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Abstract: The PID control algorithm for balancing robot attitude control suffers from the problem
of difficult parameter tuning. Previous studies have proposed using metaheuristic algorithms to
tune the PID parameters. However, traditional metaheuristic algorithms are subject to the criticism
of premature convergence and the possibility of falling into local optimum solutions. Therefore,
the present paper proposes a CFHBA-PID algorithm for balancing robot Dual-loop PID attitude
control based on Honey Badger Algorithm (HBA) and CF-ITAE. On the one hand, HBA maintains
a sufficiently large population diversity throughout the search process and employs a dynamic
search strategy for balanced exploration and exploitation, effectively avoiding the problems of
classical intelligent optimization algorithms and serving as a global search. On the other hand, a
novel complementary factor (CF) is proposed to complement integrated time absolute error (ITAE)
with the overshoot amount, resulting in a new rectification indicator CF-ITAE, which balances the
overshoot amount and the response time during parameter tuning. Using balancing robot as the
experimental object, HBA-PID is compared with AOA-PID, WOA-PID, and PSO-PID, and the results
demonstrate that HBA-PID outperforms the other three algorithms in terms of overshoot amount,
stabilization time, ITAE, and convergence speed, proving that the algorithm combining HBA with PID
is better than the existing mainstream algorithms. The comparative experiments using CF prove that
CFHBA-PID is able to effectively control the overshoot amount in attitude control. In conclusion, the
CFHBA-PID algorithm has great control and significant results when applied to the balancing robot.

Keywords: metaheuristic algorithms; honey badger algorithm; complementary factor; CF-ITAE;
Dual-loop PID control; balancing robot

1. Introduction

PID control algorithms are the most prevailing and widely used control algorithms
in the industry, agriculture, and new technology industries such as with drones and
unmanned vehicles. In recent years, balancing robots have been developed rapidly [1,2],
and wheeled balancing robots are more widely used in production because they are simpler
and more stable to control than legged balancing robots, as well as being cheaper and easier
to manufacture [3]. For a balancing robot, the most important thing is the stability and
robustness of its attitude control, which depends on the control algorithm. The Dual-loop
PID control algorithm [4] is often used in the control of balancing robots [5], while it is
difficult to tune the PID parameters simply by manual. Many studies [6–18] have proposed
different methods to optimize the PID algorithm, which enable the PID algorithm to have
better performance and to be applied to various scenarios. The merit of the PID parameters
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determines the effectiveness of the control algorithm as well as the accuracy and stability
of balancing robot control. Therefore, the present study aims at presenting a Dual-loop PID
control algorithm for balancing robots capable of automatically tuning parameters.

With the continuous development of the methods for tuning PID parameter, they
include manual PID parameter tuning methods and intelligent PID parameter tuning
methods. Among them, using metaheuristic algorithms for PID parameter tuning has
important research significance and development prospects. Metaheuristic algorithms [19]
are optimization algorithms that use multiple agents and multiple iterations to obtain the
optimal solution to a specific problem. Exploration and exploitation are indispensable
components of metaheuristics that contradict each other, but both determine the merits
of metaheuristics. In chronological order, metaheuristics can be divided into traditional
metaheuristics and novel metaheuristics.

The classical traditional metaheuristics are the particle swarm optimization algorithm
(PSO) [20], ant colony optimization algorithm (ACO) [21], and genetic algorithms (GAs) [22],
which have been frequently used in the PID control algorithm in recent years. In [8], the
PSO-PID control algorithm is proposed to achieve freeway ramp control regulation. The
results show that the convergence speed of the PSO-PID control algorithm is faster than
that of the BP neural network in the process of ramp control, thus obtaining the best ramp
control. However, the PSO-PID control algorithm is not accurate in the search process and
easily falls into the local optimum. In [9], the PSO algorithm is used for the parameter
optimization of a chaotic synchronous PID controller, and the algorithm is applied to chaotic
synchronous control with better results than the evolutionary programming (EP) algorithm.
In [10], the PSO algorithm is used to tune the quantization and proportionality factors in
the fuzzy PID, resulting in a self-tuning particle swarm fuzzy PID control algorithm for the
control of the robotic arm. The optimized controller has higher control precision and better
control input torque on the control of the robotic arm. In [11], a weighted cooperative PID
and LQR control algorithm using the PSO algorithm and the FCPC control algorithm are
presented to control the robotic arm. The FCPC control algorithm converges faster in the
position control of the robotic arm compared to the single PID control algorithm and the
LQR control algorithm. In [12], the NSGA-II-PID control algorithm is obtained by using
the evolutionary algorithm NSGA-II to tune the PID parameters of the PID controller of
the greenhouse climate control system, which achieved good control performance. The
schemes of optimizing the PID control algorithm through the traditional metaheuristic
algorithm solve the problem that the parameters of the traditional PID control algorithm are
difficult to tune. However, due to the limitations of traditional metaheuristic algorithms, it
may lead to premature convergence and local optimal solutions obtained during parameter
tuning, which may produce invalid loops [23].

In recent years, more and more metaheuristics have been proposed that outperform
traditional metaheuristics in terms of their ability to search for globally optimal solutions,
like the Archimedes Optimization Algorithm (AOA) [24], Whale Optimization Algorithm
(WOA) [25], Harris−Hawkes Optimization (HHO) [26], Atom Search Algorithm (ASO) [27].
In [13], a combination of atomic search algorithm (ASO) and logistic chaotic sequences is
applied for fractional order PID (FOPID) control. The FOPID algorithm achieves a better
step response of the control output and has a better suppression effect on disturbances.
In [14], the Crow search algorithm is proposed for the combination of DC motor PID
control algorithm, and the obtained transient response is superior to the PSO-PID control
algorithm. In [15], an artificial bee colony (ABC) algorithm is used to optimize the PID/PI
control algorithm in the automatic generation control of interconnected reheat thermal
power systems, which has a stronger global search capability than the PSO-PID/PI control
algorithm. In [16], a hybrid algorithm (D2AOFAT) combining the dynamic differential
annealing optimization (DDAO) and feedback artificial tree (FAT) algorithm is proposed
to tune the parameters of a high-order fractional-order PID control algorithm. The time-
domain metrics of the responses obtained by this algorithm are better than the conventional
algorithm. In [17], the Whale Optimization Algorithm (WOA) is applied to the PID con-
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troller which achieved the effective trajectory tracking control of the robot manipulator.
In [18], the chaotic whale algorithm (CWOA) is proposed to optimize the parameter tun-
ing of the FOPID control algorithm. The CWOA-FOPID control algorithm obtains better
ITAE and ISE values during the optimization search process, and the time-domain met-
rics of the output response are better than those obtained by other existing controllers in
the reverse osmosis desalination process. Optimizing the PID control algorithm through
metaheuristic algorithms with better search capability avoids the problem of premature
convergence to some extent. However, given that the global optimal solution is extremely
complicated, the search capability and search speed of metaheuristic algorithms still need
to be improved, and there is still much room for improvement in the performance of these
control algorithms.

Due to the increasing complexity of real-life problems and the highly multimodal
nature of the problems, many existing metaheuristic algorithms present local optimal solu-
tions rather than global optimal solutions during the search process. Therefore, developing
a metaheuristic algorithm that well balances exploitation and exploration has become the
focus of metaheuristic algorithm research. In [28], the Honey Badger Algorithm (HBA)
is proposed, which is inspired by the hunting process of honey badgers. HBA maintains
a large enough population diversity during the search process and possesses a dynamic
search strategy to simultaneously balance the exploration. These two properties of HBA
play a very effective role in avoiding the effect of local optimum, which is conducive to
better avoiding the problems of early convergence and local optimal solutions in the process
of PID parameter tuning.

In the process of balancing robot attitude control, the merit of the Dual-loop PID
parameters determines the accuracy and stability of balancing robot attitude control. From
the comparative experimental results, it can be seen that for the complex PID control
algorithm, the controller obtained by the metaheuristic algorithm with ITAE as fitness was
not effective and has the problem of short adjustment time but large overshoot. Therefore,
it is necessary to explore an optimization method for the Dual-loop PID parameter tuning
that can balance the overshoot and response speed.

In this paper, an HBA Dual-loop PID control algorithm (CFHBA-PID algorithm) based
on CF-ITAE for balancing robot attitude control is proposed. To verify the superiority of
the HBA-PID algorithm, the AOA-PID, WOA-PID, and PSO-PID algorithms are applied
to the attitude control of the balancing robot for comparison experiments. In addition, a
new indicator CF-ITAE is proposed to be compared with ITAE. The CFHBA-PID algorithm,
CFAOA-PID algorithm, CFWOA-PID algorithm, and CFPSO-PID algorithm are compared
with the original control algorithm, so as to verify the superiority of CF-ITAE.

The main contributions of this paper are the following:

1. The HBA (Honey Badger Algorithm) is utilized in the Dual-loop PID algorithm
parameter tuning for the first time, and the HBA-PID control algorithm is proposed
to achieve stable and robust balancing robot attitude control.

2. A complementary factor (CF) is proposed and implemented as a hyperparameter in
the new proposed CFHBA-PID algorithm, which can be adjusted according to the
actual requirements to achieve the balance of overshoot and response speed during
the process of searching the optimal parameters.

3. The CFHBA-PID algorithm is applied to the Dual-loop PID attitude control of
the balancing robot, and achieves the best control compared to the existing main-
stream algorithms.

2. Materials and Methods
2.1. PID
2.1.1. PID Control Algorithm

Figure 1 presents the basic model of the PID control algorithm. The PID control
algorithm is a series compensation control algorithm consisting of the proportional session,
integral session, and differential session. In the PID controller, the error quantity e(t) is
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the difference between the system feedback quantity c(t) and the input quantity r(t). The
output control quantity m(t) is obtained by scaling up or down as well as integrating
and differentiating the error quantity e(t). The output control quantity m(t) calculation
equation is given as Equation (1):

m(t) = Kp × e(t) + Ki ×
∫ t

0
e(t)dt + Kd

de(t)
dt

(1)

where t is the current time of the PID controller, Kp is the proportional factor, Ki is the
integral factor, and Kd is the differential factor. According to the PID control algorithm, Kp
plays a role in making the control timely, whereas too much Kp will cause a loss of stability
and too little Kp will result in a loss of regulation, as well as inappropriate Kp will cause
static errors. Ki plays a role in eliminating static errors, but it results in system oscillations,
and the larger the Ki, the larger the integral effect. Kd plays a role in overcoming the
hysteresis of a controlled object, and the larger the Kd, the more potent the differential effect.
Therefore, Kp, Ki, and Kd play a decisive role in the performance of the control algorithm,
and appropriate parameters can ensure a stable system with small errors.
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Figure 1. The basic model of the PID control algorithm.

2.1.2. Dual-Loop PID Control Algorithm

Figure 2 illustrates the basic model of the Dual-loop PID control algorithm. The Dual-
loop PID control algorithm is a dual closed-loop control system by combining two PID
controllers, one of which acts as the outside loop of the system and the other acts as the
inside loop of the system. The output of the outside loop PID controller affects the desired
value of the inside loop PID controller, while the output of the inside loop PID controller
affects the actual value of the outside loop, thus achieving Dual-loop control of the inside
and outside loops. Compared with single-loop PID control, the Dual-loop PID algorithm
increases the frequency of the control system operation and reduces the oscillation period
and regulation time, resulting in enhanced system rapidity.
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2.1.3. Dual-Loop PID Algorithm for Attitude Control of Balancing Robots

A balancing robot’s control relies on attitude control. The mechanical model of the bal-
ancing robot is shown in Figure 3, while the cross-section is shown in Figure 4. The outside
loop of attitude control is the angular loop, which is obtained by using the angular error
eoutside(t) as the input quantity and the output quantity Coutside(t) as the desired value of
the inside loop. The equations of the outside loop control are given as Equations (2) and (3):

eoutside(t) = Angle_expect− Angle (2)

Coutside(t) = Kp_outside × eoutside(t) + Ki_outside ×
∫

eoutside(t)dt

+ Kd_outside
deoutside(t)

dt

(3)

where Angle_expect is the desired angle, and Angle is the actual angle. Kp_outside, Ki_outside,
and Kd_outside are parameters of the outside-loop PID controller.
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The inside loop of the attitude control is the angle loop, which takes the angular veloc-
ity error einside(t) as the input quantity and the output quantity Coutside(t) as the force to bal-
ance the robot. The equations of the outside loop control are given as Equations (4) and (5):

einside(t) = Coutside(t)− Palstance (4)

Cinside(t) = Kp_inside × einside(t) + Ki_inside ×
∫

einside(t)dt

+Kd_inside
deinside(t)

dt

(5)

where Palstance is the actual angular velocity. Kp_inside, Ki_inside, Kd_inside are parameters of
the inside-loop PID controller.

Figure 5 shows the state diagram of the balancing robot in attitude control. State One
is the initial state of the balancing robot. State Four is the upright state of the balancing
robot. The balancing robot starts from State One and aims to achieve State Four. In order
to reach State Four, the outer loop output Coutside(t) is obtained through the outer loop
Equations (2) and (3). Then, Coutside(t) is used as the desired angular velocity value in the
inner-loop Equations (4) and (5) to calculate the output of the inner-loop Cinside(t). Finally,
Cinside(t) is used as the input of the balancing robot motor to generate the corresponding
control force F to change the attitude of the balancing robot.

2.1.4. PID Control Performance Indicators

In the present paper, the dynamic performance of the control system is evaluated
from two aspects. In terms of time-domain metrics, the rise time tr, transition process
time ts, and overshoot σp are used to determine the superiority of the step response of
the output. The rise time tr is the time it takes for the step response curve to rise from
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zero to the steady-state value for the first time. The settling time ts is the time when the
step response enters and stays within the error range. The overshoot σp is the ratio of the
instantaneous maximum deviation value of the step response to the steady-state value. In
addition, error integration metrics IAE, ISE, ITSE, ITAE are widely used. Among four error
integration metrics, ITAE is measured by multiplying the time by the absolute value of the
error integral [29], which is seen as one of the best performance metrics in single-parameter
optimal control and adaptive control [30].
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Figure 5. The state diagram of the balancing robot in attitude control.

ITAE is selected as the objective function and a set of optimal (minimum ITAE value)
PID parameters are tuned by metaheuristic algorithms. The ITAE calculation equation is
given as Equation (6):

ITAE =
∫ Time_s

0
t|e(t)|dt (6)

where Time_s is the time for the PID controller to reach stability.

2.2. CFHBA-PID Algorithm
2.2.1. Honey Badger Algorithm (HBA)

The Honey Badger Algorithm (HBA) is inspired by the intelligent hunting behavior
of honey badgers. HBA achieves the balance between exploration and exploitation [31]
by setting appropriate randomness. In the HBA algorithm, the smell intensity of the prey
I is related to the concentration strength of the prey S and the distance between the prey
and the honey badger di, which enables search agents to transfer from exploration to
exploitation and avoids falling into local optimum. The density factor α is a randomization
control factor that decreases with time to reduce population diversity throughout iterations.
This achieves the required trade-off balance between exploration and exploitation. F can
provide population diversity in the search process by changing the search direction. HBA
has two modes of locating food sources, which are digging mode and honey mode:

1. Digging mode: Honey badgers use their rat sniffing skills to slowly approach the
prey and dig the prey in a cardioid way. In digging mode, the HBA position update
process (xnew) is given as Equation (7):

xnew = xprey + F× β× I × xprey

+F× r3 × α× di × |cos(2πr4)× [1− cos(2πr5)]|
(7)

where xprey is the global best position of the prey so far. I is the smell intensity of the
prey. α is the update density factor. β is the ability of the honey badger to get food
(default = 6). r3, r4, and r5 are three different random numbers between 0 and 1. F is a
flag to change the search direction, which is given as Equation (8):

F =

{
1 r6 ≤ 0.5
−1 r6 > 0.5

(8)
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I is the smell intensity of the prey that is related to the concentration strength of the
prey S and the distance between the prey and the honey badger di. The smell intensity
of the prey I is strong when the concentration strength of the prey is high and the
distance between the prey and the honey badger is close. Honey Badgers will search
faster when the smell intensity of the prey is strong. I, S, and di are given respectively
using Equations (9)–(11):

Ii = r2 ×
S

4πd2
i

(9)

S = (xi − xi+1)
2 (10)

di = xprey − xi (11)

where r2 is a random number between 0 and 1. The density update factor α is a random
variable that controls time-varying randomness, which can be used to achieve smooth
transitions during exploration and development. It is given as Equation (12):

α = C× exp
(
−t

tmax

)
(12)

where C is greater than or equal to 1 (default = 2). t is the current number of iterations
and tmax is the maximum number of iterations.

2. Honey mode: The honey badger likes eating bee larvae and pupae, and they cooperate
with a honey-guide (a bird) to find bee larvae. It is difficult for the honey badger to
find the hive, but its claws can easily break open the hive, while the honey-guide can
quickly find the hive but cannot break it. Therefore, the honey-guide guides the honey
badger toward the hive and finally shares the bee larvae. In honey mode, the HBA
position update process (xnew) is given as Equation (7):

xnew = xprey + F× r7 × α× di (13)

where r7 is a random number between 0 and 1.

2.2.2. Complementary Factor (CF)

For a complex PID control system, simply using ITAE as the fitness of the metaheuristic
algorithms may make the rise time shorter, but the overshoot is not well controlled, which
is reflected in Equation (6); furthermore, a large overshoot is fatal to the attitude control
of the balancing robot, which causes serious impact and interference. Therefore, the
complementary factor (CF) is proposed to achieve the fusion of ITAE and overshoot quantity,
which leads to a new indicator, CF-ITAE. The CF-ITAE calculation equation and overshoot
calculation equation are given as Equations (14) and (15):

CF-ITAE = CF× ITAE + (1− CF)× σp (14)

σp =
c(t)max − c(∞)

c(∞)
× 100% (15)

where CF is a constant between 0 and 1. Equation (15) shows that when c(∞) is a constant,
the relationship between the overshoot σp and the maximum value of the response c(t)max
can be given as Equation (16):

σp ∝ c(t)max (16)

Therefore, we replace the overshoot σp with c(t)max. The improved CF-ITAE calcula-
tion equation is given as Equation (17):

CF-ITAE = CF× ITAE + (1− CF)× c(t)max (17)
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CF determines the direction of CF-ITAE rectification. A larger CF indicates that the
CF-ITAE has less confidence in the overshoot amount, while a smaller CF indicates that
the CF-ITAE has more confidence in the overshoot amount. The complementary factor CF
is implemented as a hyperparameter in this algorithm so that the metrics can be changed
according to the actual requirements, and it achieves a balance between overshoot and rise
time while retaining the original performance of ITAE.

Using CF-ITAE as the fitness, the value of the CF has an important influence on the
search of the metaheuristic algorithm. If the weight of the algorithm for the overshoot is too
small, and the algorithm may obtain a PID system with too much overshoot and very short
rise time, we can change the search direction of the algorithm by reducing the value of the
CF to obtain the desired solution. On the contrary, if the overshoot is small but the rise time
is too long, the value of CF should be increased to increase the weight of the ITAE in the
CF-ITAE in order to achieve the purpose of shortening the rise time of the tuning result.

Therefore, due to the simplicity and understandability of the CF-ITAE calculation in
Equation (17), the user can easily understand the impact of CF and adjust it according
to their requirements. If the user has high requirements for overshoot, the CF value can
be reduced until the desired solution is obtained. It can be seen that compared with the
ITAE, CF-ITAE can not only solve the problem of large overshoot, but also can be adjusted
according to user needs.

2.2.3. CFHBA-PID Algorithm

The CFHBA-PID algorithm combined the HBA algorithm with the Dual-loop PID
algorithm by setting Kp_inside, Ki_inside, Kd_inside, Kp_outside, Ki_outside, and Kd_outside of the
Dual-loop PID algorithm as the search space of HBA algorithm. Two sets of PID parameters
are obtained for each search, and the parameters obtained from the search are imported
into the balanced robot model implemented by Simulink to calculate the ITAE value and
the overshoot amount. Then the CF-ITAE can be calculated by Equation (17). The CF-ITAE
metric is used as the fitness of the metaheuristic algorithm HBA to constrain the search
direction to obtain the optimal solution.

The CFHBA-PID control algorithm steps described by Figure 6 are:
Step 1: Initialize PID parameters. The six parameters Kp_inside, Ki_inside, Kd_inside,

Kp_outside, Ki_outside, and Kd_outside are used as the solution space, and the relevant parameters
of HBA are initialized.

Step 2: The Dual-loop PID control algorithm calculates the fitness value (CF-ITAE)
as the initial fitness, and the best fitness value and the corresponding PID parameters are
recorded for subsequent updates.

Step 3: Start iterations and update the PID parameters by HBA for each iteration, and
the new fitness (CF-ITAE) is calculated by the Dual-loop PID control algorithm.

Step 4: The calculated fitness value is compared with the previously recorded best
fitness, and if the new fitness obtained is smaller, the fitness and its corresponding PID
parameters will be updated.

Step 5: When the iteration is complete, the best fitness is output along with its corre-
sponding PID parameters.
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3. Experiments and Results

To verify the performance of the proposed algorithm, a series of experiments and
comparisons are conducted, including comparing the HBA-PID algorithm with existing
mainstream algorithms, and verifying the importance of complementary factors as well as
testing the superiority of the CFHBA-PID algorithm. The Dual-loop PID attitude control of
the balancing robot is used as the experimental object. The simulation experiments of the
balancing robot were implemented by Simulink, and the Simulink model of the Dual-loop
PID control algorithm for the attitude control of the balancing robot is shown in Figure 7.
The relevant parameter values and ranges for the balancing robot are shown in Table 1, and
the parameters related to the metaheuristic algorithm are set in Table 2.
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Table 1. Parameters related to balancing robot attitude control.

Elements Value

Kp_inside, Ki_inside, Kd_inside, Kp_outside, Ki_outside, Kd_outside (0,20]

Simulation time 2 s

Initial angle 0 deg

Expected angle (balanced angle) 20 deg

Iterations 50

Coefficient of static friction 0.5

Coefficient of dynamic friction 0.3

Damping 1 × 103 N/(m/s)

ITAE is used as the fitness, and the population size is set to 10, 20, 30, 40, and 50.
The fitness values, PID parameters, and time-domain metrics of the attitude control of the
balancing robot obtained by the HBA-PID, AOA-PID, WOA-PID, and PSO-PID algorithms
are shown in Tables 3–6. The step responses of the actual angle of the balancing robot are
shown in Figures 8–11. In addition, to test the robustness of the algorithm when subjected to
external disturbance, we apply an external force to break the balance of the balancing robot
at a population size of 50, when time t = 1, and compare the robustness of the algorithm by
observing the recovery speed and the magnitude of overshoot of the balancing robot. The
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actual angle of the balancing robot under HBA-PID, AOA-PID, WOA-PID, and PSO-PID
algorithms after applying the external force is shown in Figure 12. The fitness value curves
are shown in Figure 13.

Table 2. Parameters related to metaheuristic algorithm.

Algorithms Parameters

HBA β = 6, C = 2

AOA C1 = 2, C2 = 6
C3 = 1, C4 = 2

WOA a variable decreases linearly from 2 to 0 (Default)
a2 linearly decreases from −1 to −2 (Default)

PSO
Inertia weight decreases linearly from 0.9 to 0.4 (Default)

C1 (individual-best acceleration factor) increases linearly from 0.5 to 2.5 (Default)
C2 (global-best acceleration factor) decreases linearly from 2.5 to 0.5 (Default)

Table 3. Attitude control of balancing robots under HBA-PID algorithm.

Agents
Parameters

(Kp_outside, Ki_outside, Kd_outside,
Kp_inside, Ki_inside, Kd_inside)

Overshoot of
Angle

Rise Time
of Angle

Settling Time
of Angle ITAE

10 (1.3567, 2.7261 × 10−2, 1.1688 × 10−2,
18.8397, 6.5175 × 10−1, 2.2346 × 10−2)

0.0030% 0.0119 s 0.0589 s 7.1655

20 (6.9749 × 10−1, 9.9871 × 10−4, 1.2302 × 10−3,
8.3548, 3.7914, 5.1196 × 10−3)

0.1570% 0.0477 s 0.0633 s 6.3359

30 (1.6662, 14.4183, 4.2575 × 10−4,
20, 1.3909 × 10−2, 5.4942 × 10−2)

7.8405% 0.0146 s 0.1587 s 6.3168

40 (1.7247, 6.0925, 3.7071 × 10−4,
20, 3.0678 × 10−2, 2.8151 × 10−2)

3.0890% 0.0146 s 0.1358 s 6.6401

50 * (1.5021, 9.7897 × 10−3, 3.5043 × 10−3,
20, 1.7089 × 10−2, 9.1596 × 10−2) *

0.1680% 0.0160 s 0.0295 s 3.1658

* Where bold indicates the best parameters.

Table 4. Attitude control of balancing robots under AOA-PID algorithm.

Agents
Parameters

(Kp_outside, Ki_outside, Kd_outside,
Kp_inside, Ki_inside, Kd_inside)

Overshoot of
Angle

Rise Time
of Angle

Settling Time
of Angle ITAE

10 (3.4948 × 10−1, 8.5349 × 10−3, 1.3432 × 10−2,
13.2434, 1.4101 × 10−2, 3.9182 × 10−1)

5.2200% 0.0533 s 0.1003 s 13.5278

20 * (7.4634 × 10−1, 1.8467 × 10−2, 1.6600 × 10−2,
3.2854, 4.3815 × 10−2, 1.8112 × 10−2)

0.0645% 0.0379 s 0.0683 s 12.9221

30 (7.9081 × 10−1, 3.0156, 2.7857 × 10−2,
1.5723, 9.7823 × 10−3, 1.6325 × 10−2)

10.4960% 0.0399 s 0.3553 s 21.0364

40 (8.1478 × 10−1, 2.8729, 1.7204 × 10−2,
2.0965, 5.1542 × 10−2, 2.5170 × 10−2)

10.9575% 0.0405 s 0.3440 s 17.7394

50 (9.1902 × 10−1, 6.0744, 1.8935 × 10−2,
3.9686, 1.5964 × 10−2, 2.6454 × 10−2)

7.9185% 0.0241 s 0.2620 s 13.1745

* Where bold indicates the best parameters.
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Table 5. Attitude control of balancing robots under WOA-PID algorithm.

Agents
Parameters

(Kp_outside, Ki_outside, Kd_outside,
Kp_inside, Ki_inside, Kd_inside)

Overshoot of
Angle

Rise Time
of Angle

Settling Time
of Angle ITAE

10 (6.8813 × 10−1, 3.6046, 3.6926 × 10−4,
20, 15.0197, 4.5869 × 10−1)

8.8530% 0.0399 s 0.3264 s 72.5270

20 (1.3457, 6.5516, 3.3192 × 10−2,
2.9791, 2.7506 × 10−1, 1.9495 × 10−2)

15.8170% 0.0176 s 0.1673 s 17.7998

30 (1.4324, 20, 7.2739 × 10−3,
20, 7.6224 × 10−1, 2.5866 × 10−2)

7.4650% 0.0129 s 0.1549 s 7.6531

40 * (1.2947, 1.2293 × 10−1, 6.5177 × 10−3,
20, 5.1214, 2.5887 × 10−3)

0.0995% 0.0163 s 0.0578 s 6.9713

50 (1.8339, 11.7589, 3.1272 × 10−3,
12.2438, 1.6145 × 10−1, 3.1801 × 10−2)

14.6905% 0.0123 s 0.1495 s 8.5643

* Where bold indicates the best parameters.

Table 6. Attitude control of balancing robots under PSO-PID algorithm.

Agents
Parameters

(Kp_outside, Ki_outside, Kd_outside,
Kp_inside, Ki_inside, Kd_inside)

Overshoot of
Angle

Rise Time
of Angle

Settling Time
of Angle ITAE

10 (2.0667, 8.1296, 6.5740 × 10−2,
1.4035, 14.8514, 7.3100 × 10−3)

34.7265% 0.0183 s 0.1974 s 61.5569

20 (2.1407, 20, 4.5500 × 10−3,
1.9109, 9.8152, 3.9350 × 10−2)

35.5830% 0.0230 s 0.1687 s 50.6170

30 (1.1807, 5.8597, 4.0200 × 10−3,
14.8726, 2.9790 × 10−2, 6.2500 × 10−2)

4.9460% 0.0212 s 0.2490 s 7.9056

40 * (2.7637, 1.1961, 2.2400 × 10−3,
20, 1.0920 × 10−2, 2.4012 × 10−1)

8.2030% 0.0066 s 0.0515 s 7.7164

50 (2.5067, 1.9125 × 10−1, 1.2700 × 10−3,
13.6994, 20, 3.0000 × 10−4)

25.3665% 0.0122 s 0.0507 s 13.3757

* Where bold indicates the best parameters.

The overshoots obtained by the HBA-PID algorithm, AOA-PID algorithm, WOA-
PID algorithm, and PSO-PID algorithm with a population size of 50 are 0.168%, 7.9185%,
14.6905%, and 25.3665%, respectively, while the rise times are kept short. It can be seen that
using ITAE as the fitness, the rise time is preferred between the balance of overshoot and
rise time. Since the amount of overshoot has a large impact on the attitude control of the
balancing robot, the CF-ITAE indicator is proposed to achieve the fusion between ITAE
and overshoot by using the CF. CF-ITAE enables the metaheuristic algorithm to obtain
parameters that balance overshoot and rise time in the search for the optimal parameters. To
verify the effectiveness of CF-ITAE, we compare the PID parameters and the time-domain
metrics of the attitude control of the balancing robot obtained by combining HBA-PID,
AOA-PID, WOA-PID, and PSO-PID algorithms with CF-ITAE. The CF is 0.05, the number
of populations is 50, and other parameters are set as before. The data are shown in Table 7,
and the step response of the actual angle of the balancing robot is shown in Figure 14. In
order to test the robustness of the algorithm when subjected to external disturbance, we
apply an external force to break the balance of the balancing robot at a population size
of 50, when time t = 1, and compare the robustness of the algorithm by observing the
recovery speed and the magnitude of overshoot of the balancing robot. The actual angle
of the balancing robot under CFHBA-PID, CFAOA-PID, CFWOA-PID, and CFPSO-PID
algorithms after applying the external force is shown in Figure 15, and the corresponding
fitness curve is shown in Figure 16.
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Table 7. Attitude control of balancing robots under metaheuristic algorithms and complemen-
tary factor.

Algorithms
Parameters

(Kp_outside, Ki_outside, Kd_outside,
Kp_inside, Ki_inside, Kd_inside)

Overshoot of
Angle

Rise Time
of Angle

Settling Time
of Angle ITAE

CFHBA-PID (1.6718, 1.0090 × 10−2, 3.9545 × 10−3,
19.9632, 4.3772 × 10−4, 5.0410 × 10−2)

0.0035% 0.0131 s 0.0288 s 0.1511

CFAOA-PID (4.8467 × 10−1, 2.1000 × 10−3, 6.1906 × 10−4,
8.0550, 6.5689 × 10−1, 2.4953 × 10−2)

0.0015% 0.0757 s 0.1157 s 0.6036

CFWOA-PID (1.3836, 8.3422, 6.7865 × 10−3,
20, 2.4392, 3.688 × 10−2)

4. 1095% 0.0139 s 0.1854 s 1.1521

CFPSO-PID (1.4725, 12.9553, 4.7766 × 10−3,
17.0569, 13.7370, 4.9587 × 10−3)

5.8615% 0.0148 s 0.1847 s 2.4918
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mentary factor.

In addition, to investigate the effect of the value of the CF on the performance of the
CFHBA-PID algorithm, CF is set to 0.05, 0.20, 0.50, 0.80, 0.95, and 1 for the experiments to
obtain the PID parameters as well as the time-domain indicators of the attitude control of
the balancing robot. The obtained data are shown in Table 8, and the step responses of the
actual angle of the balancing robot are shown in Figure 17.
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Table 8. Attitude control of balancing robots under CFHBA-PID algorithm with different comple-
mentary factors.

CF
Parameters

(Kp_outside, Ki_outside, Kd_outside,
Kp_inside, Ki_inside, Kd_inside)

Overshoot of
Angle

Rise Time
of Angle

Settling Time
of Angle

0.05 (1.6718, 1.0090 × 10−2, 3.9545 × 10−3,
19.9632, 4.3772 × 10−4, 5.0410 × 10−2)

0.0035% 0.0131 s 0.0288 s

0.20 (1.5286, 7.7354 × 10−3, 5.4841 × 10−4,
20, 7.0650 × 10−2, 4.1545 × 10−3)

0 0.0173 s 0.0226 s

0.50 (1.6431, 1.1681 × 10−2, 5.9419 × 10−3,
20, 2.9843 × 10−2, 2.0623 × 10−2)

0.0005% 0.0116 s 0.0383 s

0.80 (1.8229, 1.2032 × 10−2, 3.41784 × 10−3,
20, 9.1008 × 10−5, 6.3091 × 10−2)

0.1785% 0.0120 s 0.0159 s

0.95 (1.8367, 1.1547 × 10−2, 2.5180 × 10−3,
19.9999, 4.0450 × 10−4, 5.8050 × 10−2)

0.3610% 0.0125 s 0.0160 s

1 (1.5021, 9.7897 × 10−3, 3.5043 × 10−3,
20, 1.7089 × 10−2, 9.1596 × 10−2)

0.1680% 0.0160 s 0.0295 s
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4. Discussion

As is indicated in Tables 3–6 and Figures 8–11, the most effective algorithms in balanc-
ing robot attitude control are expected to be a combination of the HBA-PID algorithm with
a population size of 50, the AOA-PID algorithm with a population size of 20, the WOA-PID
control algorithm with a population size of 40, and the PSO-PID control algorithm with a
population size of 40. By comparing the optimal results obtained by the four algorithms
(the bolded data in each table), we can easily find that the data obtained by the HBA-PID
algorithm with a population size of 50 have the smallest stability time and ITAE value
in balancing robot attitude control. From the above data, it can be seen that the ITAE
values obtained by the HBA-PID algorithm are all less than 10, which means the results
obtained by the HBA-PID are closer to the global optimal solution. Figure 12 shows that
the HBA-PID algorithm produces the smallest angular change when disturbed by external
force and also has the shortest stabilization time to recover to an error value of 2%, which
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shows that the HBA-PID algorithm has the best robustness for balancing robot attitude
control among the four algorithms. The fitness curves obtained by the four metaheuristic
algorithms are presented in Figure 13, indicating that the HBA-PID algorithm converges
fastest in the search for the optimal PID parameters and obtains the smallest adaptation
value, which also indicates that the HBA-PID algorithm outperforms other metaheuristic
algorithms in balancing robot attitude control. Therefore, the proposed HBA-PID algorithm
is better than other control algorithms in balancing robot attitude control.

Comparing the results of Table 7 and Figure 14 with the time-domain metrics obtained
with ITAE as the fitness, it is found that the overshoot is effectively reduced by introducing
the CF. The CFHBA-PID algorithm, CFAOA-PID algorithm, CFWOA-PID algorithm, and
CFPSO-PID algorithm had 0.0035%, 0.0015%, 4.1095%, and 5.8615% overshoots, respec-
tively, which were 0.1645%, 7.917%, 10.581%, and 19.505% less compared to the original
algorithm, respectively. Figure 15 shows that CFHBA-PID algorithm, CFWOA-PID algo-
rithm, and CFPSO-PID algorithm have good robustness and stability after introducing
the CF. Considering the attitude control of the balancing robot by the three algorithms
at 0–0.5 s, it is seen that the CFHBA-PID algorithm is the optimal algorithm in terms of
robustness and stability.

Figure 16 shows that with the introduction of complementary factors, although the
CFHBA-PID algorithm converges slightly less quickly than the CFPSO-PID algorithm in
the search for the optimal parameters, the CFHBA-PID algorithm obtains the smallest fit-
ness value and outperforms the other three algorithms overall. Therefore, the proposed
CFHBA-PID algorithm could be considered as the most effective in balancing the robot’s
attitude control and is superior to other algorithms.

The new rectification indicator CF-ITAE is obtained by using CF for the fusion of ITAE
and overshoot. CF is used as a hyperparameter to play a role in the parameter tuning of the
system to balance the relationship between the overshoot amount and the rise time, and
the CF value can be adjusted according to the demand of the system, so that the system can
achieve better results.

Table 8 and Figure 17 show that when the CFs are 0.80 or 0.95, the CFHBA-PID
algorithm does not have enough weight on the overshoot amount and does not achieve a
significant effect, and when the CF is 0.5, the CFHBA-PID algorithm increases the weight on
the overshoot amount, so that the algorithm can effectively reduce the overshoot amount in
the attitude control of the balancing robot. The overshoots are less than 0.01% for the CFs
of 0.05, 0.2, and 0.5, indicating that the CFHBA-PID algorithm has effectively controlled the
overshoot. It can be seen that when the CF is less than or equal to 0.5 as a hyperparameter,
the overshoot in balancing robot attitude control is negligible, and the effect is significant
for balancing robot attitude control at this time. Therefore, when the CFHBA-PID control
algorithm is applied in the attitude control of the balancing robot, the best effect is achieved
when the CF is less than 0.5.

5. Conclusions

In the present paper, the CFHBA-PID algorithm is proposed and implemented to the
balancing robot attitude control. The HBA-PID algorithm is compared with the AOA-PID
algorithm, WOA-PID algorithm, and PSO-PID algorithm through experimental simulation.
The experimental results show that the HBA-PID algorithm outperforms the other three
algorithms in terms of overshoot, stabilization time, ITAE value, and convergence speed
of fitness value, which proves that the HBA-PID algorithm has the best control effect in
the attitude control of the balancing robot. In addition, the complementary factor (CF) is
introduced to the algorithm, and CF-ITAE is proposed to perform the fusion between the
overshoot and ITAE to achieve the balance between the overshoot and rise time. Compared
with the CFHBA-PID algorithm, CFAOA-PID algorithm, CFWOA-PID algorithm, and
CFPSO-PID algorithm, the overshoot of the CFHBA-PID algorithm is very close to that of
the CFAOA-PID algorithm; meanwhile, the CFHBA-PID algorithm is better than the other
three algorithms in terms of rise time, stability time, and CF-ITAE value.
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HBA is applied to PID parameter tuning in balancing robot attitude Dual-loop control
for the first time, and the complementary factors are introduced to propose the CFHBA-PID
algorithm, which is the most effective in balancing robot attitude control when compared
with other existing algorithms. Therefore, the CFHBA-PID algorithm is suggested to be
applied into other complex control systems in future work.
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