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Abstract

Background: Our aims were to determine if features derived from texture analysis (TA) can distinguish normal,
benign, and malignant tissue on automated breast ultrasound (ABUS); to evaluate whether machine learning (ML)
applied to TA can categorise ABUS findings; and to compare ML to the analysis of single texture features for lesion
classification.

Methods: This ethically approved retrospective pilot study included 54 women with benign (n = 38) and malignant
(n = 32) solid breast lesions who underwent ABUS. After manual region of interest placement along the lesions’
margin as well as the surrounding fat and glandular breast tissue, 47 texture features (TFs) were calculated for each
category. Statistical analysis (ANOVA) and a support vector machine (SYM) algorithm were applied to the texture
feature to evaluate the accuracy in distinguishing (i) lesions versus normal tissue and (i) benign versus malignant
lesions.

Results: Skewness and kurtosis were the only TF significantly different among all the four categories (p < 0.000001).
In subsets (i) and (i), a maximum area under the curve of 0.86 (95% confidence interval [Cl] 0.82-0.88) for energy
and 0.86 (95% Cl 0.82-0.89) for entropy were obtained. Using the SVM algorithm, a maximum area under the curve
of 0.98 for both subsets was obtained with a maximum accuracy of 94.4% in subset (i) and 90.7% in subset (ii).

Conclusions: TA in combination with ML might represent a useful diagnostic tool in the evaluation of breast
imaging findings in ABUS. Applying ML techniques to TFs might be superior compared to the analysis of single TF.
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Key points Background

In women with dense breast tissue, the combined use of

e Analysis of texture features on automated breast mammography and hand-held ultrasound (HHUS) in
ultrasound can help to categorise imaging findings. breast cancer screening boosts breast cancer detection

e Machine learning can be applied to texture features rate with additionally detected 2—4 cancers per 1,000
to categorise breast lesions. women [1-4]. However, the use of HHUS in the screen-

e Machine learning performs better than the analysis ing setting remains controversial due to its inherent lim-
of single texture features. itations including the lack of standardisation and the

necessary level of operator experience [4, 5]. In recent
years, automated breast ultrasound (ABUS) has been in-
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resolves the issue of operator subjectivity and variation
[6]. Nevertheless, interpretation of imaging findings re-
mains highly dependent on reader skills and experience.
Standardised acquisition in terms of scanning parame-
ters (e.g, focus, gain) offers the opportunity to apply
tools for image analysis that can support the character-
isation of imaging findings.

Texture analysis (TA) is an integral part of the emerging
field of radiomics and allows a quantitative and objective
assessment of tissue heterogeneity by evaluating the distri-
bution and relationship of pixel or voxel grey levels in the
image [7, 8]. In most of the cases, methods based on stat-
istical analysis are used to represent the interdependence
of grey-level values. TA applied to computed tomography
and magnetic resonance imaging has already shown
promising results in predicting pathologic features, prog-
nosis and response to therapy for various diseases and
body compartments and can potentially be used in ABUS
imaging for lesion analyses [9-16]. Moreover, machine
learning (ML) can be applied to data from TA such that
algorithms are trained to learn specific patterns and cat-
egorise the imaging findings [17].

In this context, the primary purpose of our study
was to determine if features derived from TA can be
used to distinguish normal tissue, malignant and be-
nign solid lesions in ABUS. Second, we evaluated
whether ML applied to TA data can accurately cat-
egorise ABUS findings. Third, we compared ML to the
analysis of single texture features to categorise ABUS
finding based on TA.

Methods

Study subjects

The local ethics board approved this retrospective study
(“Kantonale Ethikkommission Zurich”; Approval Number:
2016-00064). The need for informed consent was waived.
Between December 2015 and June 2017, all women with
at least one histologically proven malignant lesion (1 = 27;
median age 54 years; range 30—85 years) who underwent
ABUS imaging were identified from the hospital database
(University Hospital Zurich). An equal number of women
(n = 27) with at least one benign solid lesion (median age
44 years; age range 27-73years) who underwent ABUS
during the same study period were also included. In case
of a malignant lesion, the histological type was collected.
All benign solid lesions had to be either histopathologic-
ally proven fibroadenomas or stable lesions with a follow-
up of at least 24 months. ABUS was performed in addition
to mammography in 39 women with American College of
Radiology breast density category c or d [18] undergoing
screening examination and as unique imaging examin-
ation in 15 women younger than 40 years undergoing rou-
tine controls. None of the patients was symptomatic or
had strong family history of breast cancer (i.e, no BRCA1
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or BRCA2 mutation carriers, no first-degree relatives of
BRCA1 or BRCA2 mutation carriers, and no women with
three or more events of ovarian cancer or male breast can-
cer or breast cancer in women younger than 60 years in
first- or second-degree relatives in either maternal or pa-
ternal line). The maximum diameter in ABUS was anno-
tated for all lesions.

ABUS examination

Images were acquired with ABUS (Invenia™ Automated
Breast Ultrasound System, General Electric Healthcare,
Sunnyvale, CA, USA) using a C 15-6XW reverse curve, 5—
14 MHz transducer with an aperture length of 15.3 cm, a
transducer travel distance of 16.9 cm, and a depth up to 5
cm. An abundant layer of water-based lotion is applied to
the breast in order to maximise the coupling between the
transducer and the skin. The standard acquisition included
three volumes per breasts, so-called anteroposterior, lateral,
and medial in order to guarantee coverage of the entire
breast. Slices had a thickness of 0.5 mm. Volume acquisi-
tions were performed in the axial plane, and the 3D recon-
structions in the sagittal and coronal planes were
automatically provided using a dedicated workstation.

Image selection and texture analysis

All axial images encompassing the lesion in the three
volumes were analysed separately. Images in which the
visibility of the lesion was altered because of artefacts
(i.e., inadequate compression during the volume acquisi-
tion or inadequate lotion with impaired acoustic coup-
ling at the contact surface between the transducer and
the skin) were excluded from the analysis (n = 63).
These images were in general only part of a patient
examination (e.g,, two to three images in one of the vol-
umes) and did not determine any complete exclusion of
patients. Normal fat and fibroglandular tissue were eval-
uated in two additional, arbitrarily selected images for
each patient, usually from the upper outer quadrant (in
patients with malignant lesions in the contralateral
breast) in order to evaluate the texture features of nor-
mal breast tissue. The image selection was performed by
a radiologist with 8 years of experience in breast imaging
and 3 years of experience in ABUS imaging.

TA was performed in MATLAB (v2016b, The Math-
Works Inc., Natick, MA, USA) with an established
routine-based procedure, as already described [19, 20].
A region of interest (ROI) was drawn freehand by a
radiologist (with 8 years of experience in breast im-
aging) who delineated the outer edge of the lesion or
the maximal continuous area of fibroglandular or fat
tissue included in a single image. A second radiologist
(with 7 years of experience in breast imaging) per-
formed the same evaluation in five benign and five
malignant lesions. In order to minimise intrascanner
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effects, ROI content normalisation between the mean
and three standard deviations (¢ = 3 o) was performed
as a first step of the TA [21, 22]. Subsequently, 47 fea-
tures were computed [9] (Table 1). The first order fea-
tures (entropy, variance, skewness and kurtosis) were
directly extracted from the histogram of all grey levels
in the ROI The second and high-order features were
derived from the respective grey-level matrices (i.e.,
grey-level co-occurrence matrix [GLCM]; grey-level
run length matrix [GLRLM] and grey-level size zone
matrix [GLSZM]) and included more information con-
cerning grey-level distribution by accounting for the
relative position of each pixel with respect to the other
pixels of the image [9, 23].

Machine learning

Data preparation

Preprocessing and preparation of the dataset for ML were
performed with routines written in Python and Scikit-learn
(www.scikit-learn.org, release 0.18.1). All features obtained
from texture analyses were standardised for the whole data-
set using the Scikit-learn-embedded “StandardScaler” class,

Table 1 First order and second and high order texture features
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by removing the mean and scaling the data to unit variance.
To account for multiclass classification, the dataset with
four classes (malignant lesions, benign solid lesions, fat tis-
sue, glandular tissue) was split into two balanced sub-
datasets, each consisting of two classes: (i) solid lesions
versus normal fat and glandular tissue and (ii) malignant le-
sions versus benign solid lesions. To measure the unbiased
performance of the classifier each sub-dataset was ran-
domly shuffled and split in a stratified manner into training
and validation partition, with a ratio of 0.8—0.2. The valid-
ation partition was excluded from the training process,
serving as “unseen” real-world data. Thereby, special atten-
tion was put on the fact that each TA dataset in each valid-
ation partition was acquired from an individual patient.

Support vector machine classifier

An ML model based on the support vector machine (SVM)
algorithm with radial basis decision function and fivefold
cross-validation was implemented using Scikit-learn. In
order to determine the optimal hyperparameters for the
SVM, a nested grid search on each fold was implemented

Histogram- GLCM GLRLM GLSZM
derived
Entropy Contrast Short-run emphasis (SRE) Small zone emphasis (SZE)
Variance Correlation Long-run emphasis (LRE) Large zone emphasis (LZE)
Skewness Energy Grey-level non-uniformity Grey-level non-uniformity
(GLN) (GLN)
Kurtosis Homogeneity Run length non-uniformity Zone-size non-uniformity
(RLN) (ZSN)
Contrast Short-run emphasis Run percentage Zone percentage (ZP)
(SRE) (RP)
Correlation Long-run emphasis Low grey-level run emphasis Low grey-level zone emphasis
(LRE) (LGRE) (LGZE)
Energy Grey-level non-uniformity High grey-level run emphasis High grey-level zone emphasis
(GLN) (HGRE) (HGZE)
Homogeneity Run length non-uniformity Short-run low grey-level emphasis Small zone low-grey level emphasis

(RLN)
Run percentage (RP)

Low grey-level run emphasis
(LGRE)

High grey-level run emphasis
(HGRE)

Short-run low grey-level emphasis
(SRLGE)

Short-run high grey-level emphasis
(SRHGE)

Long-run low grey-level emphasis
(LRLGE)
Long-run high grey-level emphasis
(LRHGE)

(m_SRLGE)

Short-run high grey-level emphasis
(SRHGE)

Long-run low grey-level emphasis
(LRLGE)

Long-run high-grey level emphasis
(LRHGE)

(SZLGE)

Small zone high grey level emphasis
(SHZGE)

Large zone low grey-level emphasis
(LZLGE)
Large zone high grey-level (LZHGE)

Grey-level variance (GLV)

Zone-size variance (ZSV)

GLCM Grey-level co-occurrence matrix, GLRLM Grey-level run length matrix, GLSZM Grey-level size zone matrix


http://www.scikit-learn.org
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by specifying the parameter for gamma and C in a logarith-
mic scale from 0.00001 to 0.001 and 1 to 1,000, respectively.
On the training partition, for each sub-dataset, the mean
cross-validation accuracies of the classifier for each combin-
ation of the specified parameter value was calculated from
each fold and depicted as heatmap as a function of C and
gamma. The parameter combination reaching the highest
validation accuracy for the corresponding sub-dataset was
chosen for the classification task on the test dataset.

Feature selection

To select the reduced feature set (RFS) of optimal features
with superior discriminative power from the full feature set
(FES), a recursive feature elimination with cross-validation
(RFECV) was performed on each of the sub-datasets.
Thereby, each individual feature was ranked and the best
set of features according to the classification accuracy was
selected. This selection process initially included all 47 fea-
tures of the dataset and then gradually removed with each
iteration of those features, which contributed least to im-
prove the classifier performance. The feature ranking was
generated with regard to the number of iterations when the
corresponding feature was removed and an optimal num-
ber of features was determined [24]. Subsequently, the three
previously defined data subsets in the training and valid-
ation partition were reduced to the RFECV obtained opti-
mal features, and the SVM classifier was trained and tested
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again on the RFS applying the same preprocessing steps
and hyperparameter tuning as for the FES.

Statistical analysis

Normally distributed data are reported as means with
standard deviations otherwise as median and inter-
quartile range (IQR). Normal distribution was assessed
by using the Kolmogorov-Smirnov test. A one-way
analysis of variance was performed for comparison of
all texture features among malignant lesions, benign
solid lesions and fat and fibroglandular tissue with
post hoc Bonferroni correction (only p values less than
0.0001 were considered significant). Unpaired ¢ test
was used to compare all texture features between le-
sions (benign and malignant) versus normal tissue
(fibroglandular and fat tissue). The receiver operating
characteristic (ROC) curve was computed in the case
of features with significant differences. The linear rela-
tionship between the different texture features in the
FFS was graphically reported via a correlation matrix.
For each data subset and corresponding set of features
(FES, RFES) of the validation partition, the overall and
tissue-specific performance of the SVM classifier were
quantified in terms of classification accuracy and met-
rics of the confusion matrix [25]. From the generated
classification probabilities and confusion matrices,
sensitivity and 1-specificity were extracted, and the
area under the curve (AUC) was calculated. AUCs

routine control (b). Fatty tissue (c). Fibroglandular tissue (d)

Fig. 1 Axial images obtained with automated breast ultrasound (ABUS). A region of interest was drawn freehand marking the outer edge of the
lesion or the maximal continuous area of fat or fibroglandular tissue included in the image. Invasive ductal carcinoma in a 53-year-old patient
undergoing screening mammography and ABUS (a). Stable benign solid lesion after a 48-month follow-up in a 35-year-old woman undergoing
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were compared with each other according to DeLong’s
non-parametric test using MedCalc for Windows, ver-
sion 18.2.1 (MedCalc Software, Osten, Belgium). A p
value of less than 0.05 was considered for significance.
The inter-reader agreement for the different TA fea-
tures was evaluated using the intraclass correlation co-
efficient (ICC) and interpreted according to the
criteria by Landis and Koch [26]: an ICC of 0.41-0.60
indicated moderate agreement, an ICC of 0.61-0.80
indicated substantial agreement and 0.81-1.0 indi-
cated almost perfect agreement. All statistical analyses
were performed with commercially available software
(SPSS, release 22.0; SPSS Inc, Chicago, IL, MedCalc
for Windows and d the Scikit-learn package with Py-
thon release 3.6) [27].

Results

Thirty-eight solid benign solid lesions (5 biopsy-proved
fibroadenomas) and 32 malignant lesions (30 invasive
ductal carcinomas, 2 invasive lobular carcinomas) were
evaluated in 54 women. Nine patients had multiple benign
lesions, three patients had multifocal, and one patient mul-
ticentric disease. The median maximum diameter of benign
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lesions was 14mm (IQR 12.0-18.0 mm, range 7—36 mm)
and of malignant lesions was 14 mm (IQR 10.5-19.8 mm,
range 5-50 mm). A total of 253 images from malignant
(approximately 7 images/lesion, range 2-16), 254 images
from benign lesions (approximately 6 images/lesion, range
3-16) and 108 images each for fat and fibroglandular tissue
were analysed.

Texture analysis

Median ROI size was 1,312 pixels (IQR 1,161-2,461) for
benign lesions, 2,220 pixels (IQR 1,638-2,839) for malig-
nant lesions, 10,529 pixels (IQR 8,074—15,205) for fatty
tissue, and 14,296 pixels (IQR 12,736-19,845) for fibro-
glandular tissue (Fig. 1la—d). Skewness and kurtosis were
the only features significantly different among the four
categories (p < 0.000001). Texture features, which exhib-
ited significant differences when comparing lesions
versus normal tissue and malignant versus benign lesion,
with corresponding AUC, are reported in Tables 2 and 3
as well as in Figs. 2 and 3, respectively. At the ROC ana-
lysis, the energy was the texture feature with the max-
imum AUC value in the comparison of lesions versus
normal tissue (0.86, 95% CI 0.82—0.88) and a total of

Table 2 Texture features that showed significantly different mean values comparing lesions (benign and malignant) versus normal
tissue (fat and fibroglandular) and corresponding area under the curve (AUQC)

Feature Lesions (mean * standard Normal tissue (mean + standard p value AUC (95% confidence
deviation) deviation) interval)

Entropy 548 £ 035 565 + 024 <0.00001 for 067 (0.63-0.71)
Variance 153.53 £ 23.59 137.75 £ 20.12 all 0.70 (0.66-0.73)
Contrast 2410 £ 9.87 4010 £ 125 0.84 (0.81-0.87)
Correlation 0.88 + 0.06 081 + 0.06 0.80 (0.65-0.83)
Energy 34x10°+15%x10° 22x10°+07x10° 0.83 (0.80-0.86)
Homogeneity 0.36 £ 0.05 0.33 £ 0.04 0.72 (0.69-0.76)
Contrast 2643 £ 12.38 4094 £ 1341 0.80 (0.76-0.83)
Correlation 0.87 + 0.06 0.81 + 0.07 0.78 (0.74-0.82)
Energy 39x10°%+£14x%x10° 26X 102407 %1072 0.86 (0.82-0.88)
Homogeneity 0.36 + 0.05 0.33 £ 0.04 0.71 (0.66-0.74)
(GLCM)

GLN (GLCM) 7842 £ 77.69 156.28 £ 104.76 0.79 (0.76-0.83)
RLN (GLCM) 187043 £ 1,792.01 4,085.00 + 2,628.83 0.82 (0.79-0.85)
LRHGE (GLCM) 1,706.53 + 209.23 1,635.50 + 197.26 0.61 (0.57-0.65)
SRE (GLRLM) 091 £ 0.02 0.92 £ 0.04 0.69 (0.65-0.73)
LRE (GLRLM) 147 +0.17 139+ 0.12 0.65 (0.61-0.69)
GLN (GLRLM) 7853 = 77.67 156.36 + 104.73 0.79 (0.76-0.83)
RLN (GLRLM) 187142 £ 1,786.51 4,080.90 + 2,622.01 0.82 (0.79-0.85)
LRHGE (GLRLM) 1,677.30 £ 196.74 1,598.70 + 168.52 0.61 (0.57-0.65)
LZE 538 £ 3.34 407 £ 238 0.66 (0.62-0.70)
HGZE 1,221.08 + 45.52 1,191.37 £ 86.03 067 (0.63-0.71)

GLCM Grey-level co-occurrence matrix, GLN Grey-level non-uniformity, RLN Run length non-uniformity, LRHGE Long-run high grey-level emphasis, GLRLM Grey-level
run length matrix, SRE Short-run emphasis, LRE Long-run emphasis, LZE Large zone emphasis, HGZE High grey-level zone emphasis
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Table 3 Texture features that showed significantly different mean values comparing malignant versus benign solid lesions and
corresponding area under the curve (AUC)

Feature Malignant lesions (mean + standard Benign lesions (mean + standard p value AUC (95% confidence
deviation) deviation) interval)

Entropy 528 +038 567 £0.16 <0.00001 for all  0.86 (0.82-0.89)
Skewness 0.74 + 033 054 + 041 0.66 -0.70)
Kurtosis 0.53 £ 067 031 £ 066 061 (0.56-0.65)
Contrast 2445 +£ 1061 2840 + 13.66 0.58 (0.53-0.63)

GLN (GLCM) 9633 + 8747 60.58 + 61.73 067 (0.62-0.71)

RLN (GLCM) 221897 +1,834.77 1,523.25 + 1,681.38 0.66 (0.62-0.71)

HGRE (GLCM)
SRHGE (GLCM)
GLN (GLRLM)
RLN (GLRLM)
HGRE (GLRLM)
SRHGE

1,163.54 + 2049
1,067.79 + 32.58
9643 + 8745
2,218.89 + 1,828.26
1,165.00 + 20.59
1,069.20 + 33.13

1,171.63 £ 1935
1,080.79 + 29.69
60.70 + 61.72
152531 £ 167717
1,173.06 + 19.57
1,082.28 + 29.75

0.63 (0.58-0.67)
0.67 (062-0.71)
0.67 (062-0.71)
0.62 (0.57-0.67)

06
(
(
(
(
062 (0.57-0.67)
(
(
(
(
062 (0.58-0.67)

(GLRLM)

GLN Grey-level non-uniformity, GLCM Grey-level co-occurrence matrix, RLN Run length non-uniformity, HGRE High grey-level run emphasis, SRHGE Short-run high
grey-level emphasis, GLN Grey-level non-uniformity, GLRLM Grey-level run length matrix

ROC Analyses - Lesion vs. Normal Tissue
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1-Specificity

Fig. 2 Receiver operating characteristic (ROC) curves of texture analysis features with the highest area under the curve values (Table 2) as well as
ROC curves obtained with machine learning support vector machine (SVM) algorithm with full and reduced features when used to compare
lesions versus normal tissue on automated breast ultrasound
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ROC Analyses - Malignant Lesions vs. Benign Lesions
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Fig. 3 Receiver operating characteristic (ROC) curve obtained from the texture analysis for entropy as well as ROC curves obtained with machine
learning support vector machine (SVM) algorithm with full and reduced features when used to compare malignant versus benign solid breast

== SVM Full Feature Set: AUC = 0.98

=== SVM Reduced Feature Set: AUC = 0.96
=== Texture Analyses for Entropy: AUC= 0.86
= = | uck

0.6 0.8 1.0

seven features had AUC values equal or superior to 0.80.
Entropy was the texture feature with the maximum
AUC value (0.86, 95% CI 0.82-0.89) in the comparison
between benign versus malignant lesions and the only
one with an AUC value superior to 0.80. The ICC
showed substantial to an almost perfect agreement in
the measure of all texture features (ICC = 0.65-0.96,
Additional file 1: Table S1).

Machine learning

Correlation matrices for each sub-dataset (lesion versus
tissue and benign versus malignant) with the FFS were
displayed in Additional file 1: Figure S1A and S1B, re-
spectively, showing significant co-correlation of several
features among the higher-order features in A.

Sub-dataset (i): solid lesions versus normal tissue

The validation dataset included 105 images (54 images of le-
sions and 51 images of normal tissue). For the classification
of lesions versus normal tissue, the optimal hyperparameters

for the FFS accounted 1,000 and 0.001 for C and gamma, re-
spectively (Additional file 1: Figure S2A). Classification ac-
curacies of 92.8% on the training set and of 93.3 % on the
validation set (Table 4) were reached, with 3.8% of all images
in the validation partition being falsely classified as normal
tissue and 2.9% as lesion instead of normal tissue (Table 5).
ROC analyses revealed an AUC of 0.96 (95% CI 0.89-0.98)
for the validation set (Fig. 2). After training and validating,
the SVM classifier on the FFS, a recursive feature elimin-
ation with cross-validation, was performed determining 14
features (Fig. 4a) as optimal features, composing the REFS.
For the RES, a correlation matrix was generated and the op-
timal hyperparameters were determined as C = 1,000 and
gamma = 0.00001 (Additional file 1: Figures S1C and S2B).
Training and validation accuracies were 91.3% and 94.4%,
respectively, with 1.9% of all images being falsely classified as
lesions and 3.8% as normal tissue (Tables 4 and 5). The
AUC for the RFS measured 0.98 (Fig. 2). For all showed tex-
ture feature-derived ROC curves (only features with AUC
values equal or superior to 0.80) compared to the via ML-
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Table 4 Area under the curve (AUCQ), accuracy, sensitivity, and specificity achieved with the validation set in the classification of
lesions versus normal tissue and malignant versus benign solid lesions using the full texture feature set and the reduced feature set

Sub-dataset AUC (95% confidence interval)

Accuracy (%) Sensitivity (%) Specificity (%)

Lesions versus normal tissue
Full feature set 0.96 (0.89-0.98)
Reduced feature set 0.98 (0.92-0.99)
Malignant versus benign lesions
Full feature set 0.98 (0.81-0.99)

Reduced feature set 0.96 (0.90-0.99)

933 926 94.1
944 96.3 92.1
90.7 85.2 96.3
87.1 81.5 926

derived ROC curve, p values were < 0.05 (ranging from
0.003 to 0.02), indicating a significant difference between the
areas. The two lesions incorrectly classified as normal tissue
were one malignant and one benign (Fig. 5).

Sub-dataset (ii): malignant versus benign solid lesions

The validation dataset included 54 images (27 images
of lesions and 27 images of normal tissue). For the clas-
sification of the malignant versus benign solid lesions,
the optimal hyperparameters for the full feature set
accounted 100 and 0.001 for C and gamma (Additional
file 1: Figure S2C). The accuracy on the training set
measured 89.0% and on the validation set 90.7% with
7.4% of all lesions being falsely classified as benign
lesions and 1.9% falsely as malignant (Tables 4 and 5,
Fig. 5). The AUC measured 0.98 (Fig. 3). After RFECV,
a correlation matrix for the reduced feature set of 25
features (Fig. 4b) was generated applying the optimal
hyperparameters of C = 1,000 and gamma = 0.001
(Additional file 1: Figures S1D and S2D). The classifica-
tion accuracy for the RFS was 89.0% on the training
and 87.1 % on the validation partition (Table 4). After

feature reduction, the false-positive rate of malignant
lesions being falsely classified as benign increased to 9.2
% and AUC decreased to 0.96 (Fig. 3). The ROC curve
for entropy, derived from texture analysis, was signifi-
cantly different (p = 0.003) from the via ML-derived
ROC curve.

Discussion

In the current study, we demonstrated that texture feature
analysis of breast imaging findings in ABUS examinations
might be used to differentiate malignant and benign solid
lesions as well as normal tissue of the breast with high ac-
curacy. We also showed that ML applied to texture data
might be superior compared to the statistical analysis of
single texture features.

Although the interrelation between the data derived
from TA and potential underlying biological proper-
ties has not yet been resolved, a number of previous
works have investigated the use of TA to quantify
spatial heterogeneity of benign and malignant lesions
in images acquired with different modalities [9-16]. A
limited number of studies explored the use of TA or

Table 5 Results in the validation set for the classification of lesions versus normal tissue and malignant versus benign solid lesions

using the full texture feature and the reduced feature set

Predicted

Actual Lesions versus normal tissue (n = 105)
Lesions (n = 54)

Full feature set

Reduced feature set
Normal tissue (n = 51)

Full feature set

Reduced feature set
Malignant versus benign lesions (n = 54)
Malignant (tot = 27)

Full feature set

Reduced feature set
Benign (tot = 27)

Full feature set

Reduced feature set

Lesions (%) Normal tissue (%)

50 (92.6) 4(74)
52(96.3) 2(37)
359 48 (94.1)
4(7.8) 47 (92.2)

Malignant (%) Benign (%)

23 (85.2) 4(14.8)
22 (81.5) 5(185)
1(3.7) 26 (96.3)
2(74) 25 (92.6)
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ML in ultrasound imaging for characterisation of
breast lesions [28-30]. Indeed, the application of TA
in conventional B-mode imaging is hindered by varia-
tions of scanning parameters that can determine
unwanted variations in the assessment of texture fea-
tures. Standardised acquisitions in ABUS can in part
overcome these limitations.

In our study, a number of texture features exhibited sig-
nificant differences when used to distinguish solid breast le-
sions from normal tissue as well as malignant from benign
solid lesions with a relatively high AUC up to 0.86 in both
cases. ML offers the possibility to train algorithms to recog-
nise patterns of data derived from the analysis of multiple
texture features instead of referring to a single feature. The
use of a ML model based on the SVM algorithm with radial

basis function determined an increase in the AUC to a
maximum of 0.96 in the differentiation of lesions versus
normal tissue as well as in the differentiation of malignant
versus benign lesions with a maximal accuracy of 94.4%
and 90.7%, respectively. The use of recursive feature selec-
tion in the test datasets for differentiation of lesions versus
normal tissue resulted in an increase in the AUC to 0.98
whereas for malignant versus benign lesions, the AUC
slightly decreased to 0.96. Moreover, application of the re-
duced feature sets resulted in nearly the same training ac-
curacies for the training data and even a slightly higher
accuracy of 94.4% for the test dataset differentiating lesions
versus normal tissue. These excellent performances for the
full as well as for the reduced feature sets and the associated
low amount of overfitting emphasise the robustness and

Fig. 5 Lesions falsely classified as normal tissue using machine learning with the reduced feature set but correctly classified with the full feature
set: invasive ductal carcinoma (maximal diameter 10 mm) in a 74-year-old patient (a) and fibroadenoma (maximal diameter 9 mm) in a 46-year-
old patient (b). Lesion (a) was also falsely classified as benign in the comparison between malignant and benign lesions
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stability of the applied ML model. In many cases, overfitting
occurs when the ML algorithm is trained in a too-large ex-
tent with details and noise negatively affecting the perform-
ance on real-world data. In order to minimise overfitting,
the SVM on our study was trained via cross-validation, div-
iding the training data into subsets of equal size, which also
provided advantages with respect to the limited number of
data points. In addition, the robustness can be accounted,
to some extent, that special interest was put into the acqui-
sition of balanced datasets, and no oversampling techniques
were applied to synthetically generate data [31].

Previous studies reported that the use of supplemental
ABUS in breast cancer screening programmes causes an in-
crease of the recall rate [6, 32]. Moreover, misinterpretation
of lesions along with the presence of multiple distracting le-
sions are determining factors in the case of undiagnosed
cancers at supplemental screening ultrasonography [33].
Although computer-aided-detection software for ABUS of-
fers the potential to improve radiologists’ performances in
detecting breast cancer, characterisation of the imaging
findings remains a major issue [34, 35]. In a recent study,
van Zelst et al. [35] showed that the AUCs between con-
ventional ABUS reading and computer-aided-detection-
based reading performed by eight radiologists with variable
years of ABUS experience was not significantly different
(0.82 and 0.83, respectively). The combined use of CAD
software with algorithms, that enable TA combined to ML,
might overcome the relative limitations of the two ap-
proaches (i.e, the limited specificity of CAD and the neces-
sity for aided-detection in TA combined to ML). Although
the differentiation of breast lesions from normal breast tis-
sue was quite straightforward in our cases, we decided to
include also this evaluation considering the potential role of
ML algorithms integrated in the software for ABUS image
evaluation. A maximal accuracy of 94.4 was observed when
comparing normal tissue versus breast lesions. More im-
portant, in our study, a very high specificity (maximal
96.3%) was achieved in the comparison of benign versus
malignant lesions using ML.

Our study has some major limitations. First, the
underpowered analysis due to the limited number of
cases is included. Nevertheless, the purpose of our pilot
study was to present a possible approach for the evalu-
ation of breast imaging findings in ABUS and to enhance
some differences when TA information alone or in con-
junction with ML is used. A possibly prospective study
including a higher number of cases is necessary to con-
firm our results. Second, the high number of evaluated
images was derived from a relatively low number of dif-
ferent lesions that could have biased the results. Never-
theless, both malignant and benign solid lesions were
collected from the general female population referred to
our department for screening or follow-up examination
of known lesions presumably forming a sufficient
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representative group of breast solid lesions. Third, we
did not compare the performance of TA and ML with
the performance of radiologists with different levels of
experience, which was beyond the scope of this study.
Also, although the inter-reader agreement for the assess-
ment of the texture feature measurements was evaluated
only in part of the lesions, we could demonstrate a high
reproducibility of the measurements for all features.

In conclusion, our pilot study demonstrated that TA
in combination with ML might represent a useful diag-
nostic tool in the evaluation of ABUS findings. Applying
ML techniques to texture features might be superior
compared to analysis of single texture features. A pro-
spective study including a higher number of cases is ne-
cessary to confirm our results.
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