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Abstract: There are many varieties of Cannabis sativa that differ from each other by composition of
cannabinoids, terpenes and other molecules. The medicinal properties of these cultivars are often
very different, with some being more efficient than others. This report describes the development of
a method and software for the analysis of the efficiency of various cannabis extracts to detect the
anti-inflammatory properties of the various cannabis extracts. The method uses high-throughput
gene expression profiling data but can potentially use other omics data as well. According to the
signaling pathway topology, the gene expression profiles are convoluted into the signaling pathway
activities using a signaling pathway impact analysis (SPIA) method. The method was tested by
inducing inflammation in human 3D epithelial tissues, including intestine, oral and skin, and then
exposing these tissues to various extracts and then performing transcriptome analysis. The analysis
showed a different efficiency of the various extracts in restoring the transcriptome changes to the
pre-inflammation state, thus allowing to calculate a different cannabis drug efficiency index (CDEI).

Keywords: cannabis drug efficiency index; signaling pathway impact analysis; anti-inflammatory
properties

1. Introduction

In the twentieth century, enormous strides have been made in combatting various
diseases. Treatment of chronic diseases still remains to be more challenging than acute ones.
This is often due to substantial differences in individual responses to known drugs. Over
the last few decades, with the advent of genomics and epigenomics, research has focused
on the development of personalized medicine. A need has arisen to develop diagnostic
tools for use in the characterization of personalized aspects of chronic diseases.

Intracellular signaling pathways (SPs) regulate numerous processes involved in nor-
mal and pathological conditions, including development, growth, aging and cancer. Many
intracellular signaling pathways or maps are available at online websites. The information
relating to signaling pathway activation (SPA) can be obtained from the massive proteomic
or transcriptomic data [1]. Although the proteomics analysis may be somewhat closer to
the biological function of SPA, the transcriptomics analysis is far more feasible in terms of
performing experimental tests and analyzing the data.

The transcriptomic methods like next-generation sequencing (NGS) or microarray
analysis of RNA can routinely determine the expression levels for all or virtually all human
genes [2]. Transcriptome profiling may be performed from a minute amount of the tissue
sample, which does not necessarily need to be fresh, as it can also be done for the clinical
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formalin-fixed, paraffin-embedded (FFPE) tissue blocks. For the molecular analysis of
cancer, gene expression can be interpreted in terms of abnormal SPA features of various pro-
and antimitotic signaling pathways [3]. Such an analysis may improve any decision-making
process for treatment strategy selection by the clinician.

Pro- and antimitotic SPs that determine various stages of cell cycle progression re-
mained in the spotlight of computational biologists for more than a decade [4,5]. Today,
hundreds of SPs and related gene product interaction maps that show sophisticated re-
lationships between the individual molecules are catalogued in various databases, such
as UniProt [6], HPRD [7], QIAGEN SABiosciences, WikiPathways [8], Ariadne Pathway
Studio [9], SPIKE [10], Reactome [11], KEGG [12], etc.

Many bioinformatics tools have been developed that analyze SPs. One group of
bioinformatic approaches integrated the analysis of transcriptome-wide data with the
models employing the mass action law and Michaelis–Menten kinetics [13]. However, these
methods, which have developed during the last fifteen years, remained purely fundamental
until recently, primarily because of the multiplicity of interaction domains in the signal
transducer proteins that enormously increase the interactome complexity [14]. Secondly,
a considerable number of unknown free parameters, such as kinetics constants and/or
concentrations of protein molecules, significantly complicated the SPA analysis. Yizhak et al.
(2013) suggested that the clinical efficiency of several drugs, e.g., geroprotectors, may be
evaluated as the ability to induce the kinetic models of the pathways into the steady
state [13]. However, protein–protein interactions were quantitatively characterized in
detail only for a tiny fraction of SPs. This approach is also time-consuming, since to process
each transcriptomic dataset, it requires extensive calculations for the kinetic models [13].

In addition, all the contemporary bioinformatical methods that were proposed for
digesting large-scale gene expression data, followed by recognition and analysis of SPs,
have an important disadvantage: they do not allow tracing the overall pathway activation
signatures and quantitively estimate the extent of the SPA [13,15]. This may be due to a lack
of the definition of the specific roles of the individual gene products in the overall signal
transduction process, incorporated in the calculation matrix used to estimate the SPA.

Thus, there remains an unmet, urgent and increasing need to provide effective person-
alized non-toxic disease therapies, as well as models for selecting a personalized optimal
therapy for an individual.

Here, we propose a method for quick, informative and large-scale screening of changes
in SPA in cells and tissues. These changes may reflect various conditions, such as differ-
ences in physiological state, aging, disease, treatment with drugs, media composition,
additives, etc. One of the potential applications of SPA studies may be to utilize mathe-
matical algorithms to identify and rank the medicines based on their predicted efficacy.
In this paper, we give examples of the analysis of transcriptomics data for three sets of
experiments involving the analysis of the anti-inflammatory properties of cannabis extracts.
Such a method can potentially be used for the detection of the efficiency of various other
botanical extracts or single compounds, although the versatility of the method will have to
be confirmed using other data sets.

2. Methods
2.1. Cannabis Drug Efficiency Index (CDEI)
2.1.1. Input and Output Data for the CDEI Metric

Several methods were proposed for the assessment of drug efficiency based on
gene/protein expression [16–19] or mutation patterns [20–22]. Unfortunately, most such
methods are either proprietary or employ machine learning on preceding cases [23–26]. So,
for evaluating a cannabis drug’s individual action, we have suggested a novel approach,
the cannabis drug efficiency index (CDEI).

CDEI is our original approach for assessing the efficiency of a cannabis drug’s appli-
cation regarding individual persons. CDEI is calculated based on high-throughput gene
expression profiling and a signaling pathway topology, by comparison of gene expression
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and signaling pathway profiles between case and normal reference states for prediction of
drug action in individual cases.

As input data, the CDEI operates with the results of various “omics” data stemming
from the cells of individual patients and the healthy individuals. These data may include
transcriptomic (e.g., performed with either next-generation sequencing or microarray
mRNA hybridization), non-coding-RNAomic, proteomic and epigenomic data, etc.

The data of the full mRNA/protein abundance are integrated by the CDEI into the
assessment values for activation of different cellular pathways (signalome).

The topology for the signaling, metabolic and cytoskeleton pathways, etc., were
obtained from the database of QIAGEN SABiosciences (URL: https://www.qiagen.com/
ru/shop/genes-and-pathways/pathway-central/).

2.1.2. SPIA (Signaling Pathway Impact Analysis): A Method for Assessment of Signaling
Pathway Activation

The high-throughput gene expression data were converted according to our CDEI
approach to more aggregated values of the molecular pathway activities, using the sig-
naling pathway impact analysis (SPIA) method [27]. Among the other methods for
gene-expression-based assessment of signaling pathway activation, including TAPPA [28],
topology-based score (TB) [29], Pathway-Express (PE) [1], and OncoFinder [1], the SPIA [27]
approach showed the best statistical performance during the comparison between pathway-
based and gene-based values (Figure 1; taken from [30]).

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 3 of 18 
 

 

methods are either proprietary or employ machine learning on preceding cases [23–26]. 
So, for evaluating a cannabis drug’s individual action, we have suggested a novel ap-
proach, the cannabis drug efficiency index (CDEI). 

CDEI is our original approach for assessing the efficiency of a cannabis drug’s appli-
cation regarding individual persons. CDEI is calculated based on high-throughput gene 
expression profiling and a signaling pathway topology, by comparison of gene expression 
and signaling pathway profiles between case and normal reference states for prediction 
of drug action in individual cases. 

As input data, the СDEI operates with the results of various “omics” data stemming 
from the cells of individual patients and the healthy individuals. These data may include 
transcriptomic (e.g., performed with either next-generation sequencing or microarray 
mRNA hybridization), non-coding-RNAomic, proteomic and epigenomic data, etc. 

The data of the full mRNA/protein abundance are integrated by the CDEI into the 
assessment values for activation of different cellular pathways (signalome). 

The topology for the signaling, metabolic and cytoskeleton pathways, etc., were ob-
tained from the database of QIAGEN SABiosciences (URL: https://www.qi-
agen.com/ru/shop/genes-and-pathways/pathway-central/). 

2.1.2. SPIA (Signaling Pathway Impact Analysis): A Method for Assessment of Signaling 
Pathway Activation 

The high-throughput gene expression data were converted according to our CDEI 
approach to more aggregated values of the molecular pathway activities, using the sig-
naling pathway impact analysis (SPIA) method [27]. Among the other methods for gene-
expression-based assessment of signaling pathway activation, including TAPPA [28], to-
pology-based score (TB) [29], Pathway-Express (PE) [1], and OncoFinder [1], the SPIA [27] 
approach showed the best statistical performance during the comparison between path-
way-based and gene-based values (Figure 1; taken from [30]). 

 
Figure 1. Data aggregation effect R for five pathway activation scoring methods (OncoFinder (OF), 
TAPPA, TBScore (TB), Pathway-Express (PE) and signaling pathway impact analysis (SPIA)) on a 
renal carcinoma dataset [30]. 

Imagine а pathway graph, ),( EVG , where  
},,,{= 21 ngggV   is the set of 

graph nodes (vertices), and }interactandgenes|),{(= jiji ggggE  is the set of 

graph edges. The adjacency matrix is defined as 1=ija , if ji =  or Egg ji ∈),( , and 

0=ija , if Egg ji ∉),( . 

Figure 1. Data aggregation effect R for five pathway activation scoring methods (OncoFinder (OF),
TAPPA, TBScore (TB), Pathway-Express (PE) and signaling pathway impact analysis (SPIA)) on a
renal carcinoma dataset [30].

Imagine a pathway graph, G(V, E) where V = {g1, g2, . . . , gn} is the set of graph
nodes (vertices), and E =

{(
gi, gj

)
| genes gi and gj interact

}
is the set of graph edges. The

adjacency matrix is defined as aij = 1, if i = j or
(

gi, gj
)
∈ E, and aij = 0, if

(
gi, gj

)
/∈ E.

Consider then the values, called perturbation factors (PF), for the all genes g of the
pathway K,

PF(g) = ∆E(g) + ∑
γ∈Ug

βγg·
PF(γ)

ndown(γ)
.

Here, ∆E(g) is the signed log-fold-change of the gene g expression level in a given sample
compared with the average value for the pool of normal samples. The latter term expresses
the summation over all the genes γ that belong to the set Ug of the upstream genes for the
gene g. The value of ndown (γ) denotes the number of downstream genes for gene γ. The
weight factor βyg indicates the interaction type between γ and g: βyg = 1 if γ activates g,
and βyg = 1 when γ inhibits g. The search for upstream/downstream genes is performed
according to the depth-first search method [31].

https://www.qiagen.com/ru/shop/genes-and-pathways/pathway-central/
https://www.qiagen.com/ru/shop/genes-and-pathways/pathway-central/
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To obtain an estimator for pathway perturbation that is positive for an upregulated
and negative for a downregulated pathway, use the second term in the formula for the
perturbation factor (PF) from the previous paragraph, resulting in the accuracy value,
Acc(g) = PF(g)− ∆E(g). It can be shown that this accuracy vector may be expressed as
follows: Acc = B·(I− B)−1·∆E, where

B =


β11

ndown(g1)
· · · β1n

ndown(gn)
...

. . .
...

βn1
ndown(g1)

· · · βnn
ndown(gn)

,

I is the identity matrix, and

∆E =

 ∆E(g1)
. . .

∆E(gn)

.

The overall score for the pathway perturbation was calculated as SPIA = ∑
g

Acc(g) [27].

2.1.3. Calculation of the Cannabis Drug Efficiency Index (CDEI)

The SPIA-based CDEI metric was then calculated according to the following algorithm:

1. Obtain the signaling pathway impact analysis (SPIA) for each drug for each biologi-
cal pathway.

2. Calculate the values of the pathway weight (wp) factor as follows: For pathways with
a positive mean SPIA score of the case samples, wp = ((number of case samples with
positive SPIA score)/(total number of case samples)). For pathways with a negative
mean SPIA score of the case samples, wp = ((number of case samples with negative
SPIA score)/(total number of case samples)).

3. Adjust the mean SPIA score of each pathway by the weight factor, SPIAµ = mean(SPIA)·wp.
4. Perform Student’s t-test if the values of SPIAµ for the pool of case samples are different

from 0 (for the pool of control samples, the values of SPIAµ are clearly equal to 0).
During the Student’s t-test, the following case classes are taken into account: the
untreated case (U), i.e., the pathological state before drug application, should be far
from the control (C).

- Treated case (T), i.e., the pathological state after drug application, should be close
to the control;

- The following values are the results for such calculations: |tU| = absolute t-value
for the Student’s t-test for U-vs.-C profiles;

- |tT| = absolute t-value for the Student’s test for T-vs.-C profiles.

5. Calculate the cannabis drug efficiency index (CDEI) for each drug for a specific disease,
wherein CDEI = 2 ((|tU|/(|tT| + |tU|) − 0.5).

6. Rank the drugs according to highest CDEI for a group of individual patients.

Note that our value of CDEI has the following properties:

- CDEI is a value between −1 and 1;
- CDEI is 0 if |tT| and |tU| are the same, which means no drug efficiency;
- CDEI is 1 if |tT| is 0, which means the perfect efficiency;
- CDEI is a value greater than 0 if |tT| is smaller than |tU|, which means a positive

efficiency;
- CDEI is a value less than 0 if |tT| is larger than |tU|, which means a negative

efficiency.

Note also that the mean score of the case samples in each pathway is first calcu-
lated/adjusted and then the set of the mean scores in each data set are t-tested for their
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difference from 0 (i.e., a one-sample t-test). So, a t-statistic is calculated for each dataset
and the CDEI metric is one value for each case sample dataset.

The CDEI calculations based on the SPIA values were done using R script.

2.2. Experiments Used for Validation of the CDEI

The CDEI metric was tested on several datasets, as explained below in several examples.

2.2.1. Plant Growth

All cannabis plant hybrids were generated and grown in a licensed facility at the
University of Lethbridge. Various cultivars, numbered #1, #4, #7, #8, #9, #12, #13, #45, #114,
#129, #130, #157, #167, #169 and #274, were used for the analysis. All hybrids represent
individual lineages with different levels of cannabinoids (data not shown). Cuttings from
the mother plants of the same age (~6 months) were made and allowed to root. After
rooting (~10 days), plantlets were acclimated for another week and then were transplanted
to a larger pot. Four plants per variety were grown at 22 ◦C for 18 h in light and 6 h in the
dark, for 4 weeks, and then transferred to the chambers for a 12 h light/12 h dark regime to
promote flowering. Plants were grown to maturity and flowers were harvested and dried.
Approximately 5 g of the dry, lower samples from each of four plants per variety were
combined and then used for extraction.

2.2.2. Crude Extract Preparation Using Solvent

Three grams of plant tissue was ground to a powder using a fine coffee grinder and
the powdered plant tissue were weighed using an analytical balance. Plant material was
placed inside a 250 mL Erlenmeyer flask. A total of 100 mL of ethyl acetate was poured
into the flask containing the plant material. The flasks were then wrapped with tin foil and
shaken continuously (120 rpm) in an incubator at 21 ◦C overnight and in the dark.

After overnight solvent extraction, the extracts were filtered through cotton into a
100 mL round bottom flask. The extracts were concentrated to around 2–3 mL using a
rotary vacuum evaporator. The extracts were then transferred to a tared 3-dram vial (cat#
60975L Kimble obtained from Fisher Scientific). The leftover solvent was evaporated to
dryness in an oven overnight at 50 ◦C to eliminate the solvent completely. The mass of
each crude extract was recorded. All extractions were repeated twice.

2.2.3. Analysis of Cannabinoid Content

The levels of cannabinoids were analyzed using an Agilent Technologies 1200 Series
HPLC system. The extract stocks were prepared from the crude extracts whereby 3–6 mg
of crude extract was dissolved in DMSO (dimethyl sulfoxide anhydrous, Life Technologies)
to reach a 60 mg/mL final concentration and stored at −20 ◦C. The appropriate cell culture
media (RPMI + 10% FBS or EMEM + 10% FBS) were used to dilute the 60 mg/mL stock
to make a working medium containing 0.01 mg/mL. The extracts were sterilized using a
0.22 µm filter. The composition of each extract is shown in Table 1.

2.2.4. Preparation of the Cannabis Extract for Experimental Analysis Using Human Cells
and Tissues

The stocks were prepared weighing 3–6 mg of crude extract into a micro centrifuge
tube. The crude extract was dissolved in DMSO (dimethyl sulfoxide anhydrous from Life
technologies cat # D12345) to reach a 60 mg/mL final concentration and stored at −20 ◦C.
For the assay, a different amount of stock material (from 1 to 20 µL) was added to 21 mL of
medium to make a working extract. Different concentrations were tested for cell/tissue
toxicity and one concentration was chosen for further work (data not shown). Specifically, to
obtain “low” (0.007 mg/mL) and “high” (0.015 mg/mL) functional concentrations, 2.45 µL
or 5.25 µL of stock extract (60 mg/mL) were added to 21 mL of medium, respectively.
The final concentration of DMSO was 0.012% and 0.025% in the “low” and “high” extract
concentrations, respectively. The extracts were sterilized using a 0.22 µm filter.
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Table 1. Level of single and total cannabinoids in the flowers and extracts of selected C. sativa cultivars.

Flowers, % THC CBD CBGA CBN TOTAL Cannabinoids CBD:THC Ratio

#1 0.25 6.79 0.12 7.16 27.16
#7 0.21 7.2 0 7.41 34.29
#9 0.22 6.91 0.31 7.44 31.41

#45 0.03 1.61 1.64 53.67
#115 0.3 9.54 9.84 31.80
#129 0.28 6.75 0.66 7.69 24.11
#130 0.86 2.63 0.31 0.03 3.83 3.06
#157 0.2 3.75 0.09 0.15 4.19 18.75
#167 0.08 2.25 0.16 2.49 28.13
#169 0.2 1.88 0.14 2.22 9.40
#274 0.44 9.02 0.31 9.77 20.50

Extracts, % THC CBD CBGA CBN TOTAL Cannabinoids CBD:THC Ratio

#1 0.88 34.6 0.25 0.12 35.85 39.32
#7 1.1 32.9 0.27 0.15 34.27 29.91
#9 0.98 32.6 0.97 0.15 34.55 33.27

#45 0.44 24.92 0.13 0.14 25.63 56.64
#115 1.23 42.52 0.42 0.28 44.45 34.57
#129 1.3 35.3 1.2 0.42 38.22 27.15
#130 2.43 28.43 0.98 0.18 32.02 11.70
#157 0.62 33.5 0.73 0.33 34.85 54.03
#167 0.38 24.3 0.29 0.12 24.97 63.95
#169 0.67 19.28 0.45 0.18 20.58 28.78
#274 0.93 43.81 1.2 0.12 46.06 47.11

Molarity/µM THC CBD CBGA CBN TOTAL Cannabinoids TOTAL Cannabinoids

#1 0.28 11.00 0.08 0.04
#7 0.35 10.46 0.09 0.05
#9 0.31 10.37 0.31 0.05

#45 0.14 7.92 0.04 0.05
#115 0.39 13.52 0.13 0.09
#129 0.41 11.23 0.38 0.14
#130 0.77 9.04 0.31 0.06
#157 0.20 10.65 0.23 0.11
#167 0.12 7.73 0.09 0.04
#169 0.21 6.13 0.14 0.06
#274 0.30 13.93 0.38 0.04

Concentration of cannabinoids is shown in percentage of total dry weight (%) or in moles.

2.2.5. Example #1

Human EpiDermFT 3D skin tissues (MatTek Life Sciences, Ashland, MA, USA) were
exposed to 7000 ergs UVC to induce inflammation and then, 24 h after exposure, treated
with extracts of several cannabis cultivars (#4, #8, #12 and #13) via their addition to the
tissue growth media and incubated for another 24 h. Untreated sample (U) had DMSO
added to the media instead of extracts. The control (C) sample had not been exposed to
UVC. All samples were collected 24 h after the extracts were added and were used for
mRNA extraction. All samples were done in triplicate.

RNA samples were extracted using TRIzolTM (Sigma Aldrich, St. Louis, MO, USA)
according to the manufacturer’s instructions. The cDNA fragment libraries were prepared
using the TruSeq Stranded mRNA library preparation kit (Illumina, San Diego, CA, USA)
with polyA selection, as described in the manual. The high-throughput gene expression
profiles were obtained using the Illumina mRNA next-generation sequencing platform
NextSeq500. All of the library preparations and sequencing runs were completed using the
same protocol, by the same technician, and on the same sequencing instrument.
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2.2.6. Example #2

Human MatTek’s 3D EpiOral tissues (MatTek Life Sciences, Ashland, MA, USA) were
equilibrated for 24 h, then the culture medium was replaced and the tissues incubated
for another 24 h. Tissues were then exposed for 24 h to TNFα (40 ng/mL) to promote
inflammation or to DMSO only. Tissues were then treated with various cannabis extracts
(#1–#9) that were added to the media for 24 h. The control sample was exposed to DMSO
only. Samples were then harvested for mRNA extraction and sequenced as in Example #1.
All samples were done in triplicate.

2.2.7. Example #3

Human MatTek’s 3D EpiIntestinal tissues (MatTek Life Sciences, MA) were equili-
brated for 24 h, then the culture medium was replaced, and the tissues incubated for
another 24 h. Tissues were then exposed for 24 h to TNFα (40 ng/mL) or to DMSO only.
Tissues were then treated with various cannabis extracts (#1, #2, #3, #4, #5, #6, #9, #10 and
#11) that were added to the media for 24 h. The control sample was exposed to DMSO only.
Samples were then harvested for mRNA extraction. Sequencing and data analysis were
performed as in Example #2. All samples were done in triplicate.

2.2.8. Bioinformatics Workflow

The bioinformatics workflow for the CDEI calculation is shown in Figure 2. Basecall-
ing and demultiplexing were done using the CASAVA v.1.9 pipeline (Illumina, San Diego,
CA, USA). The quality of the sequencing reads was assessed using FastQC v0.11.5 (https://
www.bioinformatics.babraham.ac.uk/projects/fastqc/). The base qualities were over 30 on
the Phred scale across all of the samples and no adapter contamination was noted. The reads
were mapped to the human genome (GRCh37, Ensembl) downloaded from the Illumina
iGenomes repository (https://support.illumina.com/sequencing/sequencing_software/
igenome.html). The mapping was done using HISAT v2.0.5 [32] with the following com-
mand “hisat2-q—rna-strandness R—phred33-p 20—known-splicesite <known_splice_sites> -x
<index> -U <fastq> -S <sam>”. The number of reads mapping to features (genes) was
calculated using FeatureCounts v.1.6.1 [33], with the following command “featureCounts -T
20 -s 2 -a <genes.gtf> -o <counts> <sam>”.
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The gene-level read counts were loaded into the R v.3.6.1 statistical language envi-
ronment. The raw count data were normalized using statistical methods implemented
in the DESeq2 Bioconductor package v1.22.0 [34]. The DESeq normalized read counts
were used to calculate the CDEI index using CDEI software. Table 2 shows the list of
inflammation-related genes used for the CDEI calculation.

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://support.illumina.com/sequencing/sequencing_software/igenome.html
https://support.illumina.com/sequencing/sequencing_software/igenome.html
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Table 2. List of genes used for calculation of the level of gene expression in inflammation.

UniProt Gene Symbol Gene Name

UniProtKB: Q12979 ABR Active breakpoint cluster region-related protein
UniProtKB: P13686 ACP5 Tartrate-resistant acid phosphatase type 5
UniProtKB: Q04771 ACVR1 Activin receptor type-1
UniProtKB: P00813 ADA Adenosine deaminase
UniProtKB: P30542 ADORA1 Adenosine receptor A1
UniProtKB: P29274 ADORA2A Adenosine receptor A2a
UniProtKB: P29274 ADORA2A Adenosine receptor A2a
UniProtKB: P29275 ADORA2B Adenosine receptor A2b
UniProtKB: Q15109 AGER Advanced glycosylation end product-specific receptor
UniProtKB: Q15109 AGER Advanced glycosylation end product-specific receptor
UniProtKB: P50052 AGTR2 Type-2 angiotensin II receptor
UniProtKB: P50052 AGTR2 Type-2 angiotensin II receptor
UniProtKB: P23526 AHCY Adenosylhomocysteinase
UniProtKB: P31749 AKT1 RAC-alpha serine/threonine-protein kinase
UniProtKB: P09917 ALOX5 Arachidonate 5-lipoxygenase
UniProtKB: P02652 APOA2 Apolipoprotein A-II

UniProtKB: Q9NR48 ASH1L Histone-lysine N-methyltransferase ASH1L
UniProtKB: P00966 ASS1 Argininosuccinate synthase
UniProtKB: Q13315 ATM Serine-protein kinase ATM
UniProtKB: P30530 AXL Tyrosine-protein kinase receptor UFO
UniProtKB: P15291 B4GALT1 Beta-1,4-galactosyltransferase 1

UniProtKB: Q9Y5Z0 BACE2 Beta-secretase 2
UniProtKB: Q92560 BAP1 Ubiquitin carboxyl-terminal hydrolase BAP1
UniProtKB: P11274 BCR Breakpoint cluster region protein
UniProtKB: P46663 BDKRB1 B1 bradykinin receptor
UniProtKB: P22004 BMP6 Bone morphogenetic protein 6
UniProtKB: O00238 BMPR1B Bone morphogenetic protein receptor type-1B
UniProtKB: Q06187 BTK Tyrosine-protein kinase BTK
UniProtKB: Q06187 BTK Tyrosine-protein kinase BTK
UniProtKB: Q06187 BTK Tyrosine-protein kinase BTK

UniProtKB: Q5T7M4 C1QTNF12 Adipolin
UniProtKB: P01024 C3 Complement C3
UniProtKB: P01024 C3 Complement C3

UniProtKB: Q96GV9 C5orf30 UNC119-binding protein C5orf30
UniProtKB: P13671 C6 Complement component C6
UniProtKB: P01258 CALCA Calcitonin
UniProtKB: P01258 CALCA Calcitonin
UniProtKB: Q16602 CALCRL Calcitonin gene-related peptide type 1 receptor
UniProtKB: P51671 CCL11 Eotaxin
UniProtKB: O00175 CCL24 C-C motif chemokine 24
UniProtKB: P51679 CCR4 C-C chemokine receptor type 4
UniProtKB: P10747 CD28 T-cell-specific surface glycoprotein CD28
UniProtKB: P25942 CD40 Tumor necrosis factor receptor superfamily member 5
UniProtKB: P40200 CD96 T-cell surface protein tactile

UniProtKB: Q9BWU1 CDK19 Cyclin-dependent kinase 19
UniProtKB: Q9UNI1 CELA1 Chymotrypsin-like elastase family member 1
UniProtKB: O15516 CLOCK Circadian locomoter output cycles protein kaput
UniProtKB: P21554 CNR1 Cannabinoid receptor 1
UniProtKB: P21554 CNR1 Cannabinoid receptor 1
UniProtKB: P34972 CNR2 Cannabinoid receptor 2
UniProtKB: P25025 CXCR2 C-X-C chemokine receptor type 2
UniProtKB: P11511 CYP19A1 Aromatase

UniProtKB: Q9NR63 CYP26B1 Cytochrome P450 26B1
UniProtKB: Q9Y271 CYSLTR1 Cysteinyl leukotriene receptor 1

UniProtKB: Q9NRR4 DROSHA Ribonuclease 3
UniProtKB: Q1HG43 DUOXA1 Dual oxidase maturation factor 1
UniProtKB: Q1HG44 DUOXA2 Dual oxidase maturation factor 2
UniProtKB: Q9Y6W6 DUSP10 Dual specificity protein phosphatase 10
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Table 2. Cont.

UniProt Gene Symbol Gene Name

UniProtKB: Q16610 ECM1 Extracellular matrix protein 1
UniProtKB: P24530 EDNRB Endothelin receptor type B
UniProtKB: P00533 EGFR Epidermal growth factor receptor
UniProtKB: P00533 EGFR Epidermal growth factor receptor
UniProtKB: Q9BQI3 EIF2AK1 Eukaryotic translation initiation factor 2-alpha kinase 1
UniProtKB: P08246 ELANE Neutrophil elastase
UniProtKB: P29317 EPHA2 Ephrin type-A receptor 2
UniProtKB: P01588 EPO Erythropoietin
UniProtKB: P03372 ESR1 Estrogen receptor
UniProtKB: P14921 ETS1 Protein C-ets-1
UniProtKB: P15090 FABP4 Fatty acid-binding protein, adipocyte
UniProtKB: O15360 FANCA Fanconi anemia group A protein

UniProtKB: Q9BXW9 FANCD2 Fanconi anemia group D2 protein
UniProtKB: P30273 FCER1G High affinity immunoglobulin epsilon receptor subunit gamma
UniProtKB: P30273 FCER1G High affinity immunoglobulin epsilon receptor subunit gamma
UniProtKB: P30273 FCER1G High affinity immunoglobulin epsilon receptor subunit gamma
UniProtKB: P30273 FCER1G High affinity immunoglobulin epsilon receptor subunit gamma
UniProtKB: Q12946 FOXF1 Forkhead box protein F1
UniProtKB: Q9BZS1 FOXP3 Forkhead box protein P3
UniProtKB: P22466 GAL Galanin peptides
UniProtKB: P23771 GATA3 Trans-acting T-cell-specific transcription factor GATA-3
UniProtKB: Q13304 GPR17 Uracil nucleotide/cysteinyl leukotriene receptor
UniProtKB: P07203 GPX1 Glutathione peroxidase 1
UniProtKB: P36969 GPX4 Phospholipid hydroperoxide glutathione peroxidase
UniProtKB: P81172 HAMP Hepcidin
UniProtKB: Q30201 HFE Hereditary hemochromatosis protein
UniProtKB: P14210 HGF Hepatocyte growth factor
UniProtKB: Q96A08 HIST1H2BA Histone H2B type 1-A
UniProtKB: P10809 HSPD1 60 kDa heat shock protein, mitochondrial
UniProtKB: P05362 ICAM1 Intercellular adhesion molecule 1
UniProtKB: P14902 IDO1 Indoleamine 2,3-dioxygenase 1
UniProtKB: P14902 IDO1 Indoleamine 2,3-dioxygenase 1
UniProtKB: P22692 IGFBP4 Insulin-like growth factor-binding protein 4
UniProtKB: P22301 IL10 Interleukin-10
UniProtKB: P29460 IL12B Interleukin-12 subunit beta
UniProtKB: P35225 IL13 Interleukin-13
UniProtKB: P40933 IL15 Interleukin-15

UniProtKB: Q9UHF5 IL17B Interleukin-17B
UniProtKB: Q96PD4 IL17F Interleukin-17F
UniProtKB: Q96F46 IL17RA Interleukin-17 receptor A

UniProtKB: Q9NRM6 IL17RB Interleukin-17 receptor B
UniProtKB: Q8NAC3 IL17RC Interleukin-17 receptor C
UniProtKB: P01583 IL1A Interleukin-1 alpha
UniProtKB: P14778 IL1R1 Interleukin-1 receptor type 1
UniProtKB: P27930 IL1R2 Interleukin-1 receptor type 2
UniProtKB: Q01638 IL1RL1 Interleukin-1 receptor-like 1
UniProtKB: Q9HB29 IL1RL2 Interleukin-1 receptor-like 2
UniProtKB: P60568 IL2 Interleukin-2

UniProtKB: Q6UXL0 IL20RB Interleukin-20 receptor subunit beta
UniProtKB: Q6UXL0 IL20RB Interleukin-20 receptor subunit beta
UniProtKB: Q969J5 IL22RA2 Interleukin-22 receptor subunit alpha-2
UniProtKB: Q9H293 IL25 Interleukin-25
UniProtKB: P01589 IL2RA Interleukin-2 receptor subunit alpha
UniProtKB: P01589 IL2RA Interleukin-2 receptor subunit alpha
UniProtKB: Q8NI17 IL31RA Interleukin-31 receptor subunit alpha
UniProtKB: O95760 IL33 Interleukin-33
UniProtKB: P05113 IL5 Interleukin-5
UniProtKB: Q01344 IL5RA Interleukin-5 receptor subunit alpha
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Table 2. Cont.

UniProt Gene Symbol Gene Name

UniProtKB: P17301 ITGA2 Integrin alpha-2
UniProtKB: P05107 ITGB2 Integrin beta-2
UniProtKB: P18564 ITGB6 Integrin beta-6
UniProtKB: O60674 JAK2 Tyrosine-protein kinase JAK2
UniProtKB:Q9BX67 JAM3 Junctional adhesion molecule C
UniProtKB: P05412 JUN Transcription factor AP-1
UniProtKB: O15054 KDM6B Lysine-specific demethylase 6B
UniProtKB: P04264 KRT1 Keratin, type II cytoskeletal 1
UniProtKB: P18428 LBP Lipopolysaccharide-binding protein
UniProtKB: P01130 LDLR Low-density lipoprotein receptor
UniProtKB: P38571 LIPA Lysosomal acid lipase/cholesteryl ester hydrolase
UniProtKB: Q5S007 LRRK2 Leucine-rich repeat serine/threonine-protein kinase 2
UniProtKB: P01374 LTA Lymphotoxin-alpha
UniProtKB: P07948 LYN Tyrosine-protein kinase Lyn
UniProtKB: P07948 LYN Tyrosine-protein kinase Lyn
UniProtKB: P46734 MAP2K3 Dual specificity mitogen-activated protein kinase kinase 3
UniProtKB: P04201 MAS1 Proto-oncogene Mas

UniProtKB: Q8NEM0 MCPH1 Microcephalin
UniProtKB: P43490 NAMPT Nicotinamide phosphoribosyltransferase
UniProtKB: Q16236 NFE2L2 Nuclear factor erythroid 2-related factor 2
UniProtKB: P19838 NFKB1 Nuclear factor NF-kappa-B p105 subunit

UniProtKB: Q9BYH8 NFKBIZ NF-kappa-B inhibitor zeta
UniProtKB: P59044 NLRP6 NACHT, LRR and PYD domains-containing protein 6

UniProtKB: Q86UT6 NLRX1 NLR family member X1
UniProtKB: P46531 NOTCH1 Neurogenic locus notch homolog protein 1
UniProtKB: O15130 NPFF Pro-FMRFamide-related neuropeptide FF
UniProtKB: P01160 NPPA Natriuretic peptides A
UniProtKB: Q15761 NPY5R Neuropeptide Y receptor type 5
UniProtKB: Q15761 NPY5R Neuropeptide Y receptor type 5
UniProtKB: P21589 NT5E 5’-nucleotidase
UniProtKB: O60356 NUPR1 Nuclear protein 1
UniProtKB: O15527 OGG1 N-glycosylase/DNA lyase
UniProtKB: P35372 OPRM1 Mu-type opioid receptor
UniProtKB: P51575 P2RX1 P2X purinoceptor 1
UniProtKB: Q99572 P2RX7 P2X purinoceptor 7
UniProtKB: Q96KB5 PBK Lymphokine-activated killer T-cell-originated protein kinase
UniProtKB: O75594 PGLYRP1 Peptidoglycan recognition protein 1
UniProtKB: Q96PD5 PGLYRP2 N-acetylmuramoyl-L-alanine amidase
UniProtKB: P48736 PIK3CG Phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit gamma isoform
UniProtKB: Q9Y263 PLAA Phospholipase A-2-activating protein
UniProtKB: P60201 PLP1 Myelin proteolipid protein
UniProtKB: P06746 POLB DNA polymerase beta
UniProtKB: P37231 PPARG Peroxisome proliferator-activated receptor gamma
UniProtKB: P42785 PRCP Lysosomal Pro-X carboxypeptidase
UniProtKB: P28070 PSMB4 Proteasome subunit beta type-4
UniProtKB: P25105 PTAFR Platelet-activating factor receptor
UniProtKB: O14684 PTGES Prostaglandin E synthase
UniProtKB: O14684 PTGES Prostaglandin E synthase
UniProtKB: P35354 PTGS2 Prostaglandin G/H synthase 2

UniProtKB: Q9ULZ3 PYCARD Apoptosis-associated speck-like protein containing a CARD
UniProtKB: O95267 RASGRP1 RAS guanyl-releasing protein 1
UniProtKB: Q06330 RBPJ Recombining binding protein suppressor of hairless
UniProtKB: Q9Y3P4 RHBDD3 Rhomboid domain-containing protein 3
UniProtKB: Q6R327 RICTOR Rapamycin-insensitive companion of mTOR
UniProtKB: P05109 S100A8 Protein S100-A8
UniProtKB: P05109 S100A8 Protein S100-A8
UniProtKB: Q99500 S1PR3 Sphingosine 1-phosphate receptor 3
UniProtKB: Q15858 SCN9A Sodium channel protein type 9 subunit alpha
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UniProt Gene Symbol Gene Name

UniProtKB: P18827 SDC1 Syndecan-1
UniProtKB: Q96EE3 SEH1L Nucleoporin SEH1
UniProtKB: P16109 SELP P-selectin
UniProtKB: P01008 SERPINC1 Antithrombin-III
UniProtKB: P36955 SERPINF1 Pigment epithelium-derived factor

UniProtKB: Q86VZ5 SGMS1 Phosphatidylcholine:ceramide cholinephosphotransferase 1
UniProtKB: P52569 SLC7A2 Cationic amino acid transporter 2
UniProtKB: P52569 SLC7A2 Cationic amino acid transporter 2
UniProtKB: Q15797 SMAD1 Mothers against decapentaplegic homolog 1
UniProtKB: P84022 SMAD3 Mothers against decapentaplegic homolog 3
UniProtKB: Q99835 SMO Smoothened homolog
UniProtKB: O14543 SOCS3 Suppressor of cytokine signaling 3
UniProtKB: O75159 SOCS5 Suppressor of cytokine signaling 5

UniProtKB: Q9NYA1 SPHK1 Sphingosine kinase 1
UniProtKB: P10451 SPP1 Osteopontin
UniProtKB: P40763 STAT3 Signal transducer and activator of transcription 3
UniProtKB: P51692 STAT5B Signal transducer and activator of transcription 5B

UniProtKB: Q9UEW8 STK39 STE20/SPS1-related proline-alanine-rich protein kinase
UniProtKB: Q9BXA5 SUCNR1 Succinate receptor 1
UniProtKB: P20366 TAC1 Protachykinin-1

UniProtKB: Q9NUY8 TBC1D23 TBC1 domain family member 23
UniProtKB: Q9UP52 TFR2 Transferrin receptor protein 2
UniProtKB: P21980 TGM2 Protein-glutamine gamma-glutamyltransferase 2
UniProtKB: P01033 TIMP1 Metalloproteinase inhibitor 1
UniProtKB: O60603 TLR2 Toll-like receptor 2
UniProtKB: O15455 TLR3 Toll-like receptor 3
UniProtKB: O00206 TLR4 Toll-like receptor 4
UniProtKB: Q9Y2C9 TLR6 Toll-like receptor 6
UniProtKB: Q9NYK1 TLR7 Toll-like receptor 7
UniProtKB: Q9NR97 TLR8 Toll-like receptor 8
UniProtKB: P01375 TNF Tumor necrosis factor
UniProtKB: P21580 TNFAIP3 Tumor necrosis factor alpha-induced protein 3
UniProtKB: P20333 TNFRSF1B Tumor necrosis factor receptor superfamily member 1B
UniProtKB: P20333 TNFRSF1B Tumor necrosis factor receptor superfamily member 1B

UniProtKB: Q8NER1 TRPV1 Transient receptor potential cation channel subfamily V member 1
UniProtKB: Q8NER1 TRPV1 Transient receptor potential cation channel subfamily V member 1
UniProtKB: Q9HBA0 TRPV4 Transient receptor potential cation channel subfamily V member 4
UniProtKB: O60636 TSPAN2 Tetraspanin-2
UniProtKB: O75896 TUSC2 Tumor suppressor candidate 2
UniProtKB: P55089 UCN Urocortin
UniProtKB: P22309 UGT1A1 UDP-glucuronosyltransferase 1-1
UniProtKB: Q70J99 UNC13D Protein unc-13 homolog D
UniProtKB: P19320 VCAM1 Vascular cell adhesion protein 1
UniProtKB: P19320 VCAM1 Vascular cell adhesion protein 1

UniProtKB: Q9HC57 WFDC1 WAP four-disulfide core domain protein 1
UniProtKB: Q15942 ZYX Zyxin

3. Results

The CDEI software was tested on several datasets, explained below in several examples.
We used the transcriptomic data from three different experiments. In the first experiment,
we have used the data from human EpiDermFT 3D skin tissues exposed to UVC to induce
inflammation and then treated with extracts of several cannabis cultivars. In the second
experiment, human EpiOral tissues were treated with TNFα to induce inflammation and
then treated with several different extracts. In the third experiment, human EpiIntestinal
tissues were treated with TNFα and then treated with several different extracts.
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The total number of reads calculated from the three experiments was in the range of
17,700,978 to 45,054,688 with a median of 24,613,834.5 reads per sample. The minimum
mapping rate, calculated as a fraction of reads with at least one match to the genome, was
at least 93.80% with a median of 97.65%. The fraction of mapped reads assigned to features
(genes) was in the range of 72.93–76.00% with a median of 74.86%.

In the first experiment, we have induced inflammation in human EpiDermFT 3D skin
tissues by exposing it to UVC. Analysis of the samples from the first experiment revealed
that Extract #8 is the most efficient extract in restoring the transcriptome response after
the UVC exposure (Table 3). Extract #4 was less efficient, whereas Extract #13 was not
efficient. Extract #12 was actually harmful as it has increased the UVC-induced changes in
the transcriptome.

Table 3. CDEI testing results—EpiDermFT.

Data Set Sample Number of Profiles t-Value p-Value CDEI

DMSO Control (C) 3 0 1 -
UV Untreated (U) 3 1.04 0.23 0.00

Extract #4 Treated (T) 5 0.67 0.50 0.22
Extract #12 Treated (T) 5 2.06 0.04 −0.33
Extract #8 Treated (T) 5 −0.19 0.85 0.69

Extract #13 Treated (T) 5 −1.04 0.30 0.00

In the second experiment, inflammation in 3D EpiOral tissues was established using
exposure to TNFα (40 ng/mL) (Table 4). The effect of the extracts on the reversal of the
inflammation processes was evaluated using the CDEI.

Table 4. CDEI testing results—EpiOral.

Data Set Sample t-Value p-Value CDEI

DMSO Control (C) - - -
TNFα Untreated (U) −2.78 0.006 0.00

Extract #1 Treated (T) 0.86 0.39 0.53
Extract #7 Treated (T) 0.19 0.85 0.87
Extract #9 Treated (T) −0.03 0.98 0.98
Extract #45 Treated (T) −2.02 0.04 0.16

Extract #115 Treated (T) −0.15 0.88 0.90
Extract #129 Treated (T) −0.63 0.53 0.63
Extract #157 Treated (T) −0.29 0.77 0.81
Extract #167 Treated (T) −2.27 0.02 0.10
Extract #169 Treated (T) −0.17 0.86 0.88

Ranking of the CDEI scores revealed that Extract #3 was the most efficient; it has
restored the TNF-induced transcriptome nearly completely—with a CDEI score of 0.98.
Extracts #5, #9 and #2 were also quite efficient, with CDEI scores of 0.90, 0.88 and 0.87,
respectively. Extracts #8 and #4 were not very efficient, with CDEI scores of 0.10 and
0.16, respectively.

Finally, in the 3rd experiment, EpiIntestinal tissues were exposed to TNFα and several
extracts were used to reverse the transcriptome changes (Table 5). The CDEI score showed
that Extract #5 was the most efficient, followed by Extract #6.

Table 5. CDEI testing results—EpiIntestinal.

Data Set Sample t-Value p-Value CDEI

DMSO Control (C) - - -
TNFα Untreated (U) 2.43 0.016 0.00

Extract #1 Treated (T) −1.37 0.17 0.28
Extract #7 Treated (T) 1.15 0.25 0.36
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Table 5. Cont.

Data Set Sample t-Value p-Value CDEI

Extract #9 Treated (T) 1.43 0.15 0.26
Extract #45 Treated (T) 1.02 0.31 0.41

Extract #115 Treated (T) 0.21 0.84 0.84
Extract #129 Treated (T) −0.56 0.58 0.63
Extract #130 Treated (T) 1.56 0.12 0.22
Extract #169 Treated (T) 1.75 0.08 0.16
Extract #274 Treated (T) 0.99 0.32 0.42

Examples of heatmaps, with the differentially expressed genes for Samples #4, #8, #13
and #15, are shown in Figure 3.
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These experiments revealed that different extracts were efficient for different tissues.
For example, a comparison of extracts for the reduction of inflammation in EpiOral and
EpiIntestinal tissues showed that Extract #115 was equally and highly effective, while
Extract #167 was not (Figure 4). At the same time, Extracts #7, #9 and #169 were effective
for EpiOral tissues but not for EpiIntestinal tissues (Figure 4). Our attempts to correlate
the level of cannabinoids and the efficiency of the extracts did not show any correlation.
This is perhaps not surprising, as other molecules in the extracts likely have a strong
modulatory effect.

To analyze whether there is a correlation between the cannabinoid content and the
activity of the extracts, we have analyzed the amount of THC, CBD, CBG, CBN, total
cannabinoids and CBD to THC ratio (Table 1). The correlation analysis showed a moderate
positive correlation between the CBD level and CDEI score (0.49) and a strong positive
correlation between the CBN level and CDEI score (0.61). No correlation was found
between THC and CDEI, CBG and CDEI or the CBD to THC ratio and CDEI.
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Figure 4. Comparison of the CDEI in three experiments. The Y axis shows the CDEI, while the X axis shows the extracts.

4. Discussion

We developed a methodology to compute a cannabis drug efficiency index (CDEI)
across the 241 pathways that contain the genes responding to the cannabis drug. The
advantages of our methodology can be summarized as follows.

CDEI explicitly calculates the drug efficiency of cannabis on diseases, using the
expression values of the genes. As far as we understand, this is a novel methodology and
there is no other methodology or software similar to CDEI to do it.

CDEI evaluates the enrichment scores of the individual pathways in the control,
untreated and treated cases. Then CDEI statistically integrates and compares the results
from all samples. Finally, CDEI measures the overall drug efficiency of cannabis on diseases.

An important characteristic of the CDEI calculation is that CDEI is not affected by the
properties of the input data chosen. CDEI purely measures the efficacy of the cannabis
drug by statistically comparing the cannabis-treated and untreated cases with the control.

With the emergence of large-scale methods in genomics, the gene-level transcription
changes became an obvious target in the search for biomarkers in complex diseases. Yet,
in over a decade of research effort, only a handful of gene or protein biomarkers made
its way into clinical practice. For example, as of 2017, 26 gene-based predictive and
diagnostic biomarkers were used in cancer medicine [35]. Biomarker discovery based
on gene expression signatures is challenging due to low reproducibility when presented
with different datasets [36,37] and a high occurrence of stochastic associations [38]. As
an alternative to a single gene or gene signature approach, methods that aggregate data
across pathways or gene network modules are gaining traction, potentially being more
effective tools for biomarker discovery [39–41]. Several studies demonstrated that the use
of pathway-based biomarkers enables robust predictions of drug response [42,43] and
accurate classification of disease types [44].

Considering the importance of pathway analysis, multiple methods were developed
to address the task. These methods can be roughly classified as non-topology-based and
topology-based [45]. Non-topological methods treat pathways as non-structured lists of
genes (gene sets); they take a list of differentially expressed (DE) genes and attempt to
determine the probability of observing a given number of DE genes within a pathway.
More sophisticated non-topological methods rely on the analysis of gene rankings in the
whole dataset, avoiding the selection of target gene lists according to arbitrary thresh-
olds. Topology-based methods take into account the biological reality of pathways by
incorporating the data on the type and direction of protein interactions. Not surprisingly,
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topology-based methods were shown to outperform their counterparts in benchmark-
ing tests [45].

Recognizing the importance of pathway topology, CannSelect uses the SPIA algorithm
to calculate pathway activation scores based on gene expression profiles. Previously, SPIA
was shown to outperform other pathway analysis methods in terms of data aggregation [30]
and in the ability to detect pathways, inducing a specific phenotype [45]. SPIA was also
ranked third out of 10 methods used to generate pathway activation scores for machine
learning classification in an iPanda benchmarking test [17].

Estimation of pathway-level activities opens a possibility of selecting drugs or other
bioactive compounds that could alter the physiological state of the system in the desired
direction by changing the activities of perturbed pathways.

This idea is at the core of several computational methods, including Oncofinder [1],
GeroScope [46] and iPanda [17]; this is also true for the method presented in this study.
Oncofinder is based on the unique computational algorithm that calculates pathway acti-
vation strength based on the activating or repressive actions of proteins in the pathway.
Pathway activation strength reflects the activation or inhibition of the pathway in a patho-
logical state compared to the healthy controls. It also incorporates the data on drug–target
interactions to predict the action of the drugs on specific pathways and rank the drugs
based on a predicted efficiency score. The output of Oncofinder is a list of drugs ranked
by the predicted efficiency meant to assist in selecting a treatment strategy for a specific
patient. GeroScope is an extension of Oncofinder to analyze aging-related pathways and
screen chemical compounds that act as geroprotectors. iPanda is a topology-based method
that assigns importance coefficient to genes in a pathway derived using a combination of
statistical and topological methods [17]. iPanda can be adapted to estimate drug scores
following similar principles as in Oncofinder.

In theory, the CDEI approach mechanistically resembles Oncofinder, Geroscope, or
iPanda; however, it differs from them in terms of pathway score and drug score algorithms
and, more importantly, it is designed with a different purpose in mind. Oncofinder and
other similar methods require two conditions—disease and normal state—and serve to
facilitate the selection of drugs that could act on pathways altered between these two con-
ditions. The data can be obtained experimentally or downloaded from public repositories.
CDEI, on the other hand, requires three conditions—an untreated control (healthy state),
pathological state, and pathological state treated with a drug of interest. The output of
CDEI is a numerical measure of the ability of a drug to reverse gene expression changes in
a pathological state to mimic those in the healthy control. In contrast to Oncofinder, CDEI
is useful as a computational step that follows laboratory testing of panels of drugs or other
bioactive compounds to select prospective candidates for further investigation.

There are different methodologies to analyze the enrichment of individual pathways.
GSEA (Gene Set Enrichment Analysis) finds the enrichment of pathways by focusing on
gene sets [47]. SPIA measures the perturbation score on pathways [26]. NEA (Network
Enrichment Analysis) outputs the network enrichment scores of the altered gene sets per
pathway [48]. However, these methodologies do not further derive an integrated meaning-
ful result (i.e., a drug efficiency index) from the analysis of the individual pathways.

As detailed in the accompanying manual of the software, CDEI provides a convenient
graphical user interface software available to users. The CDEI software works on both
Windows and Linux systems. It validates the user inputs of the gene expression values
and computes the scores of the individual pathways as an intermediate output. Then the
software generates the drug efficiency index of cannabis on diseases as the final output.

One of the recent studies using the SPIA method was the report by Franco et al.
(2019) [48]. The authors presented a method to identify the biomarkers of drug response
and survival in proliferative disease using enrichment over the gene networks. Unlike the
CDEI algorithm, it does not calculate drug scores that reflect the overall shift in pathway
activity towards a normal (non-diseased) state; also, in their study, the SPIA scores were
calculated for individual pathways and correlated with clinical variables of interest (drug
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response and survival). In the CDEI, the SPIA scores are weighted and summarized
following a specific application of a drug screen to the individual sample, which allows a
calculation of a drug score and the ranking of drugs by efficiency. In this, respect the CDEI
is a tool that allows a selection of a drug for an individual patient. This functionality is not
present in Franco’s network approach [48].

Pathway analysis has the potential to improve performance by applying machine
learning methods. For example, the representative genes that represent a pathway can be
selected by feature selection methods and pathways can be further ranked or weighted
based on the representative genes using classification methods [49].

To conclude, the CDEI algorithm represents a multistage process that includes the spe-
cific application of a drug screen, integration of pathway databases, weighted summariza-
tion of the pathway activation scores and identification of the most efficient drugs/extracts.
The bioinformatics part of the CDEI process is wrapped into user-friendly graphical inter-
face software. Currently, the CDEI algorithm was only used for the analysis of the efficacy
of cannabis extracts in the reduction of inflammation. It remains to be shown whether it
would also be able to rank the cannabis extracts (or extracts of any other medicinal herb or
synthetic drug) by their efficacy for other molecular processes, diseases, or conditions. The
CDEI algorithm may also be an efficient tool to stratify patients in the clinical studies or
clinical trials by their response to a drug, thus providing selection criteria upon transition
from Phase 2 to Phase 3 or Phase 4 clinical trials. It will also be very useful in pre-clinical
experiments using various cell, tissue or animal models, like recently used analysis of the
efficiency of cannabis extracts for the reduction of inflammation [50].
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