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Arachidonic acid metabolism is elevated in Mycoplasma gallisepticum and 
Escherichia coli co-infection and induces LTC4 in serum as the biomarker for 
detecting poultry respiratory disease
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ABSTRACT
Outbreaks of multiple respiratory diseases with high morbidity and mortality have been fre-
quently reported in poultry industry. Metabolic profiling has showed widespread usage in meta-
bolic and infectious disease for identifying biomarkers and understanding of complex 
mechanisms. In this study, the non-targeted metabolomics were used on Mycoplasma gallisepti-
cum (MG) and Escherichia coli (E.coli) co-infection model in serum, which showed that Leukotriene 
C4 (LTC4), Leukotriene D4 (LTD4), Chenodeoxycholate, Linoleate and numerous energy metabo-
lites were varied significantly. KEGG enrichment analysis revealed that the metabolic pathways of 
linoleic acid, taurine and arachidonic acid (AA) were upregulated. To further characterize the 
consequences of co-infection, we performed an AA metabolic network pathway with metabolic 
products and enzyme genes. The results showed that the expression of LTC4 increased extremely 
significant and accompanied with different degree of infection. Meanwhile, the AA network 
performed the changes and differences of various metabolites in the pathway when multiple 
respiratory diseases occurred. Taken together, co-infection induces distinct alterations in the 
serum metabolome owing to the activation of AA metabolism. Furthermore, LTC4 in serum 
could be used as the biomarker for detecting poultry respiratory disease.

Abbreviations: MG: Mycoplasma gallisepticum; E.coli: Escherichia coli; AA: Arachidonic acid; LTC4: 
Leukotriene C4; CRD: chronic respiratory diseases; KEGG: Kyoto Encyclopedia of Genes and 
Genomes; LTs: leukotrienes; PGs: prostaglandins; NO: nitric oxide; HIS: histamine; PCA: Principal 
Component Analysis; PLS-DA: Partial Least Squares Discriminant Analysis; CCU: color change unit; 
UPLC: ultra-performance liquid chromatography; MS: mass spectrometry; DEMs: differentially 
expressed metabolites; ELISA: enzyme-linked immunosorbent assay; SD: standard deviation; VIP: 
Variable importance in the projection
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Introduction

The primary pathogens of respiratory disease in poultry 
include Mycoplasma gallisepticum (MG), Escherichia coli 
(E.coli), Avian influenza virus and Infectious bronchitis 
virus, which have caused huge economic losses to the 
poultry industry worldwide [1–3]. Recently, outbreaks of 
multiple respiratory diseases with high morbidity and mor-
tality have been frequently reported `4, 5]. Due to the 
intensification of commercial poultry production, the 
explosive multiple respiratory infections has become an 
urgent problem. However, the in-depth studies on multiple 
infections are still difficult to conduct because of the com-
plexities of co-infection.

MG, the smallest pathogen that primarily causes 
chronic respiratory diseases (CRD) in poultry birds 
[6,7]. MG is often associated with co-infection outbreaks 
of other pathogens, which may due to a down-regulation 
of the host immune response by MG infection [8]. 
Colibacillosis infection caused by avian pathogenic E.coli 
(APEC) is also an economically important bacterial dis-
ease in poultry [9]. Respiratory diseases may be induced 
by various viral and bacterial agents, either alone or in 
combination [10]. Especially, MG usually infects birds 
along with co-infection of E.coli and viral pathogens 
[11]. It is therefore important to explore the mechanism 
of co-infection and conduct targeted drug therapy.
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Although the multiple respiratory diseases are very com-
plex in terms of pathogenesis and the relationship between 
inflammation, clinical disease and response to treatment, 
with significant improvements in analytics platforms and 
the reduction in costs, the mechanism for using ’omics to 
elucidate disease has grown exponentially in recent years 
[12,13]. A previous study reported the metabolite profiling 
combined with bioinformatics of MG mutants which could 
reveal the likely functions of virulence associated genes [14]. 
In addition, the application of copolymerization and cano-
nical correlation analysis also identified a number of impor-
tant conditional correlations between metabolites and 
transcripts of E.coli [15]. Moreover, Dai found the biomar-
kers of iron metabolism which facilitate clinical diagnosis in 
Mycobacterium infection [16]. In line with the development 
of ’omics, the discovery of biomarkers has greatly advanced 
the development of disease diagnosis and drug targeted 
therapy.

Breathing difficulties caused by airway inflammation in 
respiratory diseases are the main cause of poultry death, 
and the common substances which induce contraction of 
tracheal smooth muscle are mainly leukotriene (LT), pros-
taglandins (PG), nitric oxide (NO), histamine (HIS), etc 
[17–19]. NO was used to assess the underlying mechanisms 
of airway and lung inflammation for investigating asthma 
[20]. We previously demonstrated that co-infection of MG 
and E.coli triggers inflammatory injury involving IL-17 
signaling pathway [21]. Furthermore, IL17A was reported 
that induce neutrophilic inflammation, airway hyperre-
sponsiveness, steroid insensitivity and airway remodeling 
[22]. Previous studies have shown that co-infection with 
MG and E.coli could induce more severe inflammatory 
injury than individual infection. While, the role of metabo-
lites in pathogenesis remains unclear.

There are no precedents for the screening of biomarkers 
or biochemical indicators in metabolomics for the study of 
poultry respiratory diseases. In this study, we conducted 
a non-targeted metabolomics to probe the metabolic 
changes in a co-infection (MG and E.coli) model. The 
purpose is to delve into the molecular mechanisms of co- 
infection and to identify specific biomarkers for poultry 
respiratory diseases. The emergence of biomarkers in the 
respiratory system can provide evidence for the pathologi-
cal diagnosis of the poultry industry, and provide a more 
comprehensive basis for its prognosis and treatment 
options, thereby reducing unnecessary economic losses.

Methods and materials

Mycoplasma strain and E.coli

The strain Rlow of MG was provided by Harbin 
Veterinary Research Institute (Chinese Academy of 

Agricultural Sciences, Harbin). The culture conditions 
and the detection of the density for MG were consistent 
with our previous study [23,24]. In short, modified 
Hayflicks medium containing 0.05% Penicillins, 0.1% 
Nicotinamide adenine dinucleotide, 10% freshly pre-
pared yeast extract, 20% fetal bovine serum and 0.05% 
thallium acetate. MG, in its mid-exponential phase 
indicated by the color change of phenol red dye from 
red to orange, was used to challenge chickens at the 
density of 1 × 109 CCU/ml (color change unit per 
milliliter) in the culture medium. The concentration 
of E. coli was adjusted to 109 CFU/ml before infection.

Experimental models establishment and 
grouping

Forty (1-day-old) White Leghorn chickens were pur-
chased from Chia Chau Chicken Farm (Harbin, China) 
and were assigned randomly to four groups namely (A) 
Control group, (B) Co-infection group, (C) MG group, 
(D) E.coli group (10 chickens per group). The chickens 
were in healthy conditions, MG and E.coli (O78)-free and 
did not undergo vaccination and raised to the 7th day in 
four separate environmentally controlled chambers. 
Meanwhile, the chickens were half male and female and 
each group was housed in a positive-pressure fiberglass 
isolator and provided with antibacterial-free balanced 
feed and fresh drinking water ad libitum. (A) Control 
group, Fed in the same environment and kept until the 
end of experiments. (C) MG group, the method of MG 
infection was constructed by left caudal thoracic air sac 
inoculation with MG Rlow strain 0.2 mL (1 × 109 CCU/ml) 
at 7th day. (D) E.coli group, the E.coli infection model was 
injected at a dose of 0.1 ml E.coli (109 CFU/ml) intraper-
itoneally at day 10. The Co-infection group (B): 0.2 ml of 
MG medium (1 × 109 CCU/ml) was injected into the left 
caudal thoracic air sac at 7th day, and 0.1 ml of E.coli 
bacteria (109 CFU/ml) was injected intraperitoneally 
at day 10 [25]. Four methods were used to verify whether 
the three models were successfully established including 
PCR tests, serological tests, pathological observations and 
pathogen isolation as previously described [21,26].

Sample collection

At 13th day, 10 chickens from each group were huma-
nely sacrificed to avoid pain and suffering of chickens. 
The lung and tracheal samples were collected from each 
groups for further experimental analyzes. RNA 
extracted by Trizol reagent (Invitrogen Inc., Carlsbad, 
CA) from lung tissue was utilized to construct the final 
library (BGISEQ-500 RNA-Seq Library) based on the 
manufacturer’s instructions. Library was validated on 
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the Agilent Technologies 2100 bioanalyzer. GEO acces-
sion number is GSE130015.

Blood samples were collected from each group in 
a vacuum blood collection tube at 37°C for 1 h for 
solidification stratification. Then centrifuge at 3,000 rpm 
for 5 min, and take the supernatant to a clean centrifuge 
tube. Centrifuge at 12,000 rpm and 4°C for 10 min. The 
serum samples were collected and frozen at −80°C after 
liquid nitrogen quick freezing [27]. The present study was 
conducted under the approval of Laboratory Animal 
Ethics Committee of Northeast Agricultural University 
(Heilongjiang province, China) in accordance with 
Laboratory animal-Guideline for ethical review of animal 
welfare (GB/T 35,892–2018, National Standards of the 
People’s Republic of China).

Non-targeted metabolomics study on serum of 
Control and Co-infection groups

16 serum samples of A and B groups were examined 
by the LC-MS system as follows. Briefly, an 
ACQUITY UPLC HSS T3 column (100 mm*2.1 mm, 
1.8 μm, Waters, UK) was used for all chromatographic 
separations by an ultra-performance liquid chromato-
graphy (UPLC) system (Waters, UK). The column 
temperature was 50°C and the flow rate was 0.4 ml/ 
min. The mobile phase of solvent A were water and 
0.1% formic acid, and solvent B were methanol and 
0.1% formic acid. The metabolites were eluted using 
the following gradients: 0～2 min, 100% phase A; 
2 ~ 11 min, 0% to 100% B; 11 ~ 13 min, 100% B; 
13～15 min, 0% to 100% A.

Mass spectrometry was performed on a high- 
resolution tandem mass spectrometer (MS) Xevo G2 
XS QTOF (Waters, UK). The Q-TOF was operated in 
both positive and negative ion modes. The detailed 
parameters were as follows: the capillary voltages 
were set at 3.0 kV and 2.0 kV, respectively for positive 
and negative ion mode, the sampling cone voltages 
were set at 40.0 V. The MS data were acquired in 
Centroid MSE mode. The metabolomics in centroid 
mode range were set from 50 to 1200 Da and the scan 
time was 0.2 s. For the MS/MS detection, all precur-
sors were fragmented using 20–40 eV, and the scan 
time was 0.2 s. The collected MS data was analyzed by 
using the commercial software Progenesis QI (version 
2.2) (Waters, UK) and BGI’s (Beijing Genomics insti-
tute, China) metabolomics R software package metaX 
[28], and the metabolite identification was based on 
the database KEGG.

Detection of biomarkers and biochemical 
indicators by ELISA

Six samples (serum, lung and trachea, respectively) 
from each groups were prepared for enzyme-linked 
immunosorbent assay (ELISA) kits in accordance with 
the manufacturer’s instructions (Kenuodi Biotechno 
logy Co., Ltd. Fujian, China.). NO assay kit was pur-
chased from Nanjing Jiancheng Bioengineering 
Institute (Nanjing, China). Four biomarkers and bio-
chemical indicators activities were detected including 
LTC4, LTD4, HIS, NO. The lung and trachea tissue 
samples were prepared as mentioned previously [29].

Statistical analysis

Data are presented as mean results ± standard deviation 
(SD). The significance was determined using one-way 
ANOVA followed by Dunnett’s T3 test and unpaired 
t test (parametric test). The data were analyzed by using 
the GraphPad Prism (version 5.01). The correlation net-
work of potential metabolites was made by Metscape 
(MetScape v3.1.3) [30]. The box and bubble plots were 
made by MetaboAnalyst (MetaboAnalyst v4.0) [31].

Results

Arachidonic acid metabolism is activated in serum 
from Co-infection group

The serum samples were separated and collected by 
UPLC-QTOF/MS using positive and negative modes. 
The PCA (principal component analysis) and PLS-DA 
(partial least-squares discriminant analysis) of metabo-
lites indicated that co-infection had a systemic metabolic 
profile different from that of control group (Figure 1a,b). 
Differentially expressed metabolites (DEMs) were 
screened in combination with univariate analysis of 
fold change and q-value. Screening conditions: 1) VIP 
≥ 1; 2) fold change ≥ 1.2 or ≤ 0.8333; 3) q-value < 0.05. 
The intersection of these three conditions was obtained, 
and the cross ones were the DEMs (Totally 928 metabo-
lites, including positive and negative modes). The results 
of the differential metabolites are presented as a Volcano 
plot (Figure 1.C). The metabolic pathways of the linoleic 
acid (3/4 metabolites), taurine and hypotaurine (4/6 
metabolites), AA (14/31 metabolites) were activated sig-
nificantly, which were found using MetaboAnalyst ana-
lysis (Figure 2.A). The complete data of pathways was 
recorded in Supplementary material 1.
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Correlation analysis of DEMs

The information of differential metabolites was substituted 
into Metscape for correlation analysis. Correlation calcula-
tor in combination with Metscape can also be used to 
discover the connectivity between metabolites where path-
way information is not readily available. A correlation net-
work of potential metabolites related to effects of co- 
infection was exhibited in Figure 2.B. Totally, 53 potential 
metabolites and the correlation table were found and 

shown in Supplementary material 2 and 3, including 
O-(4-Hydroxy-3, 5-diidophenyl)-3, 5-diiodo-L-tyrosine, 
Leukotriene C4, Leukotriene D4, Chenodeoxycholate, 
Linoleate and numerous energy metabolites. Correlation 
analysis of potential biomarkers and biochemical indicators 
might be valuable for understanding the pathological pro-
cess of co-infection. According to the results of two meta-
bolomics analysis methods, we selected the AA metabolic 
pathway and LTC4 for further studies.

Figure 1. (a). PCA scores plots, (b). OPLS-DA scores plots, (c). VIP-plot of OPLS-DA for serum samples of the co-infection group (blue) 
versus healthy controls (red) in negative and positive ion mode (label 1, 2). Log2 (fold change) is the abscissa, and the negative 
logarithm of q-value is the ordinate in (C). The red points represent fold change ≥ 1.2 or ≤ 0.8333 and q-value < 0.05, and the 
remaining points are gray.
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Changes in expression of arachidonic acid 
pathway-related products and genes

The metabolites heat-map is shown in Figure 2.C. 
Based on the expression of AA pathway products and 
the pathway information corresponding to the KEGG, 

we have drawn a complete AA pathway map with 
changes in expression, as shown in Figure 3. 14/31 
metabolites in the co-infection-specific metabolic sig-
nature mapped onto their interconnecting pathways 
and the involved genes were also added to the map. 
The expression of related genes was screened from our 

Figure 2. (a). Bubble plot of pathway analysis with MetaboAnalyst of potential metabolites in serum. (b). A correlation network of 
potential metabolites analysis with Metscape in serum. The regular hexagon indicate potential biomarkers, blue lines represent 
positive correlation, and red lines represent negative correlation. (c). The heat map of metabolites related to the arachidonic acid 
metabolic pathway.

Figure 3. 7 genes and 13 metabolites in the co-infection group metabolic signature mapped onto the arachidonic acid pathway 
(Arachidonic acid structure as shown in it). Relative expressions are shown as box (metabolites) and column (genes) plots, red for 
control group and green for co-infection group. The ordinate of the box plot is the ionic strength, and the ordinate of the column 
plot is Log2 (fold change) or FPKM (gene expression). Bars represent the mean ± SD. The values with star differ significantly (with 
“*”, 0.01 < P < 0.05) or very significantly (with “**”, P < 0.01) between Group A and B.
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previous RNA-seq results by the BGI data mining 
online website (http://report.bgi.com) as explained in 
previously [21]. The results showed that the expression 
of LTC4 S and ALOX5AP in co-infection was elevated 
significantly compared to control group, while the 
expression of CYP2C21 L and LTA4 H were decreased 
significantly, and the other genes showed no significant 
differences. ALOX15 was not expressed in each group. 
Among the expression of metabolites, LTA4 and LTC4 
were elevated significantly, and other metabolites 
decreased significantly.

The expression of LTC4, LTD4, HIS and NO in 
serum, lung and tracheal tissues by ELISA

To determine the biomarker of poultry respiratory dis-
ease, the concentrations of LTC4, LTD4, HIS and NO 
in the serum, lung and tracheal tissues were measured 
by using a sandwich ELISA. As shown in Figure 4, the 
expression of LTC4 and LTD4 were elevated extremely 
significant in the serum of co-infection group, while in 

the lung and tracheal samples showed no significant 
difference compared to other groups. The results of 
HIS indicated that the expression of co-infection 
group and MG group was higher than the other two 
groups in serum. Meanwhile in lung and tracheal tis-
sues, the expression increased significantly only in the 
co-infection group Figure 4. (HIS). As shown in Figure 
4. (NO), the expression of NO showed that there were 
no significant difference in any groups or tissues.

Discussion

In addition to the basis of our previous study of co- 
infection model, the non-targeted metabolomics was 
carried out to analyze infection mechanisms and bio-
markers in-depth. Initially, Principal Component 
Analysis (PCA) and Partial Least Squares 
Discriminant Analysis (PLS-DA) were performed on 
the obtained data. PCA is a multivariate statistical ana-
lysis method that transforms multiple variables into 
a few important variables (principal components) by 

Figure 4. LTC4, LTD4, HIS, NO were detected by ELISA in serum, lung and tracheal tissues and performed with scatter plot. Bars 
represent the mean ± SD. The values with star differ significantly (with “*”, 0.01 < P < 0.05) or very significantly (with “**”, P < 0.01) 
between Group A and B.
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dimensionally reduction techniques [32]. The PLS-DA 
analysis method performs partial least squares transfor-
mation PLS on the data, and then performs linear 
discriminant analysis LDA. PLS-DA is a multivariate 
statistical analysis method widely used by metabolo-
mics [33]. Next, the differentially expressed metabolites 
were screened using the VIP values of the first two 
principal components of the multivariate PLS-DA 
model in combination with univariate analysis of fold- 
change and q-value. Totally 928 metabolites (remove 
duplicates) were screened in this study, including posi-
tive (245) and negative (882) modes. Finally, we sought 
to combine the DEMs with biochemical indicators to 
provide a more global characterization of the metabolic 
consequences of multiple respiratory infections.

After signal path enrichment analysis, we found that 
the DEMs were significantly enriched in the metabolic 
pathways of the linoleic acid (3/4 metabolites), taurine 
and hypotaurine (4/6 metabolites), AA (14/31 metabo-
lites). These pathways are important for anti- 
inflammatory and immune responses during infection 
[34,35]. Studies have shown that pathway impact 
greater than 0.1 means that the pathway has enriched, 
and greater than 0.4 means significant enrichment [36]. 
In our study, the pathway impact of AA was 0.54. 
Furthermore, the AA metabolic pathway is more clo-
sely linked to others and has the most diverse metabo-
lite enrichment, so we delved into it. AA is 
a polyunsaturated fatty acid that is abundantly present 
in the phospholipids of cell membranes, which induces 
prostaglandins and leukotrienes, participating in the 
afferent and efferent limbs of the immune system dur-
ing host defense and inflammatory responses [37]. In 
our co-infection model, the AA pathway was also acti-
vated obviously, but the specific changes need to be 
further clarified.

The previous studies showed that AA produces four 
metabolic products including leukotrienes (LTs), pros-
taglandins (PGs), the 15-lipoxygenase enzymes and the 
cytochrome p450 enzymes [38]. In this study, the data 
from non-targeted metabolomics was combined with 
the results of RNA-seq to map onto the AA metabolic 
network pathways according to the MAP00590 on 
KEGG. The results of the metabolites and related 
enzyme genes involved in the AA metabolic pathway 
indicated that the complete AA network visualized the 
changes in the AA pathway after co-infection. LTC4 
was significantly increased by the action of the relevant 
enzymes. In contrast, other products such as PGs 
showed significant down-regulation or no significant 
difference. The previous research showed that the 
severity of eosinophilic inflammation correlated 
directly with LTC4, LTD4, and LTE4 concentrations 

and inversely with PGE 2 concentrations [39]. The 
significant difference between LTs and PGs provides 
direction for further research, which lead us to spec-
ulate that severe inflammation might form a pivotal 
condition for co-infection. Our results reflected the 
significance of LTs in the AA pathway, which may 
induce LTC4 as the biomarker for diagnosis or 
treatment.

The correlation analysis of DEMs also induced 
LTC4, LTD4, HIS etc. as the potential biomarker for 
detecting multiple respiratory disease infections. 
Researches showed that LTC4, LTD4, HIS and NO 
play a physiological role in controlling bronchial airway 
reactivity [40,41]. These biochemical indicators can be 
used as a key factor in the diagnosis of disease course. 
Therefore, in this study, we aim to identify specific 
biochemical indicators of respiratory diseases in poul-
try. The expression of LTC4 and LTD4 were elevated 
extremely significant in the serum of co-infection 
group, and the expression of LTC4 was significantly 
higher than LTD4. In addition, the results of HIS indi-
cated that the expression of co-infection group and MG 
group was higher than the other two groups in serum, 
which may be due to histamine being released faster 
than leukotriene or the course of the disease [42]. 
According to the three infection models, the degree of 
respiratory infection was judged from histopathological 
results [21]. Our results showed that LTC4 in serum 
showed significant differences in the degree of infec-
tion, which could support rapid diagnosis and prog-
nosis treatment for poultry farms.

With the development of high-throughput sequen-
cing, the application of metabolomics has made break-
through in various fields. The ’omics drive the rapid 
accumulation of quantitative data and knowledge of the 
molecular networks of disease, which increase the 
development and use of quantitative disease models to 
facilitate efficient and safe drug discovery [43]. 
Metabolomics analysis of the response of metabolites 
can understand the developmental process of the dis-
ease from the root cause, and then propose more opti-
mized solutions. Through the analysis of the metabolic 
network, biomarkers related to the disease can be 
found, which is of great significance for the clinical 
diagnosis of the disease [44,45]. Hence, we explored 
the potential of LTC4 as a biomarker of co-infection 
and discuss how activating AA metabolism might 
extend inflammation.

In conclusion, our metabolic results demonstrate 
that AA metabolism is activated in co-infection of 
MG and E.coli. Furthermore, correlation analysis 
induce LTs and HIS as the potential biomarker. The 
AA network constituted by the related metabolites and 
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genes expressions showed that the LTs pathway is 
directly proportional, and the PGs is inversely propor-
tional to infection. It is recommended that LTC4 in 
serum acts as a biomarker for detecting poultry respira-
tory diseases. This study uses metabolomics to provide 
new insights into multiple infections and provides new 
biomarkers for diagnosis and treatment.
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