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Abstract

Genetic variation in gene expression makes an important contribution to phenotypic variation and susceptibility to disease.
Recently, a subset of cis-acting expression quantitative loci (eQTLs) has been found to result from polymorphisms that affect
RNA stability. Here we carried out a search for trans-acting variants that influence RNA stability. We first demonstrate that
differences in the activity of trans-acting factors that stabilize RNA can be detected by comparing the expression levels of
long-lived (stable) and short-lived (unstable) transcripts in high-throughput gene expression experiments. Using gene
expression microarray data generated from eight HapMap3 populations, we calculated the relative expression ranks of long-
lived transcripts versus short-lived transcripts in each sample. Treating this as a quantitative trait, we applied genome-wide
association and identified a single nucleotide polymorphism (SNP), rs6137010, on chromosome 20p13 with which it is
strongly associated in two Asian populations (p = 4610210 in CHB – Han Chinese from Beijing; p = 161024 in JPT – Japanese
from Tokyo). This SNP is a cis-eQTL for SNRPB in CHB and JPT but not in the other six HapMap3 populations. SNRPB is a core
component of the spliceosome, and has previously been shown to affect the expression of many RNA processing
factors. We propose that a cis-eQTL of SNRPB may be directly responsible for inter-individual variation in relative
expression of long-lived versus short-lived transcript in Asian populations. In support of this hypothesis, knockdown of
SNRPB results in a significant reduction in the relative expression of long-lived versus short-lived transcripts. Samples with
higher relative expression of long-lived transcripts also had higher relative expression of coding compared to non-coding
RNA and of RNA from housekeeping compared to non-housekeeping genes, due to the lower decay rates of coding RNAs,
particularly those that perform housekeeping functions, compared to non-coding RNAs.
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Introduction

RNA stability plays a major role in gene expression regulation

in virtually all organisms, from bacteria to mammals [1,2,3].

Indeed, steady-state gene expression levels represent the equilib-

rium of two opposing biological processes: RNA transcription and

RNA decay. Changes in gene expression levels can result from

alteration in either of these processes [1,4]. Recent studies have

investigated RNA stability using high-throughput techniques in

diverse organisms, from yeast [5,6] to Arabidopsis [7], mouse

[8,9,10], and human [10,11,12,13,14], and for both coding and

non-coding RNAs [9,15]. Several of these studies have reported

strong correlations between RNA stability and steady-state gene

expression levels. In addition, RNA stability has been shown to be

related to physiological function [8,12]. For example, genes

encoding proteins involved in housekeeping functions tend to have

stable mRNAs [10,15]. The modulation of RNA stability can, in

turn, have a major impact on cellular processes, including

proliferation, differentiation, and adaptation to environmental

stimuli [1,2,3]. Dysregulation of RNA stability has been linked to

several human diseases, such as chronic inflammation [16],

cardiovascular disease and cancer [17,18,19].

The regulation of RNA stability is achieved through interactions

between trans-acting RNA-binding proteins and cis-acting elements

within RNAs [20,21]. Among RNA-binding proteins, heteroge-

neous nuclear ribonucleoproteins (hnRNPs) are key factors that

regulate major steps of gene expression, including pre-mRNA

processing, RNA stability, and translation [22,23,24]. For

example, HNRNPA2B1, a member of the hnRNP family, was

found to stabilize a large number of target transcripts carrying a

conserved structural RNA element in the 39 untranslated regions

[13]. Knockdown of HNRNPA2B1 resulted in a remarkable

increase in the relative decay rate of the target transcripts and,

consequently, a significant decrease in their expression levels [13].

The contribution of RNA decay to gene expression levels was also

investigated in a recent study where a subset of cis-acting

expression quantitative loci (cis-eQTLs) was found to be a

consequence of variation in decay rates [25]. A moderate number

of genetic variants were found to significantly associate with inter-

individual variation in both gene expression and RNA decay, for

which variation in RNA decay could explain the association with
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gene expression level [25]. Despite increased appreciation of the

role of RNA stabilization in determining gene expression levels

there has been no investigation of trans-acting genetic variants that

affect the stabilization of RNA.

Here we investigate factors that affect RNA stability in trans. We

first show that perturbation of RNA stabilization factors that affect

multiple genes can be inferred from gene expression data. Given a

dataset of RNA decay rates and expression levels, we define the

RNA stability score (RS-score), based on the expression of long-

lived transcripts relative to short-lived transcripts. Knocking down

HNRNPA2B1, which has been shown to be involved in stabiliza-

tion of a large proportion of RNAs [13], leads to a significant

reduction in the RS-score. Using gene expression microarray data

generated from eight HapMap3 populations [26], we identified a

SNP, rs6137010, on chromosome 20p13 that is strongly associated

with the RS-score in Asian populations. This SNP is a cis-eQTL of

SNRPB, a gene that encodes a core component of the spliceosome

and has been shown to modulate the expression of many RNA

processing factors [27]. The C allele of rs6137010 is associated

both with higher expression of SNRPB and higher RS-score.

Knockdown of SNRPB results in a significant decrease in the RS-

score, suggesting that the cis-eQTL for SNRPB is responsible for

the observed genetic variation in RS-score in Asian populations.

Results and Discussion

Perturbation of RNA stabilization is detectable from gene
expression data

We hypothesized that changes in the activity of trans-acting

factors that are involved in stabilizing multiple RNAs could be

detectable by analyzing gene expression profiles. To test this

hypothesis we obtained gene expression data from a published

study in which the heterogeneous ribonucleoprotein,

HNRNPA2B1, was knocked down [13]. In the original study this

gene was shown to play a role in the stabilization of RNAs

containing an abundant structural motif and RNAs containing this

motif were downregulated in the knockdown samples compared to

controls [13]. However, even in the absence of knowledge of the

specific trans-acting factor and target RNAs involved it is possible

to infer the effects of the knockdown on RNA stability. This is

because stable, long-lived transcripts are enriched among the

genes that are targeted by HNRNPA2B1 [13].

We divided genes into two groups by using RNA decay rate

data from Goodarzi et al. [13]. The first group contains genes

expressing long-lived RNAs (decay rate lower than the mean

across genes) and the second group contains genes expressing

short-lived RNAs (decay rate higher than the mean). We then

defined the RS-score for a sample as the difference in the

expression rank between these two groups of genes in the sample

(see Methods for more details). A higher RS-score implies

relatively higher expression levels of long-lived or stable RNAs.

A similar idea has previously been used to infer the impact of

miRNA regulation on target genes using gene expression data

[28]. The regulatory effect score (RE-score) of a miRNA was

defined as the difference in the mean expression rank between

targets of the miRNA and non-targets. A higher RE-score

indicates lower expression levels of target genes and, thereby, a

stronger effect of the corresponding miRNA. Analogously, a

higher RS-score implies that the long-lived RNAs that are more

likely to be subject to stabilization by trans-acting factors are

relatively more highly expressed in a sample.

The RS-score of the HNRNPA2B1 knockdown was significantly

lower than RS-score of the control in three independent replicates

(p = 3.761023; paired t test) (Figure 1). This is consistent with

expectations because HNRNPA2B1 is one of the heterogeneous

nuclear ribonucleoproteins that influence pre-mRNA processing

and other aspects of RNA metabolism and transport. More

importantly, HNRNPA2B1 is involved in stabilizing a large number

of genes, particularly genes expressing long-lived RNAs, by

binding to a structural RNA motif of target genes [13].

HNRNPA2B1 knockdown caused a significant reduction in the

expression levels of long-lived RNAs (Figure S1), resulting in lower

RS-scores in the knockdown samples. These observations suggest

that gene expression levels can be used to infer the effects of trans-

acting factors that are involved in stabilizing large numbers of

genes.

The genetics of trans-acting factors that affect RNA
stability

We obtained gene expression data generated from lymphoblas-

toid cell lines of 726 individuals in eight HapMap3 populations

[26] (Table S1). Using the half-life data from HeLa cells [15], we

calculated the RS-score for each of these individuals (see

Methods). Interestingly, the RS-score was well correlated with

the expression level of HNRNPA2B1 in most of the populations

(Table S2), with the strongest correlation in CHB (Spearman

rho = 0.48; p = 8.461026). Because the experimental knock down

of HNRNPA2B1 results in a reduction in the RS-score, we

hypothesized that cis-eQTLs affecting the expression level of

HNRNPA2B1 should also be associated with RS-score. This is the

case for four cis-eQTLs of this gene in two of the HapMap3

populations (Table S3).

To search more generally for genetic variants associated with

the RS-score we used a genome-wide association study (GWAS)

approach, treating the RS-score as a quantitative trait. We carried

out additive tests of association between single nucleotide

polymorphisms (SNPs) genotyped as part of the HapMap3 project

Figure 1. HNRNPA2B1 knock-down results in reduced RS-score.
RS-score was calculated for HNRNPA2B1 knockdown samples and
control samples separately in three independent replicates (Rep1, Rep2,
and Rep3).
doi:10.1371/journal.pone.0079627.g001
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and the RS-score in each population separately (see the Methods

section for more details). We found one strong association between

a SNP, rs6137010, on chromosome 20p13 and RS-score in the

CHB population (p = 4.4610210; Figure 2). Interestingly, this

association is replicated in the other Asian population – JPT

(p = 1.261024). We used a label permutation procedure to check

the robustness of this result to failures in modelling assumptions

(see Methods). The association between rs6137010 and RS-score

in CHB was stronger than the best associations in each of 1,000

label permutations. Furthermore, the Bonferroni-adjusted p-value

of this association is very significant (Bonferroni p = 5.961023).

Therefore, the association between rs6137010 and RS-score in

CHB is robust, genome-wide significant, and replicated in a

second population (JPT).

To increase the statistical power of the association tests, we

combined individuals from different populations. Because different

populations have different ancestries combining individuals from

these populations can lead to spurious associations, resulting from

structure in the combined population. To tackle this problem, we

applied a principal components analysis (PCA) approach [29] (see

Methods for more details) to model ancestry differences among all

726 individuals. In a scatter plot of the first and second principal

components (Figure S2) three broad clusters are evident, consisting

of the African populations, the Asian populations and CEU,

MEX, GIH. Given these clusters, we considered four ways of

combining populations: CHB+JPT (Asian populations), YR-

I+MKK+LWK (African populations), CEU+GIH+MEX, and

finally all 8 populations (ALL). For each combination, we

performed a principal components analysis and included the first

five principal components as covariates in the GWAS regression

models (see Methods). The SNP rs6137010 was strongly associated

with the RS-score in CHB+JPT (p = 2.0610212; Figure S3). This

association is also the best among 1000 permutations and is

genome-wide significant (Bonferroni p = 2.761025). In total, 6

genetic markers showed genome-wide significant association

(Bonferroni p,0.05) but the association with rs6137010 in

CHB+JPT was the strongest (Table 1). The P-P plots showed

that the p-value of the association with the RS-score at rs6137010

is very different to other loci in the Asian populations (Figure 3).

We found no evidence of population stratification in the GWAS

tests of the Asian populations as their genomic inflation factors are

less than 1.05 (Table S4). However, unsurprisingly there was

evidence of population stratification in three combined popula-

tions: CEU+GIH+MEX, YRI+LWK+MKK and ALL (Table S4;

Figure S4).

To check the effect of the choice of half-life data on this result,

we compared RS-scores calculated using half-life data from HeLa

cells and RS-scores calculated using B-cell half-life data [14] and

found that they were highly correlated in all populations

(Spearman rho = 0.7360.15). It has previously been reported that

RNAs involved in housekeeping functions tend to have long half-

life [10,15]. As an alternative to using half-life data, which has the

caveat that it may be cell type dependent, we calculated the RS-

score by grouping genes based on whether they are housekeeping

or not, using data from Chang et al. [30]. We found that the RS-

score calculated by grouping the genes in this way was highly

correlated with the RS-score based on the half-life in HeLa cells in

all populations (Spearman rho = 0.7060.09). Moreover, the RS-

score (based on the housekeeping data) was significantly associated

with rs6137010 in the combined CHB+JPT population

(p = 7.1610213; Bonferroni p = 9.561026). We also calculated an

equivalent score by considering protein-coding versus non-coding

genes. Non-coding genes have been found to have shorter half-life

than protein-coding genes [9,15]. This score was also highly

correlated with the RS-score calculated from the half-life data and,

again, significantly associated with rs6137010 in CHB+JPT

(p = 6.2610210; Bonferroni p = 8.361023). These two results are

of interest, beyond providing an alternative way to group genes

that is not dependent on RNA half-life data that may differ

between cell types. They suggest that the proportion of the RNA

pool corresponding to non-coding and tissue-specific genes is

associated with rs6137010 in Asian populations.

Searching for causal SNPs and causal genes
To search for causal SNPs that may explain the GWAS results

we mapped each SNP that shows genome-wide significant

association with the RS-score to a gene if the SNP is either within

the gene or is a cis-eQTL (cis-expression Quantitative Trait Locus)

of the gene using cis-eQTL data from Stranger et al. [26] (Table 1).

We found that rs6137010, the SNP with the strongest GWAS

signal, mapped close to the SNRPB gene, which is involved in

RNA processing. SNRPB encodes part of the core small nuclear

ribonucleoprotein particles (snRNPs) that are major components

of the spliceosome complex. Although it is 352 kb downstream,

rs6137010 is significantly associated with the expression level of

SNRPB in both CHB (rho = 0.50; p = 2.361026) and JPT

(rho = 0.32; p = 3.761023), but not significantly associated with

SNRPB expression in any of the other populations studied. The

association between rs6137010 and SNRPB is strongest among all

genes within 1 Mb-window centered on the SNP. Furthermore,

the SNP is within an enhancer region as evidenced from whole-

genome chromatin state segmentation data [31] available through

the UCSC genome browser [32]. These results show that

rs6137010 is a cis-eQTL of SNRPB in Asian populations. Changes

in the expression level of SNRNPB have been reported to affect

alternative splicing and abundance of a large number of RNA

processing factors [27]. rs6137010 has two alleles, T and C, with C

the minor allele in Asian populations but the major allele in the

other HapMap3 populations. Asian individuals carrying the C

allele at this SNP had higher expression levels of SNRPB

(Figure 4A) and higher RS-scores (Figure 4B). This suggests that

the association between rs6137010 and inter-individual variation

Figure 2. Manhattan plot for GWA with RS-score in CHB. The
plot shows -log10 of P-values from tests of association between
individual SNP markers and the RS-score. Successive chromosomes are
shown in different colors.
doi:10.1371/journal.pone.0079627.g002
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in RNA stability could be mediated by changes in SNRPB

expression levels.

To identify genes across the human genome whose expression

levels are significantly associated with rs6137010, we carried out

trans-eQTL mapping for this SNP by fitting Spearman rank

correlation models and considering only associations with

FDR,0.1. FDRs were calculated using the Benjamini and

Hochberg procedure [33] as implemented in R [34]. We found

6,396 and 2,585 genes associated with rs6137010 in CHB and

JPT, respectively. Among these, 3,194 (in CHB) and 429 (in JPT)

genes were positively correlated with the minor allele count of

rs6137010. Among the genes that were associated with rs6137010,

25.2% were putative targets for AU-rich element decay, compared

to 17.6% of other genes (p = 0.01, Fisher exact test). We did not

find any genes significantly associated with the SNP in other

populations using the same FDR threshold. We carried out Gene

Ontology (GO) analyses using DAVID [35] for the positively

correlated genes and, interestingly, found that they were enriched

for the GO term ribonucleoprotein complex in both CHB

(p = 1.9610225; Table S5) and JPT (p = 3.761025). The ribonu-

cleoprotein complex is known to be involved in many steps of

RNA processing such as pre-mRNA splicing and RNA transpor-

tation and stabilization. Both HNRNPA2B1 and SNRPB mentioned

above belong to the ribonucleoprotein complex. These results

indicate that rs6137010 is a trans-eQTL cluster that is dispropor-

tionately associated with the expression levels of ribonucleoprotein

complex genes.

We next turned to investigating further the possible role of

SNRPB in mediating the association of rs6137010 with the RS-

score. We obtained gene expression microarray data generated

from HeLa cells in which SNRPB was knocked down and

compared to controls [27]. Using the HeLa half-life data [15]

we calculated and compared RS-scores between the two

conditions and found a significant reduction of the RS-score in

Figure 3. P-P plots of the association with RS-score in A) CHB and B) CHB+JPT. This figure compares the observed distribution of the –log10

P-values to the expected distribution, given that the P-values come from a uniform distribution in the interval zero to one (as expected under the null
hypothesis). The Y-axis shows quantiles of the observed distribution and the X-axis shows the corresponding quantiles under the uniform
distribution. The red line is used to compare the expected and observed values.
doi:10.1371/journal.pone.0079627.g003

Table 1. Markers associated with the RS-score at Bonferroni p,0.05.

SNP Location Function Associated gene Population P-value Bonferroni

rs6137010 20:2038118 cis-eQTL SNRPB CHB+JPT 2.0610212 2.761025

rs6137010 20:2038118 Intron STK35 CHB+JPT 2.0610212 2.761025

rs6137010 20:2038118 cis-eQTL SIRPA ALL 5.4610211 9.061024

rs6137010 20:2038118 intron STK35 ALL 5.4610211 9.061024

rs11136253 8:145179783 cis-eQTL ZNF707 ALL 1.5610210 2.561023

rs11136253 8:145179783 coding-synon OPLAH ALL 1.5610210 2.561023

rs6137010 20:2038118 cis-eQTL SNRPB CHB 4.4610210 5.961023

rs6137010 20:2038118 Intron STK35 CHB 4.4610210 5.961023

rs4466324 7:85113458 unknown None ALL 6.0610210 1.161022

rs17127419 11:122878168 unknown HSPA8 ALL 9.8610210 1.661022

rs12034707 1:178400832 cis-eQTL TOR1AIP1 ALL 1.861029 3.061022

rs12034707 1:178400832 intron QSOX1 ALL 1.861029 3.061022

rs10997765 10:69066422 intron CTNNA3 ALL 1.961029 3.361022

doi:10.1371/journal.pone.0079627.t001
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SNRPB knockdown (p = 1.261026 from a two-tailed t test;

Figure 5). This is consistent with expectations because depletion

of SNRPB reduces the levels of many RNA processing genes [27],

potentially affecting the stability of RNA across the transcriptome.

Furthermore, the genes that were differentially expressed upon

SNRPB knockdown were enriched for genes that showed the

strongest association (FDR,0.01) with rs6137010 in CHB

(p = 0.002 from two-tailed Fisher’s exact test). These results suggest

that rs6137010, by modulating the expression of SNRPB, may be

directly responsible for inter-individual variation in the RS-score

in CHB. Interestingly, the distribution of the RS-score was bi-

modal in both CHB and JPT (Figure 4B), consistent with the

existence of an associated locus with a large effect size. It is

tempting to speculate that an ungenotyped causal SNP in strong

linkage disequilibrium with rs6137010 may stratify the samples

between the two modes of the distribution. Higher resolution

genotype data will be necessary to test this hypothesis.

The RS-score of the knockdown of another splicing factor,

SRSF1, is also significantly lower than of the control (p = 3.461024

from a two-tailed t test), but significantly higher than of the SNRPB

knockdown (p = 1.161029 from a two-tailed t test) (Figure 5).This

indicates that knocking down SNRPB has stronger effect on the

RS-score than knocking down SRSF1. This is not surprising

because SNRPB has been found to have a stronger impact than

SRSF1 on the inclusion levels of alternative exons that are enriched

for genes encoding RNA processing [27]. SNRPB, which plays a

central role in modulating expression levels of many RNA

processing factors [27], might therefore have the strongest

influence in the RS-score among RNA processing factors. Previous

studies discovered the involvement of several splicing factors in

RNA stability [36,37]. Thus, the core splicing factor SNRPB may

have an important role in RNA stability as well.

Conclusions

Genetic variants that affect RNA stability in cis have been

shown to contribute to inter-individual variation in gene expres-

sion [25]. Here we demonstrate that the effects of knocking down

the expression of HNRNPA2B1 that stabilizes a large number of

RNAs can be detected from gene expression data. In particular,

the expression of genes expressing transcripts with a long half-life is

reduced relative to genes with short half-life transcripts. We

defined the RS-score to summarize the relative expression of long-

lived compared to short-lived transcripts. Treating the RS-score as

a quantitative trait, we performed genome-wide association and

identified a locus on chromosome 20p13 that is strongly associated

Figure 4. Stripcharts of SNRPB expression levels and the RS-score against the genotype of rs6137010 in CHB and JPT. A) SNRPB
expression levels are significantly different among the three genotypes TT, CT and CC (p = 1.261025 in CHB and p = 1.961023 in JPT from one-way
ANOVA). B) RS-scores are significantly different among the three genotypes (p = 4.3610210 in CHB and p = 7.061025 in JPT from one-way ANOVA).
The bimodal distributions of the RS-score in CHB and JPT are displayed in red and blue lines, respectively.
doi:10.1371/journal.pone.0079627.g004

Figure 5. RS-scores calculated from three samples - SNRPB
knockdown, SRSF1 knockdown and control. The control corre-
sponds to the sample transfected with nontargeting siRNA. Error bars
represent two standard errors.
doi:10.1371/journal.pone.0079627.g005
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with the RS-score in two Asian populations. This locus is a cis-

eQTL for SNRPB, a core component of the spliceosome that has

previously been shown to affect the expression of many RNA

processing factors [27]. We propose that the cis-eQTL of SNRPB

may be directly responsible for the association of the RS-score with

this locus. Consistent with this model, knockdown of SNRPB

results in a significant reduction in the RS-score.

Methods

Data
Processed gene expression data generated using the Illumina

whole genome expression array from 726 lymphoblastoid cell lines

(LCLs) in eight HapMap3 populations (CEU, CHB, GIH, JPT,

LWK, MEX, MKK, and YRI) by [26] were downloaded from

ArrayExpress [38]. Single nucleotide polymorphisms (SNPs) for

the same 726 individuals were obtained from HapMap3 (release 2)

[39]. SNPs with minor allele frequency (MAF) #1% in a

population were excluded. This resulted in between 1.1 million

and 1.3 million SNPs per population. Half-life data for 11,052

mRNAs and 1,418 ncRNAs in HeLa cells, and for 8,344 genes in

B-cells were obtained from Tani et al. [15] and Friedel et al. [14],

respectively.

RNA stability score
We defined the RNA stability score (RS-score), as a measure of

the relative expression levels of long-lived and short-lived

transcripts in a sample. We first classified all genes as either

expressing long or short lived RNAs, by setting a threshold on an

available RNA half-life or decay rate data set. Specifically, for the

HeLa half-life data [15], we chose the same threshold used by the

authors to determine whether a gene expresses long-lived (half-life

$4 hours) or short-lived (half-life ,4 hours) RNA. For the RNA

decay rate data [13], a gene was considered as expressing long-

lived RNA if its decay rate was greater than the average across

genes (corresponding to a relative decay rate greater than 0) and as

short-lived if its decay rate was less than average (corresponding to

values less than 0). We then ranked all genes in the sample by their

expression levels (a higher expression level corresponds to higher

rank value). Finally, the RS-score is defined as the difference in the

mean rank of genes expressing long-lived RNAs and genes

expressing short-lived RNAs. Therefore, higher RS-scores corre-

spond to higher relative expression of genes with longer half-life,

consistent with more efficient stabilization of RNA.

Genome-wide association test
Assuming an additive mode of inheritance, we performed linear

regression analysis to assess association of RS-score with SNP

genotypes, using PLINK v1.07 [40]. We included gender as a

covariate in the linear model to correct for any sex bias. To

combine samples from different populations, we carried out a

principal component analysis (PCA) as implemented in the

Eigensoft 4.2 [29,41]. To correct for population stratification in

genome-wide association tests, we included the first five principal

components in addition to gender as covariates in the linear

models.

Permutation testing
Applying a permutation testing procedure by Hirschhorn and

Daly [42], in each GWAS test, we carried out 1000 permutations.

In each permutation, we randomly shuffled the phenotype values,

re-ran the GWAS and recorded the best (lowest) p-value from each

run. Finally, we counted how many of these 1000 lowest p-values

are less than or equal to the original p-value being evaluated. The

permutation p is defined as this number divided by 1000 (i.e. the

proportion of the 1000 lowest p-values that are less than or equal

to the original p-value).

Analysis of RNA-seq data from SNRPB knockdown
samples

We downloaded RNA-seq data generated by Saltzman et al.

[27] from samples in which SNRPB or SRSF1 were knocked down

as well as control samples. The data consisted of three samples for

each knock down and three control samples. We mapped the

RNA-seq reads to the human genome, build hg19, using Tophat

1.4.1 (with default parameters) [43] and estimated expression

levels of RefSeq genes using Cufflinks 1.3.0 (with default

parameters) [44]. Using the HeLa half-life data [15], we calculated

the RS-score for each of the three samples.

Supporting Information

Figure S1 Gene expression levels in HNRNPA2B1
knockdown relative to control are shown separately for
genes expressing short-lived (golden) and long-lived
(dark green) RNAs in three independent replicates
(Rep1, Rep2, and Rep3). P-values are from Wilcoxon rank

sum tests that were used to compare expression levels between

these two groups of genes.

(TIFF)

Figure S2 First principal component (PC1) versus
second principal component (PC2) for all 726 individuals
from 8 populations.

(TIFF)

Figure S3 Manhattan plots for GWA with RS-score in
different populations and combined populations. Each

Manhattan plot shows the distribution of -log10 of the P-values

from tests of association between individual SNP markers and the

RS-score.

(TIFF)

Figure S4 P-P plots of the association with RS-score.
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