells pre-activated with IL-2 were
adoptively transferred into ApoE−/− Rag2−/− IL2rg−/−mice,
resulting in increased ATS and necrotic core development, and
IFNg, Perforin, and Granzyme B production, by transferred NK
cells (32).

Various cytokines/chemokines are involved in NK cell
recruitment, including monocyte chemoattractant protein-1
(MCP-1/CCL2), fractalkine (CX3CL1), IL-15, IL-12, IL-18, and
IFN-a (68, 69). Moreover, IL-15, IL-12, and IL-18 drive NK cell
pro-atherogenic features, by hyper-activating NK cells, either in a
direct manner or via dendritic cells (DC) and monocyte/
macrophages interaction (70–72) (Figure 1A). Atherosclerotic
plaques are enriched in IL-12 producing macrophages, in
response to oxLDL (73) (Figure 1B). IL-12 within the ATS
plaque enhances NK cell cytolytic activity via IFNg production,
resulting in plaque destabilization, through either the induction
of smooth muscle cells (SMCs) apoptosis and/or secretion of
matrix metalloproteinases (MMPs) (74). In addition, oxLDL
supports the interaction between NK cells and DCs, in a
CD48-2B4 contact-dependent manner (Figure 1C). Opsonized
LDL favors the NK-DC crosstalk, via IL-12 and IFNg, resulting
in altered DC editing/activation and/or selection of highly
inflammatory M1-like macrophages (74) (Figure 1D). Both
macrophages and endothelial cells within the ATS plaques
have been reported to express NKG2D ligands that correlate
with detectable serum levels of soluble Major Histocompatibility
Complex (MHC) class I chain-related proteins A (sMICA),
which in turn activated killing abilities in NK cells
(75) (Figure 1E).

In human ATS, most of the current knowledge on NK cells
comes from observational studies on lesion samples conducted
by immunohistochemistry. As far as we know, phenotypic and
functional features of NKs in ATS patients are still not
completely known. In this context, a recent study from
Bonaccorsi et al. characterized NK cells in atherosclerotic
plaques of asymptomatic patients. They found that carotid
plaques are enriched in CD56brightperforinlow NK cells, which
also express tissue-resident markers, such as CD103, CD69 and
CD49a (76), (Figure 1F) with increased production of IFNg (76).
These data suggest that hyperactivation of NK cells in carotid
plaques may represent a relevant host-dependent mechanism
determining plaque instability (Figures 1F, G).

In line with this hypothesis, using a murine model of
adeno-associated virus (AAV)-induced hypercholesterolemia,
Engelbertsen et al. (77) showed that loss of CD47 results in
increased frequency of IFNg producing CD90+ NK cells (77)
(Figure 1G). Moreover, depletion of NK cells, using anti-NK1.1
monoclonal antibody, generates equalization of atherosclerotic
burden, supporting that NK cell are involved in ATS progression
in CD47-null mice (77). CD47 (an integrin-associated protein,
IAP), is a transmembrane protein exerting multiple biological
activities, ranging from regulation of efferocytosis to leukocyte
trafficking (77, 78). There are contrasting reports, showing
both pro-atherogenic and anti-atherogenic effects of CD47 and
its ligands (77–79). Engelbertsen and colleagues (77) also
found that CD90+ NKs are expanded in the atherosclerotic
January 2022 | Volume 12 | Article 798155
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aorta and largely produce IFNg, as compared to CD90- NK
cells (77).

Upregulation of cell cholesterol is a relevant hallmark of the
ATS plaque, exacerbating the pro-inflammatory state that impact
Frontiers in Immunology | www.frontiersin.org 4
on the plaque fate, by continuously damaging the ECs and SMCs,
finally determining the plaque rupture. Of notice, upregulated
cell cholesterol induce a signature of trained immunity (80).
Trained immunity, a concept recently developed, refers to the
FIGURE 1 | NK cells in atherosclerosis. From the site of atherosclerotic (ATS) plaque formation (A) many cytokines and chemokines are released into the blood,
stimulating NK cells migration and entry within the plaque. Infiltrating NK cells can interact, by contact, with other immune cells such as (B) macrophages, that in
presence of oxLDL, produce and release IL-12, thus potentiating cytolytic activity of NK via interferon g (IFNg) release. OxLDL can also be present as opsonized
particles (C) that support dendritic cells (DCs)-NK crosstalk which is also mediated by CD48-2BA interaction and leads to (D) IFNg release from NKs. IFNg from NK
cells exerts its effect on both (D) smooth muscle cells (SMCs) by inducing their apoptosis and macrophages by promoting M1-like phenotype switch. Furthermore,
both (E) macrophages and endothelial cells (ECs) release soluble MICA (sMICA) that upon NKG2D binding on NK cells increase NK killing capability. Within ATS
plaque, (F) a subset of NK cells display a hyperactive phenotype/behavior with increased expression of CD49a, CD56, CD69 and CD103 and NK cells (G) modify
receptors expression downmodulated CD47 and increasing CD90 marker, leading to IFNg release.
January 2022 | Volume 12 | Article 798155
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ability of innate immunity to develop a specific memory as for
adaptive immunity (17). This innate immunological memory,
leads to an augmented long-lasting proinflammatory immune
response to a secondary stimulus, through metabolic and
epigenetic rewiring of innate immune cells (17). Moreover, it
has been demonstrated that, in addition to microbial stimuli,
endogenous metabolites, such as oxLDL and lipoproteins, that
characterize the plaque microenvironment, train the generation
of pro-atherogenic monocytes and macrophages, by instructing
these cells to produce ATS-supporting cytokines, such as GM-
CSF, IFNg, IL-3 and MMPs. Mechanistically, this immune
training is sustained by a metabolical switch from oxidative
phosphorylation (OxPhos) to aerobic glycolysis and
mevalonate synthesis, in monocytes, together with epigenetic
modifications (17, 81).

In the case of ATS and all those phatologies where persistent
chronic inflammation has a detrimental role, trained immunity
can be considered a double edge sword. ECs, apart from their
vascular funct ion, are now considered as relevant
immunoregulatory effectors in chronic inflammatory diseases
(82, 83). Following cellular damage, ECs release large amount of
IL-1b and IL-6 and increase the expression of adhesion
molecules, like E-selectin (CD62E) and ICAM-1 (CD54), that
further contribute to the exacerbate inflammation and trained
immunity (80), including in ATS. In the case of ATS, the
persistent activation of the inflammatory state, due to trained
immunity, has been hypothesized as a relevant mechanisms
linking non-resolving inflammation in ATS (84–86). As for
macrophages, given the shared immune cell plasticity and
capabilities to adapt to different pathophysiological
environments, NK cells could be considered as key innate
immune cells within the ATS plaque, both as a “soloists” or by
interacting with atherogenic macrophages. In this context, the
microenvironment of cholesterol-mediated exposure may also
trigger trained immunity on NK cells, exacerbating their activity
in the plaque, mimicking the same effect observed
in macrophages.

Therefore, studies investigating the contribution of NK cells
to ATS and their specific polarization state in ATS, still require
more investigation.

ATS plaques are enriched in cholesterol that, through
enzymatic reactions or by auto-oxidation with reactive oxygen
species (ROS), is converted into oxysterol (87). Oxysterols can
modulate NK cell metabolism and subsequently activity by
inhibition of Sterol regulatory element binding protein
(SREBP), which is required for proper cytokine-induced growth
and effector function by NK cells (88). Indeed, both glycolysis and
oxidative phosphorylation (OxPhos) are SREBP-dependent
mechanisms and NK cells that cannot activate SREBP showed
reduced glucose metabolism and impaired effector functions (88).
Within ATS plaques, the higher amount of oxysterols can reduce
NK cell functionality by blocking SREBP activity.

Related to the presence of cholesterol within ATS plaque, the
NOD-like Receptor Protein 3 (NLRP3), an inflammasome
component (89), is another player involved in both ATS onset
and development and NK cell modulation. NLRP3
Frontiers in Immunology | www.frontiersin.org 5
inflammasome (89) is a multimeric protein complex that,
upon caspase-1 activation, leads to the release of inflammatory
cytokines IL-1b and IL-18 (90).

Duewell and colleagues (90) have shown how cholesterol
crystals are able to activate NLRP3 inflammasome, already in
early stages of ATS, inducing inflammation and how this
condition is impaired in mice deficient in components of the
NLRP3 inflammasome, also following cholesterol crystal
intraperitoneal injection (90). Moreover, it has been shown
that LDLr-/- mice, transplanted with bone marrow (BM) from
NLRP3-deficient mice, display an impaired development of early
atherosclerosis (89), confirming the involvement of NLRP3 in
ATS onset.

Interesting, IL-18 release, upon NLRP3 inflammasome
activation, can impact not only NK cell recruitment (as
mentioned before), but it has been shown that can affect NK
cell cytotoxicity in murine model of cancer (91). Indeed, mice
deficient in NLRP3 inflammasome components show increased
growth of liver colorectal cancer (CRC) metastasis, in a
mechanism dependent on the lower level of IL-18 and by the
subsequent reduction of hepatic NK cell cytotoxicity (91). This
data suggested that NLRP3 activation in ATS plaque could
mediate NK cells recruitment and activation by IL-18 release.

Opposite evidence derives from a study on hepatocellular
carcinoma (HCC) where NLRP3 has been reported to be
involved in cancer development. In this study, HCC patients
showed reduction and impairment in NK cells. Using in vitro co-
culture system of NK cell line NK-92 and HCC cells, it has been
shown that NLRP3 down-modulation in HCC cells induces
lowered expression of metalloproteinase, subsequent to MICA
upregulation which in turn increases NK-92 toxicity, through
NKG2D binding (92). This result is further confirmed by
exploiting a xenograft mouse model in which NLRP3 knock-
out (KO) in HCC cell delays cancer development, reduces
metastasis formation, and increases NK cell toxicity, through
MICA-NKG2D interaction (92).

MICA is a surface protein that, upon proteinases cleavage,
becomes soluble (sMICA) (93). MICA is overexpressed in both
macrophages and endothelial cells within the ATS plaque and
showed same function as sMICA in promoting NK cell
cytotoxicity (94). Considering reported data, we can speculate
that NLRP3 activation, by cholesterol crystals, affects the
shedding of MICA from macrophages and endothelial cells by
proteinases upregulation, and that sMICA increases NK cells
recruitment within ATS plaque.

Given the complexity of ATS plaque environment, the
molecular and cellular players that modulate its onset and
development, and the continuous remodeling of the ATS
plaque, it is not surprising that contrasting data suggest a
dichotomous role of NK cells in ATS onset and development.

Risk Factors for ATS: NK Cells in
Type-2 Diabetes
Diabetes mellitus represents one of the major risk factors for
CVDs, including ATS (95). Both type 1 and type 2 diabetes are
accompanied by micro and macrovascular complications. Type 2
January 2022 | Volume 12 | Article 798155
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diabetes (T2D), a chronic complex disorder characterized by de-
regulated inflammation and metabolic alterations, represents the
most common form of the disease and affects about 95% of the
diabetic population (96, 97). A major feature of T2D is
represented by a peripheral resistance to the action of insulin
and a failure of beta cells to compensate for this alteration,
resulting in hyperglycemia. The biology of both cardiovascular
and immune cells is altered by chronic or transient
hyperglycemia and the consequent increased oxidative stress
with ROS accumulation/production.

In diabetes, ROS production is driven by mitochondrial
respiration, in response to glucose stimulation (98). When
peripheral insulin resistance impaired glucose clearance, the
continuous glycolytic flux increases ROS production (99) that
exerts different effects, according to NK cells phenotype in the
inflammatory microenvironment. In diabetes, ROS production is
mainly induced by hypoxia (98) that, as ROS, can act as NK
cell modulator.

Indeed, hypoxia modulates NK cell metabolism promoting
glycolysis and reducing OxPhos that leads to enhanced
cytotoxicity and increased IFNg production (99, 100). This
hypoxia-related effect is also supported by MICA. Indeed, in
inflammatory environment, such as in renal epithelial cells (101)
and in cardiomyocytes (102), Hypoxia inducible factor-1a (HIF-
1a) induces MICA upregulation that stimulates NK cytotoxicity
and IFNg production (94). The chronic excess of glucose induces
visceral adipose tissue (VAT) expansion and dysfunctions
mediated by adipocytes and immune cells that contribute to
hypoxia (103). Thus, in T2D VAT, we can speculate that
immune cells, including NK cells, are involved in disease
progression by modulating VAT microenvironment that in
turn support inflammation and immune cell recruitment, by
different mechanisms, including hypoxia.

Of note, even though high glucose concentration predisposes
to ATS development, the use of lowering glucose drugs does not
result in the reduction of the CV risk in diabetic subjects, a
concept known as metabolic memory (104). In the case of
immune cells, the persistent changes due to environmental
alteration in nutrition and metabolism are referred to as
“training”. Emerging data are supporting the idea that trained
immunity can be associated with diabetes and its damaging effect
on the CV system (105). Concerning innate immunity, several
reports demonstrated the role of monocyte/macrophages in the
process of ATS and increasing myelopoiesis in the diabetic bone
marrow, but less is known on NK cells (106–108). Of note, in
subjects with diabetes and diabetic atherosclerotic complications,
the BM is dramatically remodeled, including deposition of pro-
inflammatory adipocytes, decreased innervation, and
vascularization with associated impaired hematopoiesis (109–
113). The number of BM resident NK cells is increased in
diabetic patients with or without ischemic complications, but
no changes in the circulating cell pool were observed (109, 114).

A recently published meta-analysis, collecting results from 13
independent studies, showed that circulating NK cells number
increase in T2D patients (n=491), compared to healthy subjects
(n=1607) (115) (Figure 2A). However, other studies showed no
Frontiers in Immunology | www.frontiersin.org 6
differences in the phenotype between NK cells in T2D and NK
cells in healthy controls (116). Hyperglycemia, sedentary
lifestyle, poor metabolic status, all represent peculiar features of
diabetes and have been reported to reduce NK cell functionality
(117). Functional alteration of NK cells, isolated from T2D
patients, include reduced expression of NKp46 and NKG2D
receptors, decreased cytotoxic activity in vitro, compared to
healthy subjects (118) (Figure 2B). However, exposure to IL-
15, a major cytokine involved in NK cell re-education and
activation, restored NK cell functionality in T2D patients
(117). Mechanistically, it has been demonstrated that
endoplasmic reticulum (ER) stress, which is a crucial mediator
of diabetes-associated complications, is induced by tunicamycin,
a mediator for the unfolded protein response (UPR), with
subsequent reduction of NKG2D and NKp46 expression (117).
In addition, markers of UPR, such as BiP, PDI, and sXBP1, are
increased in NK cells from T2D patients and ER stress is
activated through PERK and IRE1 sensors, which are involved
in UPR and that are causative of NKG2D down-modulation in
NK cells from T2D patients (117) (Figure 2C).

Also, NKG2D expression in NK cells was found to be
negatively correlated with glycated hemoglobin (HbA1c) level,
suggesting that hyperglycemia could directly govern NK cell
functional alterations (117). A correlation between
hyperglycemia and NK cells activity has been also
demonstrated by Kim et al. (119). In a recent study, Kim and
colleagues (119) enrolled 49 participants, 21 with T2D, 15 with
pre-diabetes, and 13 controls with normal glucose tolerance, to
analyze NK cells activity modulation, as related to the diabetes
stage. NK cells activity was measured by detecting circulating
IFNg level together with HbA1c. They showed that HbA1c
displayed an inverse linear correlation with NK cells activity
(119), together with diabetes progression and they conclude that
HbA1c is an independent predictor of NK cell activity in T2D
patients (119).

Moreover, epigenetic alterations functionally impact on
immune cell effectors (120). While no global DNA methylation
was observed in peripheral blood mononuclear cells, monocytes,
lymphocytes, or T cells, NK cells from T2D patients exhibit
increased methylation levels that positively correlate with insulin
resistance, linking DNA methylation changes, immune cell
function, and metabolic dysfunction (120) (Figure 2D).

Finally, it has been reported that within VAT of mice
receiving HFD, NK cells support the development of obesity-
induced insulin resistance, via induction of pro-inflammatory/
M1-like macrophages, through a mechanism mediated by NK-
derived cytokines, including TNFa (121) (Figure 2E).

Risk Factors for ATS: NK Cells in Obesity
Obesity drives a program of a chronic pro-inflammatory state
that orchestrates the development of related co-morbidities,
including cancer, T2D, CVDs, and ATS (122–125). Several
pro-inflammatory cytokines are aberrantly produced in obese
individuals and de-regulate the normal homeostasis, such as IL-1
(interacting with insulin signaling) and IL-17 (interacting with
adipogenesis) (126, 127). Obesity is widely recognized as a
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pivotal risk factor for T2D, as a consequence of the induction of
chronic low-grade inflammation in local adipose tissue (128).

Immuno-metabolic alterations characterizing obese
individuals significantly impact on NK cell functions. Resting
NK cells metabolize glucose, via glycolysis, coupled to oxidative
phosphorylation, yielding high levels of energy (99, 129–132).
Following activation, NK cells rapidly increase their rates of
Frontiers in Immunology | www.frontiersin.org 7
aerobic glycolytic metabolism, providing the biosynthetic
precursors for cytokine and lytic granule production (129–131).

Obese patients showed decreased NK cell frequency
(Figure 3A); in these patients, NK are characterized by pro-
inflammatory functions (Figure 3B), and unbalance in the
equilibrium between inhibitory and activation receptors, lytic
capabilities, the release of perforin/granzymes, and altered
A

B

C

D

E

FIGURE 2 | NK cells in Type 2 diabetes. In humans, circulating NK cells in T2D subjects have been found to increase in number (A) but with decreased expression
of both NKp46 and NKG2D activation markers, thus showing a reduced functionality (B). At the molecular level, circulating NK cells in T2D showed an increased
mRNA expression of BiP, PDI, and sXBP1, a marker of unfolded protein response (UPR) which in turn is related to ER stress-activated by PERK and IRE1 sensors
(C). These mechanisms are related to NKG2D down-modulation in circulating NK cells (C). In addition, NK cells showed an increased general DNA methylation (D).
To mimic T2D mice are fed with high fat diet (HFD) (E) and within visceral adipose tissue, NK cells through IFNg and TNFa release can induce macrophages
polarization toward a pro-inflammatory M1-like phenotype thus promoting inflammation (E).
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release of IFNg (130) (Figure 3C). Interestingly, alterations in
NK cell frequency (reduced circulating NK cells number) have
been found also in obese children, in an insulin resistance-
dependent manner (133).

Circulating levels of IL-6 are strongly elevated in obese
individuals (134). IL-6 receptor (IL-6R) expression was found
in blood, hepatic, adipose tissue, and splenic NK cells, in mice as
well as in the human NK-92 cell line and NK cells isolated from
blood, spleen, and tonsil of humans (135–139). In a murine
model, Theurich et al. (137) demonstrated that obesity promotes
the expansion of a distinct IL6R+CSF1R+ NK cell subset, that
further supports obesity (Figure 3D). Selective ablation of this
NK cell subpopulation prevents obesity and insulin resistance.
Moreover, conditional inactivation of IL-6Ra or STAT3 in NK
cells limits obesity-associated induction by NK cells, protecting
from obesity, insulin resistance, and obesity-associated
inflammation (137). Results from Theurich et al. (137) were
also confirmed in humans, where IL6Ra+ NK cells increase in
obese patients and correlates with markers of systemic low-grade
inflammation (137).

Peripheral blood NKs in obese patients are endowed with
phenotype and functional alterations, characterized by reduced
expression of the natural cytotoxicity receptor NKp46 and the
Frontiers in Immunology | www.frontiersin.org 8
NKG2A/CD94 complex, which was correlated with body mass
index (BMI) (140) (Figure 3E). While expressing high levels of
the activation marker CD69 and granzyme B (Figure 3F),
peripheral blood NKs from obese patients have very low
expression of the CD16 antigen, which is responsible for the
reduced ADCC (131) (Figure 3G). BMI inversely correlates with
the impaired capability of peripheral blood NK cells to
degranulate or to produce MIP-1b, following co-culture with
K562 cells (131).

Leptin and adiponectin production is altered during obesity
and these adipokines have been largely reported to modulate NK
cell activities (141). Leptin is able to inhibit mTOR, whose
activation is necessary for NK cell maturation, by regulating
their responsivity to IL-2 and IL-15 (131, 142, 143) (Figure 3H).
Since IL-15 is produced by adipocytes (144, 145), it should be
hypothesized that leptin impairment, occurring during obesity, is
directly involved in NK cell hyporesponsiveness in an mTOR-
dependent manner.

Also, adipocytes have been reported to regulate immune
response in cancer patients with obesity (123, 146, 147).
The connection between adipocyte-derived leptin and
immunomodulation in NK cells, has been demonstrated in vitro
and in vivo.
A

B

C

F

G

H

D

E

FIGURE 3 | NK cells in obesity. Alteration of NK cells in obese patients includes (A) reduced NK cell frequency, (B) unbalance between anti- and pro-inflammatory
behavior of NK cells, and (C) increased release of both perforin and granzymes B, while IFNg is found both up and down modulated. At the molecular level, NK cells
of obese patients showed a (D) increased number of IL6Ra+ cells that correlated with low-grade inflammation markers, (E) decreased expression of NKp46 and
NKG2A/CD94, with subsequently reduced cytotoxicity, (F) increased expression CD69 activation marker correlated with increased release of granzyme B, and (G)
reduction of CD16 responsible for the reduced ADCC. Finally, the increased circulating level of leptin in obese patients (H) affects NK cells maturation by the
inhibition of mTOR signalling in NK cells precursors, resulting in reduced maturation, thus contributing to reduced NK cell frequency.
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In vitro, cytolytic NK cells, exposed to leptin, exhibit
decreased ability to release IFNg and were less effective in
lysing colorectal cancer (CRC) cell lines (129).

In an in vivo model of chemically-induced CRC
carcinogenesis by azoxymethane (AOM), mice receiving a
HFD showed decreased frequency and functionality of NK
cells in the spleen and the livers (129).

In addition, in VAT of obese patients, NLRP3 inflammasome
is upregulated and in vivo experiments showed that NLRP3
deficient mice are protected from HFD-induced obesity (89),
suggesting a crucial role of inflammation in obesity. The link
between inflammation and obesity is further confirmed by
other evidence as free fatty acids, increased in obesity, can
modulate inflammation.

Palmitate, in HFD fed mice, can activate NLRP3
inflammasome in adipose tissue macrophages, increasing IL-1b
and IL-18 secretion (148). Also, adipose tissue macrophages are
polarized toward M1 phenotype and secrete inflammatory
cytokines, such as IL-1b, IL-6, and TNF-a that, in turn, can
recruit and stimulate NK cells (148).

Obesity arises also from compromised adipose storage that
drives inflammation within VAT. This evidence, together with
the reported data, support the idea that a vicious loop between
obesity and inflammation is crucial for disease onset and
progression and, within this loop, NK cells could play a role as
a contributor to pro-inflammatory environment development.

These results further corroborate the direct link between
obesity, a risk factor for ATS, with NK cell activities.
CONCLUSIONS AND FUTURE
PERSPECTIVES

The immune system, whose native functions are protecting the host,
acts as a double-edged sword in the control and insurgence/
progression of chronic pathologic disorders, as a consequence of
immune cell plasticity. Inflammation is a common hallmark of
CVDs, including ATS and ATS-associated risk factors, such as
obesity, and T2D. These pathological conditions are characterized
by a chronic low-grade inflammation that is involved in regulating
immune cell plasticity and adaptation capabilities to the
pathophysiological environment(s) of the host organism. Thus
modifying/re-educating the immune system, represents a
challenging new therapeutic approach. Emerging cancer
immunotherapy with engineered T-cells is a successful example of
Frontiers in Immunology | www.frontiersin.org 9
this clinical translation. Of note, NK cells represent a perfect tool for
immunotherapy, due to their natural capability to reach/recognize
cells that “have to be eliminated”. Immunotherapies, based on
targeting and/or using NK cells, have been explored and include
re-education with cocktails of activating (immune)-cytokines (IL-2,
IL-12, IL-15), adoptive transfer of modified (BiKe, TriKe) NKs
and generation of CAR-NKs. Considering that inflammation and
immune cell plasticity are crucial hallmarks of both cancers and
CVDs, the relevant question now is whether immunotherapy can be
translated to CVDs. Recently, the contribution of diverse
subpopulations of immune cells, beyond monocytes and
macrophages, to CVDs, has been intensively investigated.
Moreover, recent clinical trials have employed biological modifiers
of proinflammatory cytokine function, such as targeting TNFa and
IL-1b, in heart failure. Surprisingly, little is known about the role of
NK cells. We here summarized the current knowledge on NK cells
contribution to ATS, and to ATS-associated risk factors, such as
T2D, stressing the need of acquiring more information in these
fields, to enable designing future NK cells-oriented therapeutic
approaches, including re-educating them, according to the CVD
pathological setting and environments.
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