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Purpose: Selecting the optimal lens size by predicting the postoperative vault can
reduce complications after implantation of an implantable collamer lens with a central-
hole (ICL with KS-aquaport). We built a web-based machine learning application that
incorporated clinical measurements to predict the postoperative ICL vault and select
the optimal ICL size.

Methods: We applied the stacking ensemble technique based on eXtreme Gradient
Boosting (XGBoost) and a light gradient boosting machine to pre-operative ocular data
from two eye centers to predict the postoperative vault. We assigned the Korean patient
data to a training (N = 2756 eyes) and internal validation (N = 693 eyes) datasets
(prospective validation). Japanese patient data (N= 290 eyes) were used as an indepen-
dent external dataset from different centers to validate the model.

Results: We developed an ensemble model that showed statistically better perfor-
mance with a lower mean absolute error for ICL vault prediction (106.88 μm and 143.69
μm in the internal and external validation, respectively) than the other machine learn-
ing techniques and the classic ICL sizing methods did when applied to both validation
datasets. Considering the lens size selection accuracy, our proposed method showed
the best performance for both reference datasets (75.9% and 67.4% in the internal and
external validation, respectively).

Conclusions:Applying theensemble approach toa largedataset of patientswhounder-
went ICL implantation resulted in a more accurate prediction of vault size and selection
of the optimal ICL size.

Translational Relevance:We developed a web-based application for ICL sizing to facil-
itate the use of machine learning calculators for clinicians.

Introduction

Selection of the proper size of the EVO Implantable
CollamerLens (ICLwithKS-aquaport; STAARSurgi-
cal, Monrovia, CA, USA) is a fundamental compo-
nent of posterior phakic lens implantation surgery.1
In clinical practice, optimal ICL sizing provides a safe

postoperative ICL vault, which is a gap between the
ICL and the crystalline lens.2 The general consen-
sus is that the ideal ICL vault is approximately
500 μm and should not exceed 1000 μm.3 A higher
vault after implantation of ICL without a center
hole is associated with complications of angle-closure
glaucoma and abnormally large pupils, and a lower
vault is a risk factor for anterior subcapsular cataracts.4
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Implantation of a recently developed ICL with a
center hole (aquaport) was reported to have a low
risk of anterior subcapsular cataract and angle-closure
glaucoma.5 However, it is associated with several other
complications, such as increased intraocular pressure,
abnormal pupil size, or lens dislocation. In cases with
severe complications, ICL exchange or removal can
be indicated. The manufacturer provides a nomogram
for ICL sizing based on the corneal size (white-to-
white [WTW]) and anterior chamber depth (ACD).6
However, these two measurements do not accurately
reflect the size of the posterior chamber space in
which the lens will be placed. Several approaches
have attempted to estimate the optimal ICL size using
new technologies, such as anterior segment optical
coherence tomography (AS-OCT) and ultrasound
bio-microscopy (UBM). Using these new measure-
ments, several statistical regression methods have been
proposed to improve the accuracy of vault predic-
tion for ICL sizing.7 However, measurement error and
structural variance may guide the implantation of
inappropriate ICL size, yet there is no standardized
method for selecting the optimal ICL size.

Recently, machine learning has enabled more
accurate inference based on the large training data
for medical diagnosis.8 Several studies have proposed
novelmachine learningmodels to predict postoperative
outcomes in various medical fields.9 Machine learn-
ing models can consider a large number of features
and can minimize human variation for clinical decision
making.10 A recent study showed that traditional
machine learning methods are expected to improve the
accuracy of ICL vault prediction.11 However, all ICL
surgery cases cannot be the gold standard for train-
ing machine learning models. Several cases may be
considered as outliers with incorrect lens selection and
measurement noises, and these factors can lead to the
incorrect fitting of a given machine learning model and
reduce the performance in the validation sets. To solve
this problem, ensemble machine learning approaches
have been introduced because of their robustness and
ability to enhance the performance of machine learning
models.12 Ensemble learning-based approaches have
shown very good performance in many recent machine
learning competitions. They can reduce the effect of
overfitting and outliers by combining the results of
several machine learning models.

Here, we propose a novel ensemble learning-based
ICL with a center-hole (Visian ICL with KS-aquaport)
size selection framework that analyzes clinical ocular
measurements. In this retrospective study, we sought
to build a web-based machine learning application
that incorporates clinical measurements to predict the
postoperative ICL vault and select the optimal ICL

size. The validation performance of the machine learn-
ing model was improved by using an ensemble learn-
ing framework. We report the ICL sizing performance
of our models on a local South Korean dataset and an
external Japanese dataset.

Methods

Overview

The objective of this study was to build a web-based
calculator application with ensemble machine learn-
ing that predicts the postoperative vault and selects
the optimal ICL size (Fig. 1). Because four types of
ICL sizes (12.1, 12.6, 13.2, and 13.7 mm) are available,
the surgeon would have to select one that achieves the
best surgical outcome. In this study, we set a postop-
erative vault of 500 μm to be the optimal result. We
retrospectively collected pre-operative and postopera-
tive ocular data that was used to develop the machine
learning model. The ICL vault calculator was gener-
ated based on the ocular measurements from a large
dataset. This study adhered to the tenets of the Decla-
ration of Helsinki. The study protocol was approved
by the institutional review board (IRB) of the Korean
National Institute for Bioethics Policy (P01-202008-
21-017). This retrospective data collection for exter-
nal validation was approved by the IRB at Kitasato
University Hospital. Protected personal health infor-
mation was removed for the purpose of the study.

Datasets

The Korean patients underwent refractive surgery
with posterior phakic intraocular lens implantation
using ICL (V4c and V5 Visian ICL with KS-
AquaPORT) in the B&VIIT Eye Center (Seoul, South
Korea) from January 2018 to June 2020. The inclu-
sion criteria for ICL implantation at the B&VIIT Eye
Center were: age between 17 and 55 years old (inclu-
sive = 17 ≤ age ≤ 55), stable refraction, 0 to −18.0
diopters (D) of myopia with astigmatism of 6.5 D or
less, anterior chamber depth ≥ 2.5 mm, and endothe-
lial cell density≥ 1800 cells/mm2. The Japanese patients
underwent ICL implantation using the same types
of lenses at Kitasato University Hospital (Kanagawa,
Japan). The inclusion criteria at the Kitasato Univer-
sity Hospital were: age between 18 and 55 years old
(inclusive = 18 ≤ age ≤ 55), stable refraction, −3.0 to
−19.0 D of myopia with astigmatism of 5.0 D or less,
anterior chamber depth ≥ 2.8 mm, and endothelial cell
density≥ 1800 cells/mm2. An ICLwas implanted in the
posterior chamber via a 3 mm temporal clear corneal
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Figure 1. Schematic diagram of our proposed machine learning model for ICL sizing. (A) Definition of the postoperative ICL vault.
(B) Machine learning model for vault prediction and ICL sizing.

incision. The selection of ICL size was assigned based
on the clinical decision obtained from a full evalua-
tion by five experts. Before surgery, the experts decided
on the manufacturer’s nomogram and ocular measure-
ments as well as on the lens size for each patient. All
experts were board-certified ophthalmologists with an
average experience of 5 years in ICL surgery.

In the development and validation of this machine
learning model, we used anonymized medical records
and ocular measurement data. Study subjects included
3506 eyes from 1753 Korean patients and 290 eyes
from 145 Japanese patients (Fig. 2). In the Korean
patients, 57 eyes were excluded due to missing values,
and the final dataset consisted of 3449 eyes. The
training and internal validation datasets were split
by calendar time to validate the machine learning
model prospectively according to the design of previ-
ous studies.13,14 We assigned the Korean patient data
before December 2019 (N = 2756 eyes) to the training
dataset and those after January 2020 (N = 693 eyes)
were used as the internal validation dataset (prospec-
tive validation). In the training process, we performed
fivefold cross-validation, which currently corresponds
to the preferred technique for assessing performance
and optimizing the prediction models. The dataset of
Japanese patients was used to validate the model as

an independent external dataset, from different centers
(N = 290 eyes).

All patients underwent pre-operative measurements
of corrected distance visual acuity, manifest refraction,
slit-lamp examination, and dilated fundus examina-
tion. Anterior-segmental measurements of the preop-
erative WTW, angle-to-angle (ATA), ACD, anterior
chamber width (ACW), crystalline lens rise (CLR),
central corneal thickness (CCT), and postoperative
central vaults were obtained using swept-source AS-
OCT using CASIA-2 (Tomey, Nagoya, Japan). Pupil
size was measured using Keratograph 4 (Oculus
GmbH,Wetzlar, Germany). Ophthalmologic examina-
tions, including AS-OCT, were performed postopera-
tively at 1 month to measure the postoperative ICL
vault. The input features for ICL vault prediction
included age, sex, pre-operative spherical equivalent,
ICL refractive power, type of ICL (toric lens or not),
WTW, ATA, ACD, ACW, CLR, CCT, pupil size, and
lens size.

Model Development

We built a machine learning-based framework to
construct postoperative ICL vault predictions using
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Figure 2. Workflow for data management and development of machine learning model for ICL sizing.

an ensemble regression model. After predicting the
postoperative ICL vault using four ICL sizes (12.1,
12.6, 13.2, and 13.7 mm), we selected the optimal
size that was closest to the ideal postoperative vault
of 500 μm. Our study was focused on the stacking
ensemble model owing to its superior performance
comparedwith classic techniques. Recently, researchers
have shown that tree-based meta-algorithms outper-
form the other techniques, we adopted eXtreme Gradi-
ent Boosting (XGBoost) and light gradient boosting
machine (lightGBM) for the independent low-level
regressors of the ensemble method. This method works
by generalizing multiple low-level classifiers to increase
the predictive power of the models. In the last layer
of our stacking ensemble model, after obtaining the
outputs of 12 XGBoost and 8 lightGBM models, we
performed linear regression processing to obtain the
final prediction of the ICL vault. The number of
single models in the esemble model was determined
empirically by the machine learning engineer. We also
used other representative machine learning methods,
including average ensemble, single XGBoost, random
forest, support vector machine, and linear regression.
To find the optimal hyperparameters and features for
each machine learning technique, we adopted recur-
sive feature elimination and grid search (Cartesian
method), in which a range of parameter values was
tested via the fivefold cross validation.15 Finally, a risk
calculator using a stacking ensemble was developed
for the web-based interface (http://loocus-iolcalc.ai,

see Supplementary Materials). Our web-based model
also deals with missing values because XGBoost can
automatically impute each sample with missing values.
It provides the effective confidence range of the postop-
erative ICL vault using the distribution of outputs from
each XGBoost and lightGBM models in the ensemble
architecture.

To obtain an interpretation of the features from
the prediction model result, we applied the SHapley
Additive exPlanations (SHAP) technique to our
ensemble model. The SHAP package provides a
decision-tree-based estimation of the SHAP value,
with which the SHAP value from our ensemble model
could be calculated based on XGBoost and light-
GBM by summing the values of each model. The
scikit-learn Python library and R studio version 3.5.1
(The Comprehensive R Archive Network; http://cran.
r-project.org) were used to implement the machine
learning and SHAP algorithms.We used the SHAP and
XGBoost packages available in the GitHub repository
(https://github.com/slundberg/shap and https://github.
com/pablo14/shap-values).

To evaluate the prediction performance, we used the
mean absolute error (MAE), median absolute predic-
tion error (MedAE), and root mean square error
(RMSE) in the fivefold cross validation, internal valida-
tion, and external validation. We also calculated the
percentage of eyes that showed a prediction error
of ±50, 100, 150, and 200 μm compared with the
targeted ICL vault. All cases were included in the

http://loocus-iolcalc.ai
http://cran.r-project.org
https://github.com/slundberg/shap
https://github.com/pablo14/shap-values
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validation procedure when the ICL vault prediction
errors were calculated. However, we were unable to
confirm that all our surgery cases had the best outcome.
It should be noted that there is no gold standard valida-
tion dataset for ICL size selection. Therefore, when
the multiclass lens selection performance was calcu-
lated, we excluded the outliers and only chose the
cases with good outcomes (patients with 400 μm ≤
achieved ICL vault ≤ 600 μm and 300 μm ≤ achieved
ICL vault ≤ 700 μm) to build a reference standard
validation dataset. We used accuracy and Cohen’s κ

to evaluate lens selection ability.16 We also compared
the two classic lens selection methods: the manufac-
turer’s nomogram based on WTW and ACD, and the
NK formula based on ACW and CLR. These methods
were built using linear regression models for predict-
ing the postoperative ICL vault. All statistical analyses
were conducted using R studio version 3.5.1. Differ-
ences in the distribution of variables between datasets
were assessed using the χ2 test for categorical variables
and Student’s t-test for continuous variables.

Results

The clinical characteristics of the study subjects
with ICL implantation included in the training dataset
(Korean patients, N = 2,756), internal validation
dataset (Korean patients,N= 693), and external valida-
tion dataset (Japanese patients, N = 290) are shown
in Table 1. The distribution of the internal validation
dataset was similar to that of the training dataset, but

the external validation was not. All factors (but for
ATA) showed significant differences between the train-
ing and external validation datasets. Very few cases
required ICL with a size of 13.7 mm for surgery
in both Korean and Japanese datasets. We used the
t-distributed stochastic neighbor embedding (t-SNE)
method to project features into a 3-dimensional space.
The feature space shows that there might be consid-
erable boundaries between lens sizes and meaning-
ful distribution according to the ICL vault values,
although the data distribution is not linear but complex
(Fig. 3).

Using our training dataset, we performed the
fivefold cross validation to optimize the machine
learning model parameters. For this step, six candi-
date machine learning algorithms (stacking ensem-
ble, average ensemble, single XGBoost, random forest,
support vector machine, and linear regression) were
trained and assessed on the corresponding hold-out
sets. We identified that all input features were required
to achieve the best performance for all the machine
learning regressors. Therefore, we used all the input
features to develop the ICL vault prediction model
in this study. The fivefold cross validation perfor-
mance of the optimized models for each algorithm
is shown in Table 2. The stacking ensemble using 12
XGBoost and 8 lightGBM showed better ICL vault
MAE than single XGBoost, random forest, support
vector machine, and linear regression, achieving 99.67
μm on MAE, 84.72 μm on MedAE, and 125.73 μm
on RMSE. There was no significant difference between
the stacking and average ensemble methods. The

Table 1. Pre-Operative Demographics and Postoperative ICL Vaults of the Study Participants

Training Dataset

Internal Validation
Dataset (Korean

Patients)
External Validation
(Japanese Patients)

P Value for Training
Versus Internal
Validation

P Value for Training
Versus External

Validation

(N = 2756 eyes) (N = 693 eyes) (N = 290 eyes)
Age (y) 24.82 ± 5.79 25.05 ± 5.89 32.45 ± 7.56 0.457 <0.001
Gender, female (%) 1717 (62.3) 442 (63.8) 161 (55.5) 0.472 <0.001
Spherical equivalent (Diopters) −8.98 ± 2.08 −8.97 ± 2.25 −7.11 ± 3.47 0.914 <0.001
Axial length (mm) 27.05 ± 1.34 26.99 ± 1.62 – 0.628 –
White-to-white (mm) 11.69 ± 0.34 11.71 ± 0.33 11.93 ± 0.44 0.255 <0.001
Angle-to-angle (mm) 11.77 ± 0.35 11.81 ± 0.35 11.78 ± 0.38 0.072 0.723
Anterior chamber depth (mm) 3.36 ± 0.22 3.36 ± 0.23 3.26 ± 0.27 0.847 <0.001
Anterior chamber width (mm) 11.90 ± 0.44 11.91 ± 0.43 11.80 ± 0.37 0.514 <0.001
Crystalline lens rise (μm) −75.48 ± 166.02 −60.61 ± 174.28 64.97 ± 194.63 0.096 <0.001
Central corneal thickness (μm) 528.66 ± 35.22 525.53 ± 34.05 534.3 ± 30.14 0.068 0.020
Pupil size (mm) 6.64 ± 0.71 6.63 ± 0.70 3.10 ± 0.52 0.896 <0.001
ICL power (Diopters) −10.84 ± 2.27 −10.81 ± 2.34 −7.79 ± 3.49 0.839 <0.001
Toric ICL (%) 1072 (38.9) 286 (41.3) 135 (46.6) 0.015
Achieved ICL size 0.414 <0.001
12.1 mm (%) 1279 (46.4) 335 (48.3) 99 (34.1)
12.6 mm (%) 1301 (47.2) 321 (46.3) 152 (52.4)
13.2 mm (%) 175 (6.3) 37 (5.2) 38 (13.1)
13.7 mm (%) 1 (0.0) 1 (0.1) 1 (0.3)
Postoperative achieved ICL vault (μm) 515.48 ± 170.73 514.39 ± 174.85 476.56 ± 249.06 0.905 0.004

ICL, implantable collamer lens.
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Figure 3. The feature space visualized using the 3D t-SNE technique. (A) The feature space without embedded ICL size to show data
distribution labeled by ICL size. (B) The feature space with embedded ICL size to show data distribution labeled by the postoperative ICL
vault.

Table 2. Postoperative ICL Vault Prediction Performance of Machine Learning and Conventional Models Via
Fivefold Cross Validation

Mean Vault ± SD (μm) MAE ± SD (μm) MedAE (μm) RMSE (μm) P Value for MAE

Achieved ICL vault (target value) 514.39 ± 174.85 – – – –
Predicted ICL vault Stacking ensemble (XGBoost + LightGBM) 517.47 ± 125.45 99.67 ± 76.69 84.72 125.73 Reference

Average ensemble (XGBoost + LightGBM) 513.96 ± 126.21 100.46 ± 75.53 86.12 125.65 0.227
XGBoost (single model) 509.78 ± 116.46 104.54 ± 78.70 89.85 130.82 <0.001
Random forest 511.36 ± 129.53 104.50 ± 78.47 87.61 130.65 <0.001
Support vector machine 511.17 ± 99.20 109.68 ± 87.06 92.92 140.00 <0.001
Linear regression 513.64 ± 120.76 106.63 ± 78.81 91.75 132.56 <0.001
Manufacturer’s nomogram (WTW + ACD) 509. 34 ± 77.95 125.49 ± 92.10 110.12 155.62 <0.001
NK formula22 (ACW + CLR) 516.42 ± 77.22 123.58 ± 93.07 105.76 154.67 <0.001

ACD, anterior chamber depth; ACW, anterior chamber width; CLR, crystalline lens rise; ICL, implantable collamer lens; Light-
GBM, light gradient boostingmachine; MAE,mean absolute prediction error; MedAE,median absolute prediction error; RMSE,
root mean square error; SD, standard deviation; WTW, white-to-white.

stacking ensemble also outperformed the manufac-
turer’s nomogram and the NK formula (P < 0.001). A
similar tendency was observed forMedAE andRMSE,
demonstrating that the stacking ensemble was the best
among the ICL vault prediction methods.

We examined the feature importance identified by
the SHAP technique and averaged across all predic-
tions of the stacking ensemble model in the fivefold
cross validation. Because the ICL size is not only an
input feature but also a prediction target, we evaluated
themachine learningmodels with andwithout ICL size
to predict ICL vault (Figs. 4A, 4B). In the model with
ICL size, the SHAP values showed that ICL size was
the most important predictor of ICL vault. Among the
remaining important features, ACW, ACD, ICL power,
CLR, ATA, pupil size, WTW, age, and the toric lens
had a strong effect on the trainedmodel.When the ICL
size was excluded from the machine learning model,
ACD was the most important factor among the input
features (Figs. 4C, 4D).

Box plots according to the absolute error are shown
in Figure 5A. The distributional characteristics of vault
prediction demonstrate that machine learningmethods
are better than classic lens selectionmethods. Figure 5B
shows the percentage of eyes within a given range
of the ICL vault prediction errors. In the fivefold
cross validation, the stacking ensemble model showed
the highest predictability based on the discrete error
range analysis. The correlation coefficient between
the achieved vault and prediction using the stacking
ensemble model was 0.678 with a P value < 0.001
(Fig. 6A). When we used the stacking ensemble model
in the fivefold cross validation, 62% of the eyes were
within the range of -99 to 100 μm.

Validation of the stacking ensemble model on the
internal (Table 3) and external (Table 4) validation
datasets also yielded better performance than the
classic methods (P value < 0.001), achieving MAEs of
106.88 μm in the internal validation and 143.69 μm in
the external validation. These results showed that the
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Figure 4. Global feature importance estimates selected by the SHAP technique using the proposed ensemblemodel. The model is
based on XGBoost and lightGBM to predict postoperative ICL vault. (A) Total sum of SHAP importance from the ensemble model with ICL
size. (B) The summary plot showing SHAP feature importance distributions. (C) Total sum of SHAP importance from the ensemble model
without ICL size.

Figure5. Comparisonofpostoperative ICLvaultpredictionperformanceofmachine learningandconventionalmodels viafivefold
cross validation. (A) Box plot of the absolute error values for the predicted vault. (B) Proportions of eyes within a given range of absolute
errors for the predicted vault.

MAEs of the machine learning methods decreased in
the validation datasets. In Figure 7, the box plots of the
prediction methods in the internal validation showed
that the model performed reasonably well at predicting
the ICL vault compared with the classic methods. In
the internal and external validation datasets, the Bland-
Altman plots revealed that our stacking ensemble
model slightly overestimated when actual vault values
were low and slightly underestimated when vault values
were high (Fig. 8). Table 5 shows the multiclass classi-

fication results for the internal and external valida-
tion datasets when the ICL size was selected using the
postoperative vault prediction methods. In this analy-
sis, we excluded the outliers where the cases could
not be confirmed as reference standards. The stack-
ing ensemble model showed better multiclass classifica-
tion performance than that of other methods. Consid-
ering patients with 400 μm ≤ achieved ICL vault
≤ 600 μm, the multiclass accuracies of the proposed
ensemble method for ICL sizing were 75.9% (Cohen’s
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Figure 6. Performance of the stacking ensemble machine learning model via fivefold cross validation. (A) Distribution of the
achieved vault against the predicted vault. (B) Distribution of the postoperative vault error to show the accuracy of the predicted vault
to the intended target vault.

Table 3. Postoperative ICL Vault Prediction Performance of Machine Learning and Conventional Models in the
Internal Validation Dataset From the Korean Patients (Internal Validation)

Mean Vault ± SD (μm) MAE ± SD (μm) MedAE (μm) RMSE (μm) P Value for MAE

Achieved ICL vault (target value) 516.82 ± 195.98 – – – –
Predicted ICL vault Stacking ensemble (XGBoost + LightGBM) 517.76 ± 134.52 106.88 ± 90.67 82.91 140.14 Reference

Average ensemble (XGBoost + LightGBM) 517.18 ± 127.31 107.40 ± 98.49 83.09 145.69 0.678
XGBoost (single model) 514.72 ± 124.08 110.33 ± 100.31 84.50 149.08 0.018
Random forest 517.45 ± 123.89 110.74 ± 100.35 85.05 149.42 0.008
Support vector machine 518.92 ± 103.71 123.78 ± 114.30 97.54 168.44 <0.001
Linear regression 517.10 ± 115.21 112.31 ± 99.67 86.78 150.14 <0.001
Manufacturer’s nomogram (WTW + ACD) 520.11 ± 79.91 138.16 ± 114.89 118.54 179.65 <0.001
NK formula22 (ACW + CLR) 515.48 ± 79.98 133.12 ± 121.12 107.56 179.93 <0.001

ACD, anterior chamber depth; ACW, anterior chamber width; CLR, crystalline lens rise; ICL, implantable collamer lens; Light-
GBM, light gradient boostingmachine; MAE,mean absolute prediction error; MedAE,median absolute prediction error; RMSE,
root mean square error; SD, standard deviation; WTW, white-to-white.

Table 4. Postoperative ICL Vault Prediction Performance of Machine Learning and Conventional Models in the
External Validation Dataset from the Japanese Patients (External Validation)

Mean Vault ± SD (μm) MAE ± SD (μm) MedAE (μm) RMSE (μm) P Value for MAE

Achieved ICL vault (target value) 476.56 ± 249.06 – – – –
Predicted ICL vault Stacking ensemble (XGBoost + LightGBM) 473.04 ± 164.94 143.69 ± 118.76 118.68 186.29 Reference

Average ensemble (XGBoost + LightGBM) 473.57 ± 162.70 144.07 ± 138.89 105.89 199.95 0.927
XGBoost (single model) 468.22 ± 143.11 144.11 ± 141.72 100.01 201.94 0.923
Random forest 473.41 ± 144.97 145.22 ± 141.38 108.35 202.51 0.723
Support vector machine 474.56 ± 107.32 166.15 ± 163.48 134.49 232.90 0.002
Linear regression 476.38 ± 139.56 146.58 ± 138.91 108.74 201.78 0.500
Manufacturer’s nomogram (WTW + ACD) 522.97 ± 93.06 179.36 ± 150.69 156.28 234.09 <0.001
NK formula22 (ACW + CLR) 456.12 ± 83.09 167.45 ± 169.90 127.45 238.35 0.002

ACD, anterior chamber depth; ACW, anterior chamber width; CLR, crystalline lens rise; ICL, implantable collamer lens; Light-
GBM, light gradient boostingmachine; MAE,mean absolute prediction error; MedAE,median absolute prediction error; RMSE,
root mean square error; SD, standard deviation; WTW, white-to-white.

κ = 0.572) and 67.4% (Cohen’s κ = 0.417) in the inter-
nal and external validation, respectively. Considering
patients with 300 μm ≤ achieved ICL vault ≤ 700 μm,
which is a more generous criterion that involves more
patients, the accuracies were 75.6% (Cohen’s κ = 0.567)

and 65.0% (Cohen’s κ = 0.366) in the internal and
external validations, respectively.

The developed model was applied to a pre-
operative case example from the internal validation
dataset (Fig. 9). Using preoperative measurements, the
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Figure 7. Comparison of postoperative ICL vault prediction performance in the internal and external validation datasets. (A) Box
plot of the absolute error values for the predicted vault in the internal validation dataset. (B) Proportions of eyes within a given range of
absolute errors for the predicted vault in the internal validation dataset. (C) Box plot of the absolute error values for the predicted vault
in the external validation dataset. (D) Proportions of eyes within a given range of absolute errors for the predicted vault in the external
validation dataset.

Figure 8. Bland-Altman plots for the achieved ICL vault and predicted vault using the ensemble machine learning model. (A) The
result from the internal validation dataset. (B) The result from the external validation dataset.

NK formula, random forest, and stacking ensemble
predicted the postoperative ICL vault to be 338 μm,
573 μm, and 642 μm, respectively, using a 12.6 mm
ICL. All methods indicated that 12.6 mm was the
optimal size for ICL implantation in this case. The
force plot based on the explainable machine learning

technique showed that the ICL size contributed to an
increase in the predicted vault value, whereas ACD,
ICL power, and ATA contributed to the decrease.
Postoperative AS-OCT demonstrated that the stack-
ing ensemble showed a lower error than the other
techniques.
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Table 5. Multiclass Classification Performance for ICL Size Selection Among the Cases With Good Outcomes in
the Internal and External Validation Datasets

Included Cases*

Cases of 400 μm ≤ Achieved ICL Vault ≤
600 μm (Target Vault = 500 μm)

Cases of 300 μm ≤ Achieved ICL Vault ≤
700 μm (Target Vault = 500 μm)

Dataset Model

Multiclass ICL
Size Selection
Accuracy (%) Cohen’s κ

Multiclass ICL
Size Selection
Accuracy (%) Cohen’s κ

Internal validation Stacking ensemble (XGBoost + LightGBM) 75.9 0.572 75.6 0.567
Random forest 74.1 0.542 73.8 0.564
Manufacturer’s nomogram (WTW + ACD) 41.4 0.177 38.9 0.109
NK formula22 (ACW + CLR) 57.4 0.337 52.8 0.266

External validation Stacking ensemble (XGBoost + LightGBM) 67.4 0.417 65.0 0.366
Random forest 65.3 0.390 64.4 0.354
Manufacturer’s nomogram (WTW + ACD) 48.4 0.217 36.1 0.026
NK formula22 (ACW + CLR) 64.2 0.416 61.1 0.349

*In this analysis, we excluded the outliers and only chose caseswith good outcomes to build a reference standard validation
dataset.

ACD, anterior chamber depth; ACW, anterior chamber width; CLR, crystalline lens rise; ICL, implantable collamer lens; Light-
GBM, light gradient boosting machine; WTW, white-to-white.

Figure 9. A case example of postoperative ICL vault prediction and lens size selection using the proposed web-based ensemble machine
learning application.

Discussion

We applied the ensemble machine learning
algorithm to clinical data to develop a postoperative
ICL vault prediction model. The dataset was larger
than those of any previous study and we provided a

state-of-the-art comparison of vault prediction and
ICL size selection methods. Our ensemble model
based on XGBoost and lightGBM showed better
MAE than the other machine learning techniques and
classic prediction methods when applied to the internal
(prospective design) and external validation datasets
(other country datasets). A web-based application was
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also developed for practice (http://loocus-iolcalc.ai),
which made our ensemble model easily accessible to
clinicians. Although the performance was not satisfac-
tory for direct application without a clinician review,
the proposed machine learning model significantly
improved ICL size selection accuracy in the internal
and external validation datasets.

Implantation of ICLs offers good results with
safety, stability, and predictability. However, select-
ing the optimal ICL size by predicting the postoper-
ative vault remains a very important issue. A previ-
ous study showed that approximately 1% of eyes with
ICL implantation required lens extraction.17 The most
common reason for ICL extractionwas cataract forma-
tion caused by mechanical contact because the vault
gap was too small. Too large vaulting could result in
angle-closure with elevated IOP from a nonpupillary
block mechanism.18 Oval-shaped pupil or endothelial
cell loss may be associated with an abnormal postoper-
ative ICL vault.19 Clinicians can use proper ICL vault
prediction models to select the optimal ICL size for
successful vision correction without complications.

In current clinical practice, beginner clinicians rely
on the predicted vault values provided by the manufac-
turer’s nomogram or several formulas. The manufac-
turer’s nomogram uses WTW and ACD; however, they
do not reflect practical information about the space
where the lens will fit.7 A previous study has shown
that the distance of the sulcus-to-sulcus measured
by UBM could provide better vault predictability for
selecting the optimal ICL size than the manufac-
turer’s nomogram, but this measurement using UBM
is subjective and time-consuming.20 Recently, the
measurements of ACW, ATA, or CLR using AS-
OCT have been used to predict the postoperative vault
with the linear regression technique.21 After AS-OCT
devices were widely used, the NK formula, which was
developed based onACWandCLR, has been commer-
cially available and widely used for ICL sizing.22
Researchers have updated the NK formula,23 however,
linear regression has a limitation of explaining the
relationships between measurements. In our study, the
t-SNE graphs show the nonlinear distribution of the
dataset according to the ICL size or vault. Kamiya et
al. developed the first machine learning model using
the random forest algorithm to predict the postopera-
tive vault using pre-operative measurements. However,
the study did not compare their model to previous
methods, and the developedmodel had practical limita-
tions. In this study, we developed a web-based and
easily accessible tool using an ensemble machine learn-
ing technique for ICL size prediction based on a larger
dataset than in previous studies. Our machine learn-
ing calculator will effectively help both beginner and

experienced clinicians to minimize surgical complica-
tions, such as anterior subcapsular cataracts or angle-
closure glaucoma.

Recently, the ensemble technique has been success-
fully used in many complex machine learning tasks
owing to its generalizability.24,25 We also found its
strength in this study because ICL sizing is also
a nonlinear and complex problem.26 This finding
indicates that more accurate ICL vault prediction for
ICL sizing can be obtained by combining machine
learning models after extensive validation in other
datasets. We adopted XGBoost and the stacking
ensemble technique, which has been widely used to
achieve better performance in many Kaggle compe-
titions and research.27,28 Recently, the combination
of single XGBoost models using a stacking ensem-
ble technique showed better performance than other
machine learning algorithms did, which is consis-
tent with our observations.29 In our experience, the
proposed ensemble technique showed superior perfor-
mance to that of other state-of-the-art machine learn-
ing methods through trial and error. It is expected to be
used inmore areas in the future due to its ease of imple-
mentation and explainability.14 We believe that our
novel approach and large dataset will provide better
performance for ICL sizing than previously proposed
methods.

We found that all machine learning techniques
showed reduced performance in the validation datasets,
although they outperformed the classic methods.
This decrease in the performance of machine learn-
ing models in independent validation sets has been
commonly reported.30 Although we were able to
develop an accurate ICL vault prediction model from
a large dataset of a single-center, the model could
be overfitted to a training dataset. Overfitting to the
training dataset may lead to a lack of generalizability
in machine learning tasks. Therefore, testing on real-
world data is required before the clinical use of machine
learning systems.31 To overcome this problem, we
adopted the ensemble learning technique and validated
themodel using unseen datasets, including the prospec-
tively designed dataset and completely independent
external dataset. Our proposed method performed well
across all datasets, including the Korean and Japanese
datasets.

It should be noted that there are obstacles to apply-
ing the proposed machine model. Additional training
might be necessary before our model is applied to
other centers because there are several factors in
ocular measurements that affect surgical outcomes.
AS-OCTmeasurements were performed under station-
ary dark conditions in Korea and bright conditions in
Japan. However, the developed model was based on

http://loocus-iolcalc.ai


Ensemble ML Application for ICL Sizing TVST | May 2021 | Vol. 10 | No. 6 | Article 5 | 12

measurements under dark conditions. Some
researchers have shown that the ICL vault varies
significantly under bright conditions. According to a
previous study, the mean postoperative vault range
was 167 ± 70 μm, which is relatively large enough
to affect the results of the study.26 We noticed that
we did not control the ambient illumination strictly
during AS-OCT measurement in both the Korean and
Japanese centers. The different light conditions in both
centers certainly had a significant negative impact on
performance in the external validation. The effects of
the surgeon’s skill may also have a significant impact
on surgical outcomes, such as ICL vault. These factors
indicate a potential limitation in the application of the
trained model for out-of-distribution data.

A major advantage of the proposed method is that
it is based on multimodal measurements from a large
dataset. Inclusion of many pre-operative measure-
ments can improve lens selection accuracy through
machine learning.We built an ensemblemachine learn-
ing model using XGBoost and lightGBM to create
a sophisticated predictive model without overfitting.
However, using many input parameters can be consid-
ered as a disadvantage because it is difficult for users
to understand why vault prediction is performed. The
classic methods are easy to understand because they
use simple linear relationships with fewer pre-operative
variables.

Our study has several limitations. First, the datasets
consisted of East Asian populations, although two
centers were involved in the study. A previous study
demonstrated that there are ethnic differences between
Asian and non-Asian eyes in the anterior segment of
the eyes.32 According to a study previously conducted
on Caucasian eyes, the CLR values differ greatly from
that of the East Asian eye dataset of this study.33 Due
to the anatomic difference in the anterior segment,
the use of a large lens (13.7 mm) was extremely rare
in our study. Therefore, it is not confirmed whether
our proposed model can be applied to other ethnic
groups when considering the differences betweenAsian
and Caucasian eyes. Second, our proposed model was
based on a single-center dataset. We anticipate that
larger, more diverse ICL cases with multicenter studies
should be performed to assess the feasibility of our
method. Third, the analysis was based on a retrospec-
tive design, which had several defects due to medical
considerations. Because the use of our application
could influence clinicians’ ICL size choice, intervention
studies with randomized controlled trials are needed
to confirm the effectiveness of the proposed machine
learning model. Fourth, our study was conducted with
a relatively short follow-up period; it is possible that
the ICL vault could further change over time. However,

the stability of outcomes of ICL implantation was
confirmed in observational studies.34 Fifth, the distri-
bution of ICL sizes in the datasets was imbalanced.
In particular, the number of 13.7 mm was extremely
small. Due to this distribution, we were unable to build
a direct multiclass classificationmodel without postop-
erative vault prediction. Sixth, the machine learning
model was trained usingAS-OCTmeasurements under
dark conditions. Future studies should consider the
lighting condition because it can significantly affect
important parameters, such as vault, pupil diameter,
iris thickness, and angle opening distance.26,35 Last,
endothelial cell loss was not evaluated, although it is
a well-known complication of ICL implantation.

Conclusion

Applying the ensemble machine learning approach
to a large dataset of patients with ICL (Visian ICL
with KS-aquaport) implantation resulted in a more
accurate prediction of vault size and selection of the
optimal ICL size. We developed a web-based appli-
cation to facilitate the use of the machine learning
calculator for clinicians. After extensive validation with
other datasets, a data-driven model could help both
clinicians and patients minimize the risk of postopera-
tive complications of ICL implantation.
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