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S O C I A L  S C I E N C E S

Urban growth and the emergent statistics of cities
Luis M. A. Bettencourt1,2

Urban theory models cities as spatial equilibria to derive their aggregate properties as functions of extensive 
variables, such as population size. However, this assumption seems at odds with cities’ most interesting properties 
as engines of fast and variable processes of growth and change. Here, we build a general statistical dynamics 
of cities across scales, from single agents to entire urban systems. We include agents’ strategic behavior to 
produce predictable growth rates, which requires balancing relative incomes and costs over time. We imple-
ment these dynamics using stochastic differential equations and control theory to demonstrate a number of 
general emergent properties of cities deriving from limit theorems applied to growth rates. This framework 
establishes necessary conditions for scaling to be conserved by urban dynamics and shows how exponent 
corrections can be calculated. These ideas are tested using stochastic simulations and a long timeseries for 
382 US Metropolitan Areas over nearly five decades.

INTRODUCTION
Classical approaches to urban theory—in economic geography 
(1–3) and, more recently, in complex systems (4)—often treat 
cities as spatial equilibria, where a balance of benefits and costs is 
achieved out of a set of social and economic exchanges, including 
wages, land rents, and transportation costs (1, 3–5). While these 
modeling approaches have proven powerful for generating quanti-
tative predictions in agreement with many observed properties of 
cities (3–5), they leave unresolved two fundamental problems: the 
problem of statistics and the problem of growth.

Both growth and statistics denote a broad set of phenomena that 
must be unpacked so that we can fully appreciate what is at stake. By 
statistics, we mean that in dealing with real cities, we must appreciate 
the wide variation between individuals and places. This variation 
has positive manifestations in that cities are extremely diverse in 
terms of the types of the people and lifestyles they support, includ-
ing a broad set of coexisting cultures, professions, languages, races, 
and ethnicities (6–9). This interdependent functional diversity is 
what J. Jacobs famously called organized complexity and is at the 
heart of the “kind of problem a city is” (10). Negative expressions 
of these same heterogeneities are also familiar, such as ethnic, ra-
cial, and economic segregation (11, 12), inequality, and variable 
access to justice and opportunity. Moreover, it has been observed 
that these differences between places and people within each city 
are persistent over time (9, 12) and do not have the fleeting char-
acter of noisy fluctuations in statistical physics. Instead, they can 
pile up over time and lead to patterns of cumulative advantage 
and disadvantage (9, 13), which are at the root of most challenges 
of human development. Thus, the problem of statistics in cities 
deals not only with the existence of structural differences on how 
the same quantity is distributed across different people and places 
but also with the temporal persistence and amplification of these 
effects.

By growth, we mean that (modern) cities are characterized by 
fast, typically exponential change across many variables. On the one 
hand, modern cities tend to experience annual population growth 

rates between about a fraction of 1 and 3 to 4%, as we shall see 
below. Exceptions exist at either end at least over some periods of 
time, as different places experience contextually specific factors. 
However, the principal change in modern cities is the fast pace of 
their economic growth and technological transformations. Across 
the world today, we observe rates of urban economic growth that 
are typically larger than those in their corresponding populations, 
reaching in some cases 10% a year, with 2 to 4% being typical (14). 
These growth rates mean that the size of a city’s economy doubles 
every few decades, making it possible to transition from poverty to 
wealth in one or two generations, as has happened in many places 
over the last century. With such fast growth rates at play, how is it 
tenable to model cities as spatial equilibria? Even more importantly, 
how do different resource growth rates, experienced by different 
households, neighborhoods, or cities, shape the heterogeneity 
(inequality) of outcomes for different people? Why are cities not 
torn apart by differential growth more often?

It turns out that these two problems, of statistics and of growth, 
are intimately connected and must be tackled together. This is a 
twist on classical statistical mechanics linking the strength of fluctu-
ations to dissipation around equilibrium (15), which, in the context 
of exponential growth processes in populations, takes a character 
that we may call fluctuation-amplification, typical of evolutionary 
processes (16). The literature of complex systems applied to urban 
growth, especially from the perspective of geography, has demon-
strated the importance of this type of stochastic nonlinear dynamics 
with strong feedbacks for a number of decades (17, 18).

To continue to make progress on these issues, an analytical ap-
proach is necessary that identifies and articulates the essential 
joint mechanics of scaling, growth, and statistics in cities. Here, we 
show how this synthesis can be constructed and illustrate its theo-
retical and empirical implications using stochastic simulations and 
a particularly long time series of wages and populations of U.S. 
metropolitan statistical areas (MSAs) covering nearly five decades. 
The central insight is the realization that the budget constraint used 
to define functional cities (1–4) is not static or homogeneous across 
agents but must be managed adaptively to promote growth and 
avoid instability. This is because what is being controlled are 
stochastic net resource flows over time, as incomes minus costs, not 
static quantities such as forces. It is precisely this fluctuating difference 
that accumulates to drive resource growth for each agent and for 
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cities as populations of agents, with implications for both aggregate 
growth and inequality.

The manuscript is organized following the scheme of Fig. 1. We 
first show how scaling analysis isolates the parameters that control 
urban growth, providing a number of quantitative targets for expla-
nation and prediction. We then introduce standard theory for 
stochastic geometric growth and outline its properties. This allows 
us to establish the connection between well-known models of cities 
as spatial equilibria and processes of stochastic growth for individual 
agents. This connection disaggregates a city-wide budget condition 
to the level of agents and requires that they act strategically in their 
own self-interest to control fluctuations in net incomes, which is 
naturally handled via adaptive temporal averaging of expenditures. 
This is the central assumption of this manuscript, which leads to the 
expectation that net income volatilities are kept finite and small and 
that temporal averages of incomes and expenditures become statis-
tically dependent. A number of results follow from standard limit 
theorems: The statistics of resources, incomes, and costs at the 
agent and group level become asymptotically lognormal, even as 
these quantities grow exponentially. The self-similarity of growth 
processes across group sizes also emerges, defining running couplings 

characterizing the mean growth rate for populations and its associ-
ated volatility. Explicitly computing these quantities allows us to 
identify the circumstances when urban scaling is conserved by the 
system dynamics. Conversely, we show when these conditions are 
violated, creating corrections to mean-field scaling exponents when 
volatilities are scale dependent but small and the breakdown of scal-
ing if they become large. These procedures are illustrated using data 
on wages for U.S. metropolitan areas. We finish with a discussion of 
the significance of the results toward a general statistical dynamics 
of cities and its relation to analogous dynamics of resource flows in 
other complex systems.

RESULTS
Scaling relations and statistical deviations
Scaling analysis provides a simple and straightforward way to char-
acterize urban quantities (19) and extract average agglomeration 
effects at play across cities of different sizes in an urban system. This 
section also shows that scaling analysis provides an efficient param-
eterization of growth processes, different from growth accounting 
in economics (20).

Fig. 1. Scheme of statistical theory, assumptions, and derived consequences. Basic assumptions are shown as blue boxes, and derived results are shown as red boxes; 
arrows indicate outcomes, while dashed lines represent alternative scenarios. The budget condition, y – c, is the common basic assumption for urban agents, generalizing 
energy conservation in simpler systems. Recognizing its dynamical, stochastic nature leads to the central assumption of the manuscript that agents must actively control 
its associated volatility; the simplest way to do this is through the time averaging of expenditures (consumption smoothing). Then, the resource growth rate volatility, 2, 
becomes finite and small, both at the individual and group levels. This leads to emergent stochastic geometric dynamics of resources both at the individual and population 
levels with exponential growth and lognormal statistics observable at long times (right). Averaging over populations derives the growth rate statistics for cities, which 
determines when dynamics become self-similar across scales and preserve urban scaling (left): First, if under group averaging variations of the growth rate () are correlated 
to those in agent resources (r) inequality will change within the population. Second, if effective growth rates are independent of population size, the dynamics becomes 
self-similar and urban scaling is preserved over time. Alternatively, if the growth rate volatility(2) is population size dependent, corrections to mean-field exponents re-
sult: They are calculable via B ≠ 0 and are controlled by the volatility’s magnitude. For large 2(N), the statistics become dominated by fluctuations, and urban scaling 
breaks down. The existence of strong group volatilities contradicts the assumption of effective control at lower levels. This regime would be unstable, signaling the loss 
of control over resource flows for most of the population and entailing wide-spread crises and eventual collapse. See text for detailed notation.
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The starting point is to write an extensive positive quantity, Yi(t), 
here the total wages paid in city i over a time period t, as

	​​ Y​ i​​(​N​ i​​, t ) = ​Y​ 0​​(t ) ​N​ i​​ ​(t)​​ ​ ​e​​ ​​ i​​(t)​​	 (1)

where Y0(t) is time dependent but independent of city population 
size Ni(t), which also changes over time due to standard demo-
graphic processes. The parameter  is the scaling exponent, and the 
quantity i(t) is the time-dependent deviation from the average 
scaling prediction for city i. This expression is exact because any 
deviation from the average scaling relation, Yi(Ni, t) = Y0(t)Ni(t), is 
absorbed in the residuals i(t) (see section S1).

Averaging over cities can now be used to isolate a few quantities 
of interest. To do this, let us first take the logarithm of Eq. 1

	​ ln ​Y​ i​​(​N​ i​​, t ) = ln ​Y​ 0​​(t ) + ln ​N​ i​​ + ​​ i​​(t)​	 (2)

followed by the average over cities 〈ln Y(t)〉 = ln Y0(t) + 〈ln Ni〉. 
This ensemble average is defined explicitly by ​〈lnY(t ) 〉  = ​  1 _ ​N​ c​​

​ ​∑ i=1​ ​N​ c​​ ​​  ln ​

Y​ i​​(​N​ i​​, t)​, ​〈lnN(t ) 〉 = ​  1 _ ​N​ c​​
​ ​∑ i=1​ ​N​ c​​ ​​  ln ​N​ i​​(t)​, where Nc is the total number of 

cities in the urban system such as the United States. We will refer to 
the quantities 〈ln Y(t)〉 and 〈ln N(t)〉 as centers (21), which are col-
lective coordinates tracking the temporal motion of the entire system 
of cities (yellow symbols in Fig. 2, A and B) analogous to center-of-
mass coordinates in many-body physics.

By definition, the ensemble average of the deviations is zero, 
〈(t)〉 = 0, so that the second (variance) and higher moments of the 
 become the leading quantities of interest. From these expressions, 
we can write the deviations i(t) as

	​​​ i​​(t ) = ln  ​  ​Y​ i​​(​N​ i​​, t) ─ 
​Y​ 0​​(t ) ​N​i​ 

​(t)
 ​  =  [ln ​Y​ i​​(​N​ i​​, t ) − 〈lnY(t ) 〉 ] −  [ ln ​N​ i​​(t ) − 〈lnN(t ) 〉]​	

		  (3)

The first expression is the most common interpretation of the i as 
(multiplicative) residuals from the scaling relation, whereas the second 
makes their status as deviations from the collective coordinates (centers) 
explicit. For these reasons, the i(t) provides a city size-independent 

Fig. 2. Urban scaling and the dynamics of growth and deviations. (A) Total wages for U.S. metropolitan areas 1969–2016. Each circle is a city in a given year from blue 
(1969) to brown (2015). Yellow squares show the urban system’s centers (〈 ln N〉, 〈 ln Y〉), which account for collective economic and population growth (movement, up-
ward and to the right). Urban scaling relations for each year (black lines) are derived through the consideration of a short-term spatial equilibrium (inset), which changes 
on a very slow time scale. (B) Centered data, obtained from (A) by removing the center’s motion (inset). This allows the decomposition of temporal change into two separate 
processes: collective growth (center’s motion) and deviations from scaling, i(t), characteristic of each city i. We see that scaling with a common exponent (global fit 
 = 1.114, 95% confidence interval = [1.111, 1.117], R2 = 0.935) is preserved over time, and net growth is a property of the urban system and not of individual cities. (C) The 
statistics of deviations, obtained from the residuals of the centered scaling fit of (B). While the  distribution is well localized and symmetrical, it is not very well fit by a 
normal distribution (blue line). Instead, the red dashed line, which follows from theory developed in the paper, produces a much better account of the data. (D) The devi-
ations i(t) of a few selected cities: Silicon Valley (San Jose–Santa Clara MSA) and Boulder, CO show two of the more exceptional trajectories in wage gains for their city 
sizes, whereas Las Vegas, NV and Havasu, AZ illustrate wage losses. New York City, Los Angeles, and the exceptionally poor McAllen, TX show no relative change in their 
positions over nearly 50 years.
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measure of city performance and are also known as scale-adjusted 
metropolitan indicators (SAMIs) (22). Characterizing these three 
quantities, the two centers and the statistics of the , gives a complete 
description of growth and deviations in a system of cities and separates 
collective effects from idiosyncratic events in each city.

Figure 2 illustrates the meaning of these quantities. Figure 2A 
shows the total wages, Yi(t), for U.S. MSAs between 1969 and 2016 
(47 years), year by year (colors light blue to brown). The growth 
trajectory of some specific cities, such as New York City, Los Angeles, 
Chicago, or Silicon Valley (San Jose–Santa Clara MSA), is easily 
visualized in this way. The solid lines show the scaling relation for 
each year (see caption for details). We see how scaling is a good fit 
to the data each year, reproducing a slowly shifting spatial equilibrium 
in each instance (inset) (4). We also see how the position of the 
center (yellow squares) moves from year to year, reflecting the over-
all growth in population (shifts to the right) and especially in 
wages (movement upward). These results include both real and 
nominal growth of wages due to inflation.

Figure 2B shows the result of removing collective growth by 
moving all data clouds so that their centers coincide at the origin 
(0,0) (21). We see that removing the center’s motion (inset) results 
in the reproduction of the same scaling pattern at each time, with 
additional small and slow moving deviations, i(t), changing only 
slightly from year to year. Figure 2C shows the histogram of these 
deviations (gray) about the overall best fit scaling relation (Fig. 2B), 
pooled across all years. We observe that the statistical distribution is 
well localized and symmetrical about the origin, but that is not very 
well fit by a normal distribution (blue line). A better fit is provided 
by another model (dashed read line), which will be derived below. 
Last, in Fig. 2D, we see the change in i(t) over time for some of the 
most extreme trajectories. Specifically, some cities became substan-
tially richer in relative terms over this period (Silicon Valley and 
Boulder), some experienced loss in economic status (Las Vegas, NV 
and Havasu, AZ), and a few others, such as New York, Los Angeles 
and McAllen, TX (one of the worst performers, by this measure), 
have not changed much. These trajectories also show how slow the 
change in the ’s is. Particular events that affect different cities at specific 
times are easily identifiable, such as the dot-com economic boom 
and bust around 2000, specifically for Silicon Valley and Boulder.

Stochastic growth dynamics
We now seek to connect the macroscopic statistics of entire cities to 
a microscopic general model of single agent’s behavior. We note 
that the budget condition, which is taken as the starting point of an 
important set of urban theories (1–4), is a version of the fundamental 
law of energy conservation. Hence, it must apply to every single 
agent and to cities as collections of agents.

To see this, let us start by introducing a variable, r(t), denoting 
the accumulation of the net quantity of y(t) over time t. For exam-
ple, if y stands for an agent’s income, then r becomes its monetary 
wealth, but we should think of r more generally as resources that 
can be grown over time and used in turn (reinvested) to generate 
more y and so on. An important noneconomic example, which 
applies to premodern human societies and other biological popula-
tions, is when r is stored energy and y is an energy income per unit 
time. We write the dynamics of r, given y, as

	​​  dr(t) ─ dt  ​ =  y(t ) − c(t ) = ​​ r​​(t ) r(t)​	 (4)

where r is the stochastic growth rate of resources. The first equal-
ity in Eq. 4 is pure accounting, stating that resources grow by the 
difference between income and costs, c, (i.e., net income) over some 
time interval, dt. Costs in cities are local and include real estate 
rents, transportation, and consumption, as well as others, such as 
health care and losses resulting from crime or poor urban services. 
In this sense, costs and benefits are also affected by migration deci-
sions about where to live and work. The centerpiece of this equa-
tion is the difference between income and costs y(t) − c(t), which 
must be balanced by all agents in their specific environments. For 
urban agents, this difference is the “budget condition” for the spa-
tial equilibrium that defines a city according to the Alonso model of 
economic geography and urban scaling theory (1, 3, 4). In the orig-
inal version, this difference is typically set to zero, although the 
meaning of incomes and costs is rather flexible and can include sav-
ings (23). In urban scaling theory, this difference is nonzero in 
general (4) and becomes the target of maximization through the 
self-consistency of infrastructural and social network properties. 
This implies that a positive difference between incomes and trans-
portation costs is necessary for cities to exist (Fig. 2A, inset) and to 
generate exponential resource growth. It also implies that the scal-
ing of resources, incomes, and costs has the same population size 
dependence characterized by a single common exponent for all 
these quantities,  > 1.

The second equality in Eq. 4 is a definition of the growth rate r imply-
ing that ​​​ r​​(t ) ≡ ​ y(t) _ r(t) ​ − ​c(t) _ r(t) ​​. Equation 4 is not an arbitrary modeling 
choice: It is the standard starting point for modeling population 
growth and human behavior where time, effort, or resources are 
invested strategically. Among many examples, it is the standard 
model for city population growth (24), the standard model of finan-
cial mathematics and asset pricing (25, 26), and the one good wealth 
accumulation model, which is the basic tool in economics to analyze 
dynamical issues of wealth inequality (23). Stochastic proportional 
growth and resulting lognormal (and power law) distributions are 
associated with many forms of human behavior, including the sta-
tistics for the time to complete a task, epidemic dynamics, demo
graphy and even the statistics of marriage age [see (27) for a review].

Let us see how this model works in practice. Because the equa-
tion is nonlinear (the stochastic term is multiplicative), we have to 
be careful and use the rules of stochastic (Itô) calculus to integrate 
its solution in time, leading to

	​​ ln ​ r(t) ─ r(0) ​ = ​ (​​ ​​ ̄ ​​ r​​ − ​ ​​r​ 
2​ ─ 2 ​​)​​t + (t)​​	 (5)

where the ​​​ ̄ ​​ r​​ and ​​r​ 
2​​ are the mean and variance of r, respectively, 

in the usual sense of those obtained over the probability density of 
r. Now, let us define the average effective growth rate ​​​ r​​ = ​​  ̄ ​​ r​​ − ​​​r​ 2​ _ 2 ​​. 
This quantity is fundamental in geometric random growth models 
and will recur in the discussion below. Keeping track of physical 
dimensions tells us that ​​​ ̄ ​​ r​​ and ​​ r​​​ are temporal rates and have di-
mensions of (time)−1. Thus, the standard deviation (SD) r (known 
as the volatility) has dimensions of (time)−1/2. The stochastic noise  (t) 
is the sum over the integration time, t, or more explicitly, ​(t ) = ​
∑ l=1​ t  ​​ ​​ r​​(​t​ l​​)​, with ​​​ r​​(​t​ l​​ ) = ​​ r​​(​t​ l​​ ) − ​​  ̄​​ r​​​. This is a random variable with zero 
mean. Because it is the sum of stochastic variables, we expect (t) to 
express universal behavior as a consequence of the central limit the-
orem (25). In the simplest case, where r is statistically independent 
across time with finite variance, we obtain that  = rW(t) is a Wiener 
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process, which is a normal variable with zero mean and variance ​​
​​ 2 ​(t ) = ​​r​ 

2​ t​. This will later define the property of ergodicity for 
stochastic growth, which means that for long-time averages of growth 
rates, the mean dominates the variance. This is not to be confused 
with the more general property with the same name in statistical 
physics, which means that all allowable spaces of a dynamical sys-
tem will be sampled subject to constraints. The point of the present 
paper is to show that path dependence for particular cities can co-
exist with simple emergent statistics for the ensemble of cities.

A number of key general results follow from this solution and 
associated limiting theorems. First, (i) the central limit of  implies 
that ​ln ​ r(t) _ r(0)​​ approaches, in the same limit of long times, a Gaussian 
variable with time-dependent mean rt and variance ​​​r​ 

2​ t​. This im-
plies, in turn, that (ii) r(t) is asymptotically distributed as a lognormal 
variable, a result that will become important later. In turn, (iii) the 
temporal mean growth rate ​​1 _ t ​ ln ​ r(t) _ r(0)​ = ​ ​ r​​ + ​(t) _ t  ​ → ​ ​ r​​​, for long times, 

as a result of the behavior of  ∼ t1/2r. Last, (iv) the characteristic 

time, ​​t​ *​​ = ​   ​​r​ 
2
​ _ 

​​(​​ ​​ ̄ ​​ r​​ − ​​
​r​ 

2
​ _ 2 ​​)​​​​ 

2
​
​​, marks the interval necessary for net exponential 

growth to become apparent over the (shorter-term) effect of fluctu-
ations, which average out for longer times.

These properties are illustrated in Fig. 3 (A to C), obtained from 
numerical simulations of Eq. 4, with r taken as Gaussian white 
noise. The asymptotic behavior of all quantities depends on whether 
the effective growth rate is positive r > 0 or equivalently ​​​ ̄ ​​ r​​ > ​ ​r​ 

2
​ / 2​ 

(Fig. 3, A and C). When this condition holds, there is net growth 
(Fig. 3A, blue and orange trajectories). Growth of r becomes appar-
ent on a time scale longer than t* (Fig. 3A), which can be very short 
when the volatility is small. In this regime, the distribution narrows on 
the scale of the mean as t becomes larger, and predictable exponential 
growth emerges. However, when ​​​


 
̄
 ​​ r​​ <  ​​r​ 

2
​ / 2

​
 the mean growth rate is 

negative, and r(t) decays toward zero while experiencing large 

Fig. 3. General properties of stochastic geometric growth and their consequences for cities. (A) Example of growth trajectories for a simple process of geometric 
Brownian motion (Eq. 4). The blue trajectory shows typical growth with small fluctuations and positive effective growth rate, the orange line shows a similar situation with 
larger fluctuations, and the green line shows a trajectory with critical r = 0. The purple and red lines illustrate negative effective growth rate trajectories. The critical 
growth time, t*, is shown for growing trajectories. (B) An ensemble of trajectories with stochastic growth rates similar to those of U.S. MSAs, starting with the same initial 
conditions. The yellow line shows the temporal trajectory of the ensemble average, and the black lines show the 95% confidence interval. Note that both the mean and 
the SD are time dependent (see text). The inset shows the resource distribution at a later time, which becomes asymptotically lognormal (red line). (C) The general prop-
erties of stochastic growth imply that a positive growth rate is necessary to overcome temporal decay due to rate fluctuations. If volatility increases, growth will ultimately 
stop, and decay will ensue. The critical point ​​​ r​​  = ​​  ̄ ​​ r​​ − ​​​r​ 

2​ _ 2 ​  =  0​ is characterized by large fluctuations with a diverging t* so that agents will not be able to tell whether they 
are experiencing growth and may be unable to exert effective control (see text). (D) Under general conditions, multiplicative random growth can be self-similar across 
group sizes, providing a simple theory that applies at all scales, from individual agents to populations and cities (see section S3) (29). However, the key parameters of the 
theory “run” across scales and are in general sensitive to both group size, temporal averaging, and inequality. These dependences define urban scaling as a dynamical 
statistical theory beyond the mean-field approximation.
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fluctuations (Fig. 3A, red and purple trajectories). When ​​​ ̄ ​​ r​​ ≃ ​ ​r​ 
2​ / 2​, 

there is very little growth or decay, and the dynamics appear purely 
random (Fig. 3A, green trajectory). For r ≥ 0, r displays wide fluc-
tuations (asymptotically distributed as a lognormal; Fig. 3B, inset), 
which appear wider and wider for larger t (Fig. 3B). Multiplicative 
growth processes thus have the curious property that because drift 
is asymmetric, a positive mean growth rate ​​​ ̄ ​​ r​​ >  0​ is not sufficient to 
guarantee long-term growth; instead, a finite threshold ​​​ ̄ ​​ r​​ > ​ ​r​ 

2​ / 2​ 
must be overcome. Approaching this threshold from a regime with 
growth, an agent will experience wild fluctuations as t* goes to 
infinity (Fig. 3C, inset) and will struggle to tell whether growth per-
sists and estimate its time scale to plan. As a consequence, low 
volatility and positive average rates are necessary for sustained 
growth (Fig. 3C). Given these results for individual agents, it becomes 
critical to establish the conditions for these dynamics to apply also 
for populations such as for entire cities (Fig. 3D) and to determine 
how corresponding growth rates change across scales.

Stable growth through budget control
From the general properties of stochastic growth processes, we can 
conclude that any agent seeking growth must aim at a positive mean 
growth rate and small volatility. The conundrum is that the volatility 
and the mean growth rate are, to a large extent, properties of the 
environment, outside the agent’s control. What is under the agent’s 
control, however, are his/her own actions, which we show next can 
adapt to extrinsic circumstances via processes local in time so as to 
produce low volatility and stable growth.

It is important to realize that, besides levels of population aggrega-
tion, there is also a hierarchy of time scales involved in the process of 
balancing costs and benefits and observing growth (Fig. 3D). Over the 
very short term, there will be moments when the agent is resource flow 
negative, e.g., while shopping. However, judicious choices over time 
should result in more even positive net flow over the longer term, 
integrating together periods when incomes are larger than costs (at work) 
and vice versa (at home, socializing, etc.). This process of balancing 
costs and benefits over time is necessary in dissipative complex systems 
because there are always resources lost in any activity or exchange. 
Balancing costs and benefits over time creates strong correlations 
between y, c, and r and results on ratios, y/r and c/r, that can become 
independent of the level of wealth, as we show next.

Consider the basic accounting (Eq. 4) for a single agent, y(t) − c(t) = 
r(t)r(t). As we have seen, dividing by r(t) > 0 gives us the definition 
of the growth rate r(t). Defining the two resulting ratios as b(t) ≡ 
y(t)/r(t) and a(t) ≡ c(t)/r(t) and averaging over time leads to

	​​  1 ─ t ​ ​∫0​ 
t
 ​​d​t ′ ​ [ b(​t ′ ​ ) − a(​t ′ ​ ) ] = ​ ̄  b ​ − ​ ̄  a ​ + ​ 1 ─ t ​ ​∫0​ 

t
 ​​d​t ′ ​(​​ r​​(​t ′ ​ ) − ​​   ​​ r​​ ) → ​  ̄  b ​ − ​ ̄  a ​  = ​ ​   ​​ r​​​		

		  (6)

This means, in general, that we can also define ​​​ r​​(t ) = ​​ ̄ ​​ r​​ + ​​ r​​(t)​, 
where r(t) is the error (or fluctuations) away from the growth rate’s 
temporal mean such that ​​1 _ t ​ ​∫0​ 

t
 ​​ d​t ′ ​ ​​ r​​(​t ′ ​ ) →  0​, as we have seen for (t) 

in the previous section.
What kind of process sets the statistical properties of these fluc-

tuations? On a short-term basis, fluctuations will be large if a, b vary 
strongly and independently of each other. Then, the amplitude of r 
will be large over some period of time and, if negative, may deplete 
stored resources (r → 0), placing the agent at risk of death or bank-
ruptcy. Thus, it is in the vital self-interest of the agent to act so as to 
minimize, or at least control, fluctuations.

How is this to be achieved? The point is that the variations in 
expenditures, a(t), should not just be seen as passive costs but rather 
as strategic dynamical investments under the agent’s control. Con-
versely, the returns on this investment, b(t), are stochastic and will 
always fluctuate because of environmental factors (Fig. 4A). Thus, 
a(t) should be chosen to generate a target growth rate and reduce 
fluctuations, in other words, to achieve stable and predictable 
growth (Fig. 4, B and C).

To demonstrate how this can be achieved, we write the returns 
as ​b(t ) = ​   b ​ + v(t)​ and the investment as ​a(t ) = ​   a ​ + u(t)​. Here, v(t) 
are (stochastic) variations in returns, whereas u(t) will play a role of 
a control variable adjusted by the agent. This leads to

	​​  ̄  b ​ − ​ ̄  a ​ + v(t ) − u(t ) = ​​   ​​ r​​ + ​​ r​​(t ) → ​ ​ r​​(t ) = v(t ) − u(t)​	 (7)

We must now specify how control is implemented to tame the 
errors. Most general practical controllers are in the Proportional-
Integral-Derivative (PID) class (28), which specifies u(t) as a func-
tion of the error, r(t), as

	​ u(t ) = ​k​ P​​ ​​ r​​(t ) + ​k​ I​​ ​∫0​ 
t
 ​​ ​​ r​​(​t ′ ​ ) d​t ′ ​ + ​k​ D​​ ​ d ​​ r​​ ─ dt  ​​	 (8)

where kP, kI, and  kD are constants (in time) to be chosen by the 
agent. These three terms allow for different kinds of strategy to re-
duce fluctuations: kP is the magnitude of an instantaneous response 
against the fluctuation, kI refers to averaging of the error over time 
(known as smoothing, because averaged errors are smaller and con-
verge to zero), and kD describes a corrective reaction in the direction of 
the temporal change in the error. Of these, only smoothing by time 
integration will prove essential. Note also that u(t) is a simple quan-
tity that can be updated locally in time via the current observed error, 
r(t), and its addition and subtraction to the integral and difference, 
which requires remembering only two numbers. The stochastic dy-
namics of the errors is best captured via the derivative of Eq. 8

	​​  du ─ dt ​ = ​ k​ P​​ ​ d ​​ r​​ ─ dt  ​ + ​k​ I​​ ​​ r​​(t ) + ​k​ D ​​ ​ ​d​​ 2​ ​​ r​​ ─ 
​dt​​ 2​

  ​ → ​k​ D​​ ​ ​d​​ 2​ ​​ r​​ ─ 
​dt​​ 2​

  ​ + (​k​ P​​ + 1 ) ​ d ​​ r​​ ─ dt  ​ + ​k​ I​​ ​​ r​​ = ​  dv ─ dt ​​		
		  (9)

This equation for the error describes a simple driven oscillator: 
It is familiar from stochastic calculus when we take ​​dv _ dt ​​ to be white 
noise with variance 2. The solution is provided in section S2, 
showing that r converges to a normal distribution with zero mean 
and variance ​​​r​ 

2​ =  2 ​​​ 2​ ​​k​ P​​ + 1 _ ​k​ I​​
 ​​  (see Fig. 4, C and D). Making kI larger 

has the double effect of accelerating the temporal convergence to a 
time-independent distribution and narrowing the error variance. 
The other parameters, kP and kD, can be set to zero, leading to very 
simple control based on the temporal averaging of the fluctuations. 
The effect of the environmental variance 2 is simply to increase 
the error variance proportionally. Thus, the control process effec-
tively filters out environmental shocks and makes the net-income 
variance smaller as a function of parameters chosen by the agent. 
This is a very simple general mechanism that allows agents to cope 
with environmental uncertainty and generate stable growth by 
adjusting their expenditures over time. Much more sophisticated 
strategies are possible that can maximize growth rates if more of the 
structure of returns, b, are known (28).

We see how averaging expenditures over time (known as con-
sumption smoothing in economics) gives a general mechanism 
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whereby agents can make their average resource growth rate take 
on a target value, up to stochastic fluctuations with variances given 
by the balance between the unpredictability of the environment and 
the quality of their control. Effective control generates strong statis-
tical correlations between income and costs over time, which con-
stitute the basis for (a spatial) equilibrium. In this light, variations 
between agents may persist as the result of differences in their specific 
experienced environments and/or the quality of their control. Ex-
posing these issues requires the consideration of averages over pop-
ulations of agents as in Fig. 3D, to which we now turn.

Population dynamics and emerging inequality
To compute the growth dynamics for a city, we now define the av-
erages over a population of size G, ​​r​ G​​ = ​  1 _ G​ ​∑ j=1​ G  ​​ ​r​ j​​​, where rj are indi-
vidual j’s resources and so on for growth rates, incomes, and costs 
(see section S6 for a summary of notation). To derive the corre-
sponding dynamics, we take these averages over Eq. 4

	​​  d ​r​ G​​ ─ dt  ​  = ​ y​ G​​ − ​c​ G​​  = ​ (r)​ G​​​	 (10)

where we dropped the r subscripts on the rate, for simplicity, so that 
in this section, rG → G. The average of the product is

	​​(r)​ G​​  = ​  1 ─ G ​ ​ ∑ 
j=1

​ 
G

 ​​ ​​ j​​ ​r​ j​​  = ​ ​ G​​ ​r​ G​​ + ​covar​ G​​(, r ) = [​​ G​​ + ​covar​ G​​(, r / ​r​ G​​ ) ] ​r​ G​​​		
		  (11)

The quantity ​​​ G​ ′ ​  ≡ ​ ​ G​​ + ​covar​ G​​(, r / ​r​ G​​)​ is the effective stochas-
tic growth rate for the group average resources, rG. This quantity 
equals the simple arithmetic group average, G, plus a correction 
due to the fact that growth rate variations may not be statistically 
independent from variations in resources across individuals. The 
covariance term is familiar from evolutionary theory in the context 
of the Price equation (16) and signals selection. For example, if richer 
individuals experience higher growth rates across the group, then 
the average growth rate will be higher and vice versa. This flags the 
important issue that pursuing the highest possible group-level 
growth rates in a heterogeneous population will increase inequality. 
Conversely, pursuing growth such that poorer individuals enjoy 
higher rates leads to more equitable outcomes in distribution but 
subtracts from the average G because the covariance is negative.

To complete the derivation, we now characterize the mean and 
stochastic components of ​​​ G​ ′ ​​. We express the individual growth 
rate, as in the previous section, ​​​ j​​  = ​​  ̄ ​​ j​​ + ​​ j​​​, which leads to ​​​ G​​  = ​  1 _ G​ ​
∑ j=1​ G  ​​ ​​ j​​  = ​  1 _ G​ ​∑ j=1​ G  ​​(​​   ​​ j​​ + ​​ j​​ ) = ​​   ​​ G​​ + ​​ G​​​, where ​​​ ̄ ​​ G​​​ is the group mean of 
individual temporal means and G is a stochastic noise term result-
ing from the group average of the errors for each individual. The 
properties of G are inherited from those of each agent and their 
statistical correlations. The mean remains zero, while the variance is 
given by ​​​G​ 2 ​ = ​  1 _ 

​G​​ 2​
​ ​∑ j,k​ G ​​ ​​ j​​ ​​ k​​ ​​ jk​​​, where j and k are the volatilities 

for agents j and k and jk is the correlation matrix between them. 
(The correlation matrix is symmetric, with −1 ≤ jk ≤ 1 and with 

Fig. 4. Dynamically balancing income and costs via feedback control leads to simple statistics for resource growth rates. (A) Example trajectories for the 
income-to-resources and costs-to-resources ratios, b(t) (red) and a(t) (blue), respectively. Note that when income is larger than costs, there can be growth, but fluctuations 
need to be controlled. (B) Control scheme to deliver average growth rate and tame fluctuations r(t). Costs a(t) become a control variable that, in part, adapts to envi-
ronmental fluctuations to generate r(t) with small, known variance. (C) The dynamics of the resulting error r(t) is now centered around zero and (D) displays a Gaussian 
distribution (red line) with variance given by the ratio of the environmental variance to control parameters (see text). In this way, adaptive agents’ behavior can lead to 
predictable growth in stochastic environments with a chosen variance.
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ones along the diagonal, corresponding to each agent’s squared 
volatilities).

In the simplest case, when errors are statistically independent 
across agents, jk = 0 for k ≠ j, and if all SD are the same, ​​​k​ 2​  = ​ ​r​ 

2​​, 
we have that ​​​ G​​ = ​  1 _ G​ ​∑ j=1​ G  ​​ ​​ j​​ → ​ ​G​ 2 ​ = ​  1 _ G​ ​​r​ 

2​​. Then, the magnitude of 
fluctuations is reduced by group size and vanishes in the infinite G 
limit. Thus, if errors are independent across individuals, both long 
times and large-population pooling leads to a convergence to the 
behavior set by the temporal means. This, curiously, implies that 
the group average grows faster than the agent’s temporal average in 
general and provides a strong quantitative argument for pooling 
resources either via government action or risk management instru-
ments, such as insurance (26).

The case of nonindependent variables is interesting because the 
treatment of the last section suggests that it would follow from 
different agents either experiencing correlated fluctuations and/or 
generating coordinated “institutional” control responses, which is 
likely in many circumstances. When all variables are fully correlated 
jk = 1 and ​​​G​ 2 ​ = ​ ​r​ 

2​​, the volatility associated with rG becomes inde-
pendent of group size. In urban settings, we may expect some cor-
relation between agents as they experience a common spatial and 
socioeconomic environment of the city. For U.S. MSAs, ​​​G​ 2 ​​ is ap-
proximately constant in G (see fig. S3).

The covariance term between individual growth rates and re-
sources adds additional corrections

	​​
​​covar​ G​​​(​​η, ​ r ─ ​r​ G​​ ​​)​​  =  ​[​​ ​ 1 ─ G ​ ​ ∑ 

j=1
​ 

G
 ​​​(​​ ​ 

​​   η​​ j​​ ─ ​​   η​​ G​​ ​ − 1​)​​​(​​ ​ 
​r​ j​​ ─ ​r​ G​​ ​ − 1​)​​​]​​ ​​   η​​ G​​ + ​[​​ ​ 1 ─ G ​ ​ ∑ 

j=1
​ 

G
 ​​​(​​ ​ 

​ε​ j​​ ─ ​ε​ G​​ ​ − 1​)​​​(​​ ​ 
​r​ j​​ ─ ​r​ G​​ ​ − 1​)​​​]​​ ​ε​ G​​​

​      
​                              = ​covar​ G​​​(​​ ​ ​   η​ ─ ​​   η​​ G​​ ​, ​ 

r ─ ​r​ G​​ ​​)​​ ​​   η​​ G​​ + ​covar​ G​​​(​​ ​ ε ─ ​ε​ G​​ ​, ​ 
r ─ ​r​ G​​ ​​)​​ ​ε​ G​​​

 ​ ​	

		  (12)

With these results in hand, we can now write the time evolution 
of average group resources as

	​​​ ​dr​ G​​ ─ dt ​   = ​ ​ G​ ′ ​ ​r​ G​​, with  ​​ G​ ′ ​  = ​​    ​​ G​ ′ ​ + ​​ G​ ′ ​, ​​   ​​ G​ ′ ​  = ​ [​​1 + ​covar​ G​​​(​​ ​  ​   ​ ─ ​​   ​​ G​​ ​, ​ 
r ─ ​r​ G​​ ​​)​​​]​​ ​​   ​​ G​​, ​


​ 
G

​ 
′
 ​ 
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​ 
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(13)

We see that the statistical behavior of rG is set by the dependen-
cies of these quantities (see section S3 for discussion). When ​​​   ​​ G​ ′ ​​ and 
​​​ ′ ​​G​ 2 ​​ are independent of rG (but may depend on G and t) and ​​​ G​ ′ ​​ obeys 
the conditions of the central limit theorem, the population average 
resources rG will follow a multiplicative random growth process 
(Fig. 3D). This process, similar to Eq. 4, will then integrate to give

	​​ ln ​ ​r​ G​​(t) ─ ​r​ G​​(0) ​  = ​ (​​ ​​   ​​ G​ ′ ​ − ​ 
​​ ′ ​​G​ 2 ​

 ─ 2 ​​ )​​t + ​​ G​ ′ ​ W(t)​​	 (14)

showing that if W(t) converges to a normal variable as the result of 
the central limit theorem, then the statistics of rG(t) become lognor-
mal at long times (see section S3 for an example and further discus-
sion of necessary conditions, exceptions, and related results) (29). It 
is important to stress that growth rates and volatilities now “run” 
(i.e., change) with group sizes, G, and time, t, depending on the 
correlations captured by the several covariance terms (see Fig. 3D).

From stochastic growth to statistical scaling relations
We are now ready to express the quantities in scaling relations as 
functions of stochastic growth rates. This will provide us with a 

statistical theory that derives urban scaling beyond mean-field 
calculations (4). To keep the notation simple, the index i denotes 
cities. We take each city to be a group with G = Ni and write the 
simplified notation ​​​ i​​ = ​ ​ ​N​ i​​​ ′ ​​ , ​​​ i​​ = ​ ​ ​N​ i​​​ ′ ​​ , and so on. We will also write 
the averages of these quantities over the ensemble of cities as  = 〈i〉 
(see section S6 for a summary of notation).
Running scaling exponents and the emergence of scale invariance
Let us see when a power law scaling relation is a conserved quantity 
of the stochastic growth dynamics. We start with the integral trajec-
tory for total resources, Ri(t), ​ln ​ ​R​ i​​(t) _ ​R​ i​​(0)​  = ​ ​ i​​ t + ​​ i​​ W(t)​. This equation 
is ergodic in the sense of stochastic population dynamics because 
long-time averages coincide with ensemble averages (30)

	​​ ​(​​ ​ 1 ─ t ​ ln ​ ​R​ i​​(t) ─ ​R​ i​​(0) ​ − ​​ i​​​)​​​​ 
2
​ = ​  

​​i​ 
2​ ​W​​ 2​(t)

 ─ 
​t​​ 2​

  ​ → ​  
​​i​ 

2​
 ─ t  ​ →  0​	 (15)

This property of long-time means specifies necessary conditions 
for scaling to hold over time. To see this, define Bi

	​​B​ i​​(ln ​N​ i​​ ) ≡ ​   d ​γ​ i​​ ─ dln ​N​ i​​
 ​  → ​ γ​ i​​(t ) = ∫ ​B​ i​​ dln ​N​ i​​  ≃ ​ γ​​ (0)​ + ​​B  ̄​​ i​​ ln ​N​ i​​ + O [ ​(ln ​N​ i​​)​​ 2​]​	

		  (16)

where (0) is independent of time and scale. Bi varies slowly with lnNi 
so that ​​​B  ̄​​ i​​​ is also independent of scale but could depend on time. Bi is 
analogous to a beta function expressing the change (“running”) of a cou-
pling with scale in statistical physics (15). Replacing it into Eq. 15 obtains

	​​ R​ i​​(t ) → ​ R​ i​​(0 ) ​e​​ ​​ i​​t​ ≃ ​ Y​ 0​​(t ) ​N​ i​​ ​(t)​​ +​​B ̄ ​​ i​​t​​	 (17)

which shows that if ​​​B ̄ ​​ i​​​ is nonzero, then the scaling exponent ​
(t ) ≃   + ​​B ̄ ​​ i​​ t​ becomes time dependent in general and is not con-
served by the dynamics of growth. Scaling relations will then vary 
over time, becoming steeper (larger exponent), if ​​​B  ̄​​ i​​ >  0​, or shallower, 
if ​​​B ̄ ​​ i​​ <  0​. It is also possible that the integral Eq. 16 yields a more 
complicated function of lnNi and time. Under time averaging and 
control, it is natural for ​​​B ̄ ​​ i​​  ∼  1 / t​ as we have seen, resulting in a time-
independent change of scaling exponent.

To see this, consider that the volatility ​∼ ​ ​​i​ 
2​ _ 2 ​​ in the effective growth 

rate is, in general, both time and population scale dependent, 
while the mean ​​​ ̄ ​​ i​​​ is independent of both. This means that, in 
most circumstances, ​​B​ i​​(ln ​N​ i​​ ) = − ​1 _ 2​ ​ d ​​i​ 

2​ _ dln ​N​ i​​
​​, which should be small because 

of the agent’s control over fluctuations. Consider the example ​​

​i​ 
2​(​N​ i​​ ) = ​ ​​r​ 2​ _ t ​N​i​ 

​​​, ​→ ​ B​ i​​  = ​  _ 2 ​ ​​i​ 
2​(​N​ i​​)​, which leads to the exact result, ​

  →   − ​  ​​r​ 
2​ _ 2 ​N​​ ​ ln N​​. This shows that the scaling exponent , while 

time independent, increases with city size, N. In this case, only at 
sufficiently large ​N >  > ​ (​​r​ 

2​ / 2)​​ 
1/

​​ will the value of  coincide with 
that predicted by mean-field scaling theory (4). This is not an issue 
if ​​​r​ 

2​​ is small. Otherwise, for smaller cities,  may become measurably 
smaller than for larger ones. Because the magnitude of variations 
away from scaling is urban system and quantity dependent, this 
may help account for some variations of observed scaling exponents 
in different nations and for different urban properties (31, 32). It also 
implies correlations between the behavior of the prefactor, Y0(t), 
the  variance, and the scaling exponent , as noted recently in (33).

These results show that strict scaling invariance is predicated 
on ​​B​ i​​  = ​   d ​​ i​​ _ dln ​N​ i​​

​  →  0​, which is analogous to a renormalization group 
fixed point in statistical mechanics (34) applied to the population 



Bettencourt Sci. Adv. 2020; 6 : eaat8812     19 August 2020

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

9 of 12

growth rate. Away from this fixed point, we have now shown how 
to compute corrections to scaling exponents, which are the result of 
the scale-dependent statistics of growth rates. Last, note that the 
scale independence of growth rates for cities is a standard assump-
tion known as Gibrat’s law (or law of proportional growth) (24). 
This assumption is necessary to derive Zipf’s law for the statistics of 
city sizes. Figure S3 illustrates this general analysis with the growth 
rates and variances for wages in U.S. metropolitan areas since 1969, 
showing that the effective growth rates are city size independent to 
an excellent approximation, justifying the observed persistence of 
scaling with a time-invariant exponent.
Equations of motion for prefactors and scaling residuals
We now translate stochastic growth into equations of motion for 
both scaling prefactors and residuals; details of the derivations are 
given in section S4. For the prefactors, we obtain

	​​  d ln ​R​ 0​​ ─ dt  ​  = ​  d〈ln R〉 ─ dt  ​ −  ​ d〈 ln N〉 ─ dt  ​​	 (18)

which is a function of only the centers’ dynamics. Because the cen-
ters are averages over all cities, no higher order statistics plays out 
in these quantities. This dynamics of the scaling prefactor is im-
portant because it measures the urban system (nation) wide per 
capita baseline growth, a form of endogenous intensive economic 
growth.

For the residuals, we obtain

	​​ 
d ​​i​ 

r​
 ─ dt ​  =  (​​ i​​ −  ) −  ​ d ─ dt ​(ln ​N​ i​​ − 〈lnN〉 ) + (​​ i​​ −  ) = ​​ i​​ −  − (​​ ​N​ i​​​​ − ​​ N​​ ) + (​​ i​​ − )​		

		  (19)

where ​​​ ​N​ i​​​​  = ​  d _ dt​ ln ​N​ i​​​ and ​​​ N​​  = ​  d _ dt​ 〈lnN〉​. This equation has a num
ber of interesting properties: The most important is that it essential-
ly describes a random walk driven by the  terms, which set the vari-
ance, 〈(r)2〉. The two other terms enforce the convergence to the 
population averages in terms of growth rates of resources and popu-
lation and guarantee that 〈r〉 = 0 is preserved by the urban system’s 
growth dynamics.
The emergent statistics of urban indicators
The statistics of resources follows from integrating Eq. 19, leading 
to the general expectation that the statistics of the r become normal 
at long times (see section S4). This means, in turn, that cumulative 
urban indicators (stocks) are expected by the same argument to be 
lognormal, as we saw more directly above. Flow quantities, such as 
income or costs, are often more accessible empirically (Fig. 2). Their 
statistics follow from the analysis of the previous sections, where we 
wrote ​​Y​ i​​ = ​ b​ i​​ ​R​ i​​ =  (​​b ̄ ​​ i​​ + ​v​ i​​ ) ​R​ i​​ →  ln ​Y​ i​​ =  ln ​R​ i​​ + ln (​​b ̄ ​​ i​​ + ​v​ i​​)​. Substitut-
ing the scaling relations for Ri, Yi, this implies that ​​​ i​​(t ) = ​​i​ 

r​(t ) + ln ​
R​ 0​​ − ln ​Y​ 0​​ + ln ​b​ i​​​. Taking averages over cities obtains the constraint 
lnY0 − ln R0 = 〈ln b〉, which allows us to write

	​​ ​ i​​(t ) = ​​i​ 
r​(t ) + ln ​b​ i​​ − 〈lnb〉​	 (20)

This shows that the statistics of income are set by two different 
processes, the first resulting from the statistics of associated re-
sources and the second due to stochastic returns. The first piece is 
characterized by the accumulation of variations over time, which 
entails time averaging and is expected to become approximately 
normal. The second term is instantaneous and consequently not 
subject to limit theorems. Hence, it can have more arbitrary statistics.

To see this, we return to the analysis of stochastic returns bi un-
der agents’ adaptive control to obtain the explicit time evolution 
equation

	​​ d ​​ i​​(t ) ≃ d ​​i​ 
r​(t ) + (ln ​​   b ​​ i​​ − 〈ln​   b ​〉 ) dt + ​[​​ ​ ​​ i​​ ─ 

​​   b ​​ i​​
 ​ ​dW​ i​​(t ) − 〈 ​  ─ 

​   b ​
 ​ 〉dW(t ) ​]​​​​		

		  (21)
where the force dvi/dt was taken here to be white noise dWi (the 
differential of the Wigner process Wt) with variance ​​​i​ 

2​​, as above. If 
dvi/dt has nonrandom components, the expression is similar but 
more complicated. Here, dW is the average stochastic force over 
cities, and we assumed that fluctuations are uncorrelated to popula-
tion variations in  and ​​b ̄ ​​. This also implies that the quantity ​​​ i​​  = ​
​i​ 

r​ − (ln ​​   b ​​ i​​ − 〈ln​   b ​〉)​ inherits the property of ergodicity from ​​​i​ 
r​​. Figure 

S4 shows the income growth rates for U.S. metropolitan areas over 
time, including its noise-driven equation of motion and the proper-
ty for wages where fluctuations away from the mean trajectory of 
growth fall over time (roughly as 1/t, inset) to become negligible for 
long times.

Note that in the limit of strong control, at the individual level 
and/or as an emergent average within cities when the ​​​ i​​ / ​​b ̄ ​​ i​​  <<  1​, 
the stochastic terms will be small, and the statistics of income will 
approximate that of resources as a normal distribution for the i. In 
addition, this derivation leads to a set of quantitative expectations 
that can be checked against the data: Figure 5A shows that the 
quantity t2〈2〉 ∼ 2t behaves approximately like the displacement 
of a one-dimensional (1D) random walk. This is well described by 
the straight line in time with slope given by the variance, although 
empirically we also observe shorter periods of acceleration or decel-
eration relative to the main trend. Figure 5B shows an analogous 
picture depicting each SAMI, i, trajectory, starting all cities at i = 
0 in 1969. This demonstrates the spread of the SAMIs over time 
according to the behavior of a 1D random walk (red line, the same 
as straight line in Fig. 5A). Figure 5C shows the volatility and mean 
growth rates for all cities over the 47 years and corresponding esti-
mates from measurements of dispersion over time (Fig. 5, A and B) 
and over the ensemble of cities: The observed statistical agreement 
of these two strategies for measuring the square volatility demon-
strate the ergodicity of the statistics of i(t) once drift has been 
removed. Last, Fig. 5 (A and D) shows that the income residuals’ 
variance is actually time dependent, spreading very slowly over time 
as predicted by the derived lognormal part of the distribution. 
The overall distribution is better described, however, by the sum of 
two Gaussians, one broad and one narrow, corresponding to the 
two terms in Eq. 21 (red dashed line in Fig. 2C). It is only because 
the annual volatilities are so small that this temporal pooling and a 
deduction of a pure lognormal behavior appeared reasonable for 
flow variables in earlier work (22, 35).

DISCUSSION
We showed how quantitative urban theory can be taken beyond a 
stationary approach based on an average budget constraint, charac-
teristic of spatial equilibrium. In its place, we proposed the primacy 
of stochastic growth processes and agents’ strategic behavior as the 
dynamical statistical theory from which more particular results fol-
low (Fig. 1). This provides a common foundation for nonequilibrium 
modeling of cities across scales (17, 18) and shows how these pro-
cesses are associated with urban scaling and agglomeration effects. 
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From this point of view, we see how the budget condition of spatial 
equilibrium models becomes the emergent property of a much 
more fundamental process, whereby agents subject to stochastic 
resource flows (incomes and costs) must develop adaptive strategies 
to reduce potentially fatal volatility. This point of departure is both 
necessary for dissipative complex systems and is very general so that 
it offers a number of connections with the statistical dynamics of oth-
er natural and engineered systems (28, 36, 37).

The key advantage of this bottom-up stochastic approach is that it 
naturally unifies processes of resource flow management (“equilib-
rium”), growth, and statistics. Hence, the framework emphasizes 
the critical role played by growth rate variations in a number of 
important urban phenomena. Specifically, we showed how the 
properties of the growth rate volatility are implicated in the (non-)
preservation of urban scale invariance and set the boundary be-
tween growth and decay regimes, including the time scale for 
exponential growth to become manifest as fluctuations average out. 
In particular, we demonstrated how the general property of ergo-

dicity in population dynamics and formal demography (30) is inti-
mately connected, together with a renormalization fixed point 
condition on the growth rates, to the emergence of “mean-field” scal-
ing relations (4).

There are a number of important consequences for urban theory 
that these results clarify and unify. First, they show how spatial 
equilibrium is, after all, consistent with observed exponential growth 
in cities both economic and demographic, which has been an as-
sumption in previous models. Second, they show how to derive 
macroscopic statistical behavior for cities and urban systems from 
microscopic strategic choices at the agents’ level and provide ex-
pressions for how to aggregate growth rates over time and popula-
tions. Third, this process exposes issues of inequality of wealth and 
income and how they are compounded over time (23). Specifically, 
the quantities discussed here show how policies aimed at maximiz-
ing aggregate economic growth may naturally deemphasize the rel-
ative growth of poorest sections of the population. Last, and in 
many ways the central motivation of the paper, the results derived 

Fig. 5. Effective diffusive growth of deviations i (t) and the emerging statistics of cities. (A) On the average over cities, the displacement from their initial deviations 
in 1969 grows linearly (red line) (gradient = 0.00108, 95% confidence interval = [0.00102, 0.00115]; intercept = −2.13279, 95% confidence interval = [−2.25885, −2.00672], 
R2 = 0.93), as expected from pure random diffusion of the growth rates. Note that this is a mean temporal behavior and that there are periods when deviations grow 
faster or slower. Periods of economic recession are shown in gray. (B) The trajectory of deviations for all cities (different colors) but having set all deviations in 1969 to zero 
so that all trajectories depart from a common origin. The red line indicates the diffusive behavior, same as in (A), clearly showing that deviations tend to increase in mag-
nitude over time. (C) The prediction of the wage growth volatility for U.S. MSAs by three methods: the fit of (A) and (B) and the averages over time and sets of cities, 
demonstrating the ergodic character of the statistical dynamics. Shaded areas show the overlapping 95% intervals in these estimates. (D) The distribution of deviations, 
year by year, using the same color scheme as in Fig. 2 (A and B). We see that, unlike our first approach in Fig. 2C, the width of the distributions is increasing slowly over 
time (brown most recent) and that the data for wages (a flow) should be fit by a distribution that is well described as the sum of two Gaussians: a universal broad distri-
bution due to resource compounding and a contingent short-term narrow distribution (Eq. 20), which depends on most recent environmental shocks.
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here demonstrate that the statistics of most urban indicators are not 
universal in a simple sense. Rather, they are emergent as the conse-
quence of limit theorems under stochastic (exponential) growth. In 
particular, the statistics of urban indicators that account for incomes 
and costs are the result of a mixture of a more universal component, 
inherited from their association to accumulating quantities and 
corresponding limit theorems, and a nonuniversal part, arising 
from the short term “hustle” (accidents and the quality of the agent’s 
control) in variable stochastic environments. Thus, statistical tests 
to evaluate the Gaussianity of urban (log-)quantities (22, 35, 38), to 
be meaningful, must be performed with care and explicitly ac-
knowledge the distinct distributions of different urban indicators.

The models for the budget constraint, the growth of resources, 
and associated control strategies introduced here are standard start-
ing points in demography, geography, economics, and finance 
(23–25). They can clearly be made more complex and, where 
necessary, also more realistic. The concept of resources and in-
comes is not 1D. Issues of energy, monetary wealth, knowledge, and 
social capital all contribute to resource growth in human popula-
tions. The extent to which these quantities, which can all be accu-
mulated, interact with each other is critical for a general understanding 
of human development. Models for the dynamics of volatilities and 
more sophisticated control of fluctuations and maximization of 
growth rates may also become important. Some inspiration should 
be derived from population biology and mathematical finance 
(16, 25), where such models are more developed. Last, data on 
detailed expenditures, wealth, and other financial and social charac-
teristics are becoming increasingly available for households at finer 
temporal resolutions (14) and will be critical to test and improve the 
ideas introduced here and to identify systematic heterogeneities in 
agents’ behavior, e.g., associated with conditions of poverty and 
uncertainty.

The approach developed here can be applied to other contexts 
beyond the contemporary United States but requires appropriate 
contextualization. In all societies, household adaptive management 
of resources is likely to remain important. However, in more collec-
tivist societies or in those with stronger top-down governance, the  
aggregate management of benefits and costs will replace, to a larger 
extent, bottom-up agency. As shown, managing aggregate costs at 
the societal level can achieve considerable benefits because this 
strategy minimizes some risk. Its success hinges, however, on the 
effective investment of resources that generate society-wide ben-
efits and their redistribution and related inequality. In circumstanc-
es of low growth, such as in most preindustrial societies, adaptive 
control of resources and the associated dynamics of volatility pro-
vide us with an important window into their (in)stability. This al-
lows us to connect more proximate explanations of collapse, e.g., 
related to environmental stresses or violence, to the broader collec-
tive and political dynamics of societies, expressed as the capacity to 
manage shocks or disintegrate instead.

Empirically, the U.S. urban system, at least in terms of changes 
in total wages in MSAs, turns out to be very well-behaved: Its 
growth volatilities are almost always very small, fluctuations con-
verge to limiting statistics quickly, and scaling relations are con-
served over time. However, our theoretical results show that these 
properties pertain only to quantities and systems of cities with 
small, population size–independent growth rate volatilities. In the 
United States, over the past nearly 50 years, despite a number of 
notable events, observed average square volatilities associated with 

wages and population growth are about one order of magnitude 
smaller than average growth rates, making their effects almost neg-
ligible. It will be interesting in the future to investigate other urban 
systems and quantities characterized by larger volatility, such as 
crime or innovation (22, 33, 35), for which the present framework 
makes a number of testable predictions.

The flip side of the observed constancy and stability of growth 
rates in American cities is that extant wage disparities become very 
slow to reverse. The typical square displacement in  over nearly 
five decades (Fig. 5A; ∼2t) is just 0.054. Assuming a similar rate of 
change in the past means that the observed variance in deviations 
from scaling at the beginning of our dataset (in 1969, about 0.043) 
would have been the product of the previous 40 years, taking us 
back to the time of the roaring 1920s and the subsequent great de-
pression. Thus, the answer to the question at the beginning of this 
paper about predicting the magnitude of deviations from scaling in 
any given year is now recast not so much in terms of parameters of 
stationary statistics (33). Rather, this variance is the result of 
accounting for the accumulation of much smaller accidents and 
variations that make up the stochastic history of cities, which com-
pound short-term noisy growth under partial control of heteroge-
neous agents over entire urban areas and long-time periods of 
decades (22). This is the quantitative sense in which history matters 
for cities, and their development becomes path dependent (18, 39, 40).

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/6/34/eaat8812/DC1
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