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Diabetic nephropathy (DN) is one of the most common diabetic complications, which
is the major course of end-stage renal disease (ESRD). However, the systematical
molecular characterizations during DN pathogenesis and progression has not been
not well understood. To identify the fundamental mediators of the pathogenesis
and progression of DN. we performed a combination RNASeq, proteomics, and
metabolomics analyses of both patients’ derived kidney biopsy samples and kidneys
from in vivo DN model. As a result, molecular changes of DN contain extracellular
matrix accumulation, abnormal activated inflamed microenvironment, and metabolism
disorders, bringing about glomerular sclerosis and tubular interstitial fibrosis. Specificity,
Further integration analyses have identified that the linoleic acid metabolism and fatty-
acids β-oxidation are significantly inhibited during DN pathogenesis and progression,
the transporter protein ABCD3, the fatty acyl-CoA activated enzymes ACOX1, ACOX2,
and ACOX3, and some corresponding metabolites such as 13′-HODE, stearidonic acid,
docosahexaenoic acid, (±)10(11)-EpDPA were also significantly reduced. Our study
thus provides potential molecular mechanisms for DN progression and suggests that
targeting the key enzymes or supplying some lipids may be a promising avenue in the
treatment of DN, especially advanced-stage DN.

Keywords: DN, multi-omics, fatty acid metabolism, linoleic acid, LC-MS/MS

INTRODUCTION

Diabetic nephropathy (DN) is one of the worst diabetic complications, which develops in over 40%
of type 2 diabetic (T2D) patients (Thomas et al., 2015). It seriously weakens the kidney function,
sequentially leading to end-stage renal disease (ESRD) (Eckardt et al., 2013; Fineberg et al., 2013).
The pathologic changes of DN contain renal hypertrophy and extracellular matrix accumulation,
bringing about glomerular sclerosis and tubular interstitial fibrosis (Kato and Natarajan, 2019; Cole
and Florez, 2020). The diagnosis of DN and its severity is currently based on clinical features such
as glomerular filtration rate (GFR), proteinuria, and albuminuria, as well as histological changes
observed in the kidney biopsy samples (MacIsaac and Ekinci, 2019; Sinha et al., 2019). Relevantly,
proteinuria is the authoritative indicator for evaluating renal failure (Ronco and Debiec, 2020). At
the early stage of DN (microalbuminuria), the renal injury can be alleviated by clinical treatment
including the control of blood glucose and pressure according to previous reports. However,
there existing no effective treatments for patients with advanced-stage DN (Muskiet et al., 2019).
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Therefore, new biomarkers must be discovered for helping
the clinical evaluation of diagnosis and prognosis to delay the
progression of DN. So far, the pathogenesis of DN has not yet
been clearly elucidated, which is difficult for doctors to make
appropriate treatments for DN patients. Thus, analyzing of DN
at different levels would be helpful to explore the mechanisms of
DN pathogenesis and progression.

The improvements of next-generation sequencing and Liquid
chromatography-mass spectrometry (LC-MS)have accelerated
the studies at the multi-omics level, including genomics,
transcriptomics, epigenomics, and proteomics, which largely
promote the studies of biomarker identifications and mechanism
investigations of complex diseases including different types of
cancer, T2D, kidney diseases, and so on (Yang et al., 2015; Huang
et al., 2017). The past decade has witnessed the new era of
identifying new biomarkers and drug targets of different kidney
diseases including DN using the NGS and LC-MS techniques
(Bontha et al., 2017; Eddy et al., 2020). Notably, the multi-omics
data such as proteome, transcriptome, genome, and metabolome
provide numerous resources for building new early diagnosis
models and developing effective therapeutic strategies for DN
patients and eventually improve their prognosis. These data
have also aided the molecular mechanism investigations of DN
pathogenesis and progression, and lead to building of several
models for evaluating the response of certain treatments in DN
patients (Filla and Edwards, 2016; Van et al., 2017; Fan et al.,
2019). Therefore, the researchers would gain a comprehensive
view of DN by integrating multi-omics data such as proteome,
transcriptome and so on, which will help develop new drugs and
provide personalized therapies for individual DN patients.

In this study, we systematically analyze the landscape
molecular alterations by integrating proteome, transcriptome,
and metabolome during DN pathogenesis and progression.
The results revealed that there is existing extracellular matrix
accumulation, abnormal activated inflamed microenvironment,
and metabolic disorders in the kidneys of DN. Our data
further show that the linoleic acid metabolism and fatty-acids
β-oxidation are significantly inhibited during DN in the db/db
mouse model, suggesting that targeting its key enzymes may be
a promising avenue in the treatment of DN, especially advanced-
stage DN.

MATERIALS AND METHODS

RNASeq Analysis
Raw fastq data were downloaded from the Sequence Read
Archive (SRA) database under the accession number SRP237545
(Fan et al., 2019). After removing of adaptors and low-quality
reads using the fastp software (version0.20.0) (Chen et al., 2018),
RNA-seq reads were aligned to the human reference sequence
(UCSC hg38 assembly) using HISAT2 software (version 2.1.0)
(Kim et al., 2015). Then, raw counts of genes in different samples
were calculated using the feature Counts software (version 2.0.0)
based on the annotation obtained from GENCODE version 321

1https://www.gencodegenes.org

(Liao et al., 2014). The differentially expressed genes between
indicated groups were analyzed by the R DESeq2 package
(version 1.28.1) (Love et al., 2014). The StringTie (version
2.1.0) program was used to quantify expression levels for the
transcriptome in each sample at the gene levels in Transcripts
Per Kilobase Million (TPM) units (Pertea et al., 2015). The
difference of transcriptome in each group was evaluated by PCA
analysis. Finally, the log2 transformed TPM was used for the
following analysis.

To identify differentially co-expressed gene modules,
Weighted correlation network analysis (WGCNA) was employed
to the DEGs identified previously by the R WGCNA package
(version 1.69) (Langfelder and Horvath, 2008). The Kyoto
encyclopedia of genes and genomes (KEGG) enrichment analysis
was performed for indicated modules using the R clusterprofiler
package (version 3.16.1) (Yu et al., 2012). The genes shared by
different pathways were also analyzed by the R clusterprofiler
package (version 3.16.1) (Yu et al., 2012).

Animals
The 8 weeks old male BKS-db/db and db/m mice were
purchased from Nanjing Biomedical Research Institute of
Nanjing University (License Number: SCXK 2018-008). Twelve
weeks old or eighteen week mouse of db/db and db/m groups
was executed to collect kidney tissues for metabolomics analyses,
and 18 weeks mouse of db/db and db/m groups was executed
to collect kidney tissues for proteomics analyses. For proteomics
analyses, the kidneys from mice of each group were pooled
together for further analysis (18 weeks db/db, n = 3 kidney
pools, 5 mice per pool; db/m, n = 3 pools, 5 per pool). For
metabolomics analysis, the kidneys obtained from 12 or 18 weeks
mice of db/db or db/m groups were subjected to metabolomics
analysis (12 weeks db/db, n = 4; 18 weeks db/db, n = 5;
db/m, n = 8). Blood glucose levels were measured using an
automated glucose monitor (Bayer, Germany). Serum creatinine
was detected by using Creatinine assay kit (Jincheng, China)
according to instructions. Urea assay kit (Jincheng, China) was
used to quantify levels of urea nitrogen and urine protein.

Proteomics Analysis
Protein Extraction
Frozen kidney tissues were added pre-cooled saline to wash away
the blood. Then the tissues were grinded with liquid nitrogen
and continue added Roche’s lysate (about 7 times of the weigh,
µL), passed through ultrasonic break. Finally, the mixture was
centrifuged at 15,000g for 15 min, and the supernatant was taken
for the measurement of the protein concentration.

Enzymatic Hydrolysis
Acetone (about 4 times volume) was added to the supernatant
for the protein precipitation. And the protein was re-dissolved
by 8 M of urea. Trichloroethyl phosphate (TCEP) and
chloroacetamide were used for opening the disulfide bonds and
protecting the thiol, respectively, before protein enzymolysis.
Finally, trypsin was added to protein, according to 50:1, and
enzymatically react for 16 h to obtain the peptides.

Frontiers in Genetics | www.frontiersin.org 2 December 2020 | Volume 11 | Article 616435

https://www.gencodegenes.org
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-616435 December 8, 2020 Time: 15:36 # 3

Sha et al. Multi-Omics Analysis of Diabetic Nephropathy

Isobaric Labeling
iTRAQ was used as the labeling regents for two groups of
peptides (db/db and db/m), respectively. After isobaric labeling,
two groups of peptides were passed through pre-fractionation
by High-performance liquid chromatography (HPLC). And the
eluent were collected per-minute and merged into 10 fractions.
Then dry the samples by vacuum centrifugation for LC-MS
analysis. An Agilent 1290 UPLC with 4.6 mm× 250 mm Reprosil
C18 column was used for pre-separation. The solvents were ACN
(solution A) and water with NH4OH (pH = 10, solution B). The
HPLC gradient was 0 min 5% solution A to 60 min 90% solution
A with 1 mL/min of flow rate. LC-MS analysis method: an AB
Nano-LC 400 (AB SCIEX, America) with a 150 µm × 100 mm
AquaC18 column was used for peptides separation and an AB
triple TOF 5600 mass spectrometer (AB SCIEX, America) was
used for peptides analysis. The solvents were ACN (solution
A) and water with 0.1% of acetic acid (solution B). The HPLC
gradient was 0 min 5% solution A to 90 min 80% solution A with
1,000 nL/min of flow rate.

Bioinformatic Analysis
Raw LC-MS/MS files were searched against the UniProt mouse
proteome database using MaxQuant software (version 1.6.17.0)
enabled with Andromeda search engine (Tyanova et al., 2016).
The protease was Trypsin/P. Up to two missed cleavages
were allowed. Carbamidomethyl (C) was considered as a fixed
modification. Variable modifications were oxidation (M) and
N-terminal acetylation. The cutoff of the false discovery rate
(FDR) was set as 0.01 for both proteins and peptides. The
Student’s t-test was used to evaluate whether proteins were
differentially expressed between indicated groups. Gene set
enrichment analysis was conducted using the R cluster profiler
(version 3.16.1) package (Yu et al., 2012). Protein–protein
functional networks were constructed using the string database
with default settings, and visualized by the Cytoscape (version
3.8.1) software (Shannon et al., 2003).

Metabolomics Analysis
Sample Preparation
Twenty milligrams of tissue sample was crushed, and then 200 µL
of ice methanol was added for the protein precipitation. Then the
solution was centrifuged at 12,000 rpm for 10 min after standing
at -20◦C for10 min. After that, the supernatant was added 5 µL of
Fmoc-Gly-OH (0.4 mg/mL) as the internal standard and analyzed
by LC-MS. LC experiment was performed on Waters2695e UPLC
(Waters, America) with the Fortis C18 column (2.1 × 100 mm,
1.7 µm). The column temperature was set as 30◦C. The mobile
phase was water containing acetic acid (99.9/0.1, v/v, solvent
A) and Methanol (solvent B). A gradient of 0 min, 25% (B);
9 min, 85% (B); 13 min, 85% (B); 22 min, 95% (B); 25 min,
95% (B) was used for positive mode. A gradient of 0 min,
20% (B); 8 min, 95% (B); 12 min, 95% (B); 13 min, 98% (B);
21 min, 98% (B) was used for negative mode. The posting
time was 11 min. The flow rate of the mobile phase was set at
0.3 mL/min. The injection volume was 5 µL. Mass spectrometric
experiments were performed on Q-Exactive mass spectrometer
(Thermo Fisher Scientific, Untied States). The detection was

performed under electrospray ionization (ESI) mode with both
positive and negative full scan mode. Solutions were infused from
the ESI source at 0.3 mL/min with parameters: capillary 4,000 V,
drying gas 12 L/min, drying gas temperature 350◦C. Nitrogen
was used as the nebulizing and drying gas. All MS conditions
were optimized to achieve maximal detection sensitivity. Quality
control (QC) samples were also prepared and collected from all
the tissues. These QC samples were injected six times before the
sample analysis to check the stability of the system and injected
one time every six samples in sample analysis.

Thermo Data Analysis software was used for the
deconvolution of the LC-MS spectrum, including baseline
correction, processing noise, and peak alignment et al. Then the
managed data was leaded in Compound Discoverer TM2.0 for
the normalization to achieve the matrix formed by retention
time, m/z, and intensity. After that, this matrix was experienced
the principal component analysis (PCA) and orthogonal PLS-
DA (OPLS-DA) to be obtained the differential metabolites
between the groups by the R ropls package (version 1.21.0)
(Thevenot et al., 2015). Metabolites with variable importance in
the projection (VIP) over 1 were further compared by one-way
analysis of variance (One-way ANOVA) and log2 fold change
analysis, metabolites with fold change > 2 or < 0.5 and P < 0.05
were considered as statistically significant. Last, the differential
metabolites were traced to the metabolite pathway through
KEGG by MetaboAnalyst2 (Chong et al., 2018).

RESULTS

RNASeq Data Reveals Different
Transcriptome Pattern of Kidney Tissues
With DN
To investigate the molecular mechanisms during DN
pathogenesis, RNASeq data of patients with early stage DN,
advanced-stage DN, and non-tumor adjacent normal kidney
tissues were obtained from the publicly available database. As
expected, the transcriptome obviously segregated advanced-stage
DN samples and other samples (Supplementary Figure S1A),
suggesting there existing dramatically molecular change
during DN pathogenesis. Intriguingly, the transcriptome of
kidney biopsy does not change significantly in early stage
DN patients compared with that of non-diabetic kidney
biopsy. Next, we further conducted the DEGs analysis between
kidney transcriptome of patients with early stage DN and
control patients without T2D. As the volcano plot shows, 115
up-regulated and 193 down-regulated genes were identified
(Figure 1A, DESeq2, P < 0.05 and fold change > 2 or < 0.5)
(complete DEGs list can be found in Supplementary Table S1).
Of these, some chemokines and cytokines such as CXCL12, IL-6,
CXCL8, CCL20, CXCL1, and IL1B were significantly suppressed
during early DN pathogenesis. At the same time, a lot of non-
coding RNAs including MIR29A, MIR4521, PABPC5-AS1, and
AL353600.2 were highly upregulated in early DN. However,

2https://www.metaboanalyst.ca/MetaboAnalyst/upload/EnrichUploadView.xhtml
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FIGURE 1 | WGCNA analysis based on RNASeq data revealed six co-expression modules. (A,B) Volcano plot showing the DEGs between early stage DN and
control (A) and late-stage DN and control (B). (C) Venn diagram showing the number of DEGs commonly and uniquely expressed between indicted groups. (D) The
scale-free fit index (left) and mean connectivity (right) of the network topology at different soft-thresholding powers. (E) The cluster dendrogram of DEGs of patients
with DN. Each line represents one gene, and each color below represents one co-expression gene module. (F) Correlation analysis between different co-expression
gene modules and DN phenotypes.
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the detailed function of these RNAs in DN remained further
investigation.

Relative to mild transcriptome change between early stage
DN and control, thousands of genes were dramatically altered
in advanced-stage DN. As a result, 3,135 up-regulated and 1,372
down-regulated genes were identified using the same threshold
(Figure 1B; complete DEGs list can be found in Supplementary
Table S2). Interestingly, some inflammation regulators including
IL-6, CXCL3, IL-6, CXCL8, CCL5, and CCL2 are significantly
increased in late-stage DN, which suggests that there exists an
inflammatory microenvironment in kidneys from patients with
advanced-stage. Furthermore, CYP26B1, CYP4A22, COX5BP1,
and other metabolism-related genes were significantly inhibited
in advanced-stage DN. Together, the above results are in a
line with the high level of inflammation, disrupted metabolic
behavior, and tubular dysfunction observed in kidneys of patients
with advanced-stage DN.

WGCNA Reveals Detailed Molecular
Dysregulations in Advanced-Stage DN
Kidneys
To further characterize the molecular mechanisms of DN,
we combined all DEGs identified in both early stage DN
and advanced-stage DN groups. A list of 4,738 genes was
found to be potentially associated with DN (Figures 1C,D).
Next, we performed WGCNA analysis to explore the potential
mechanisms of DN pathogenesis using above 4,738 genes. The
sample hierarchical clustering results indicated there remains
a large difference between these three groups (Supplementary
Figure S1C). The soft-threshold analysis revealed that the
accuracy of the model reached highest when the power was
set as 6 (Figure 1D). Six gene co-expression modules were
constructed based on WGCNA analysis (Figures 1E,F). Of
these, the turquoise module containing 3,143 genes was most
closely correlated with the advanced-stage DN (R = 0.80,
P < 0.001). The blue module containing 1,282 genes was
most closely correlated with the control group (R = 0.63,
P < 0.001), while the brown module that containing 104 genes
was most closely correlated with the early stage DN (R = 0.67,
P < 0.001).

We further performed the KEGG functional enrichment
analysis to investigate modules that most closely correlated
with the advanced-stage DN. As the result depicted, genes
in the turquoise module were largely involved in pathways
related to inflammatory regulating pathways such as Cytokine–
cytokine receptor interaction, JAK-STAT signaling pathway, and
T cell receptor signaling pathway. Furthermore, these genes
were also found to be enriched in extracellular matrix (ECM)
construction, which plays important role in kidney tubular
(Figure 2A). Pathway network analysis between genes and
pathways indicated that many genes related to inflammation
regulation were also enriched for other pathways such as
Hematopoietic cell lineage, Th1, and Th2 cell differentiation, and
Primary immunodeficiency, suggesting that these genes may be
associated with various biological pathways orchestrating DN
pathogenesis (Figure 2B).

Next, we also conducted the KEGG functional enrichment
analysis to investigate the function of genes in the blue module
that most negatively (R = −0.79, P < 0.001) correlated with
the advanced-stage DN. The results displayed that genes in
the blue module were mainly involved in pathways related
to cell metabolism pathways such as Retinol metabolism,
Glucagon signaling pathway, Glycine, serine and threonine
metabolism, and Linoleic acid metabolism. Additionally,
these genes were also found to be enriched in Fat digestion
and absorption, which play important roles in the kidneys
(Figure 2C). Pathway network analysis between genes
and pathways indicated that many genes related to lipid
metabolism regulation were also enriched for other metabolisms
related pathways such as Oxidative phosphorylation, and
drug metabolisms (Figure 2D). In total, the WGCNA
followed by KEGG analyses revealed that a high level of
inflammation, metabolic abnormalities, and ECM construction
dysfunction could play vital roles in the pathogenesis of
advanced-stage DN.

Proteomics Data Reveals That the
Metabolic Disorders Are Associated With
DN Pathogenesis in vivo
The db/db mouse model is currently the most widely used
to study the DN pathogenesis and progression (Azushima
et al., 2018). To mimic the early and advanced-stage DN,
the db/db mice were fed with a high protein diet for 12
or 18 weeks. After 12 or 18 weeks, the mice. The db/db
mice showed significant weight gain compared with control
group. Moreover, Kidney weight and kidney index were found
to be significantly reduced in db/db group. The urinary
protein, creatinine, and urea nitrogen levels were elevated
that mimicked the DN phenotype in db/db mice (Table 1).
Next, we subjected the kidneys of the db/db or control
db/m mice for proteomics analysis using iTRTAQ technology.
A total of 4,240 proteins was identified, and the proteome
clearly segregated db/db samples and db/m samples according
to PCA analysis (Supplementary Figure S1B). Next, we
further conducted the DEPs analysis between db/db and db/m
groups. As the volcano plot shows, 210 up-regulated and
119 down-regulated proteins were found to be significantly
changed in the db/db group (Figure 3A, P < 0.05 and
fold change > 2 or < 0.5) (complete DEPs list can be
found in Supplementary Table S3). The heatmap showed that
fatty-acid metabolism-related proteins including Cox2, Acox1,
Acox2, Acox3, Acms1, and Acms3 were dramatically suppressed
in db/db group (Figure 3B). We further performed GSEA
analysis to identify pathways and biological processes level
change in the db/db mice, the result revealed that fatty-acids
metabolism, fatty-acids β-oxidation, fatty-acids biosynthesis
pathways were significantly inhibited in db/db mice (Figure 3C),
which is consistent with the analysis of human kidney biopsy
transcriptome data. We further constructed the protein–protein
network of the above DEPs based on the string database
(Figure 3D); the network clearly displayed that plenty of enzymes
involved in fatty-acids metabolism were co-inhibited in db/db
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FIGURE 2 | KEGG pathway enrichment of the co-expression gene modules. (A) The bubble plot showing the enriched KEGG pathways of genes in turquoise
module. (B) The circle network plot showing the shared genes between several KEGG pathways enriched in turquoise module. (C) The bubble plot showing the
enriched KEGG pathways of genes in blue module. (D) The circle network plot showing the shared genes between several KEGG pathways enriched in blue module.

TABLE 1 | Biochemical and physical characteristics of experimental groups.

Characteristic db/m db/db–12w db/db–18w

(n=15) (n=8) (n=8)

Body weight (g) 21.2 ± 0.6 39.6 ± 2.1** 60.6 ± 2.8**

Kidney Index (mg/kg) 14.9 ± 0.4 9.3 ± 0.3** 7.6 ± 0.3**

Blood glucose (mmol/L) 7.5 ± 1.1 15.5 ± 2.5** 18.4 ± 1.4**

Creatinine (ţmol/L) 9.7 ± 3.3 14.3 ± 4.3** 23.5 ± 3.8**

Urea nitrogen (mmol/L) 10.2 ± 1.9 12.5 ± 2.4* 15.1 ± 2.9**

Microalbuminuria (ţg/L) 100 ± 48.1 176.8 ± 55.9* 457.0 ± 73.5**

mice. Therefore, our in vivo proteomics further confirm the
important role of fatty-acids metabolism in DN pathogenesis
and progression.

Metabolomics Data Further Validates the
Fundamental Role of Lipid Metabolism in
DN Pathogenesis
Since the fatty-acids metabolism pathways were significantly
disrupted during DN pathogenesis and progression in vivo as the
proteomics analysis showed. We sought to performed untargeted
metabolomics analysis of mice kidneys of db/db and db/m group
using the LC-MS/MS method (Supplementary Figure S1D).
The PCA plot showed that there existing a dramatic difference
in the metabolome of kidneys from db/db and db/m mice
(Figure 4A). Further OPLS-DA modeling analysis was employed
to identify metabolites with significant change (Figure 4B). As a
result, 28 up-regulated and 154 down-regulated metabolites were
found to be significantly altered in db/db group (Figures 4C,E,
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FIGURE 3 | Proteomics analysis between kidneys of db/db and db/m mice. (A) Volcano plot showing the DEPs between kidneys of db/db and db/m mice (18
weeks db/db, n = 3 kidney pools, 5 mice per pool; db/m, n = 3 pools, 5 mice per pool). (B) The heatmap illustrating the expression of DEPs in kidneys of db/db and
db/m mice, each row represents one protein, each column represents one sample. (C) GSEA plot showing the different enriched pathways in db/db (down) or db/m
(up) group. (D) DEPs network analysis based on string database, the thickness of line represents the strength of correlation, the size of rectangle represents the fold
change between db/db and db/m group, and blue means downregulated and red means upregulated.
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FIGURE 4 | Metabolomics analysis between kidneys of db/db and db/m mice. (A,B) PCA (A) and OPLS-DA (B) plots of the metabolites detected in kidneys of
db/db and db/m mice (12 weeks db/db, n = 4; 18 weeks db/db, n = 5; db/m, n = 8). (C) Volcano plot showing the DEMs between kidneys of db/db and db/m mice.
(D) The bubble plot showing the enriched KEGG pathways of DEMs between kidneys of db/db and db/m mice. (E) The heatmap illustrating the levels of DEMs in
kidneys of db/db and db/m mice, each row represents one protein, each column represents one sample.

Frontiers in Genetics | www.frontiersin.org 8 December 2020 | Volume 11 | Article 616435

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-616435 December 8, 2020 Time: 15:36 # 9

Sha et al. Multi-Omics Analysis of Diabetic Nephropathy

P < 0.05 and fold change > 2 or < 0.5 and VIP > 1)
(complete DEMs list can be found in Supplementary Table S4).
Of these metabolites, a lot of fatty acids and their related
metabolites (±)10(11)-EpDPA, (±)9-HpODE, (±)13-HODE,
Linoleic Acid, and Docosahexaenoic acid were significantly
down-regulated in db/db mouse kidneys. Next, we conducted
metabolite enrichment analysis using the online MetaboAnalyst
tool, the results indicated also that Sphingolipid metabolism,
Biosynthesis of unsaturated fatty acids, and alpha-Linolenic acid
metabolism pathways were involved in the pathogenesis and
progression of DN.

Next, we analyzed the metabolic change of mice kidneys
during DN progression. The OPLS-DA modeling analysis
was employed to identify metabolites with significant change
(Figure 5A). As a result, 32 up-regulated and 30 down-
regulated metabolites were found to be significantly altered
in advanced-stage group compared with early stage group
(Figures 4D, 5B, P < 0.05 and fold change > 2 or < 0.5
and VIP > 1). Interestingly, (±)9-HpODE and Linoleic
Acid were also found to significantly decreased during DN
progression. Further metabolite enrichment analysis using the
online MetaboAnalyst tool showed that Sphingolipid metabolism

FIGURE 5 | Metabolomics analysis between kidneys of early stage DN and advanced-stage DN mice. (A) OPLS-DA plots of the metabolites detected in kidneys of
early stage DN and advanced-stage DN mice (12 weeks db/db, n = 4; 18 weeks db/db, n = 5). (B) Volcano plot showing the DEMs between kidneys of early stage
DN and advanced-stage DN mice. (C) The bubble plot showing the enriched KEGG pathways of DEMs between kidneys of early stage DN and advanced-stage DN
mice. (D) The heatmap illustrating the levels of DEMs in kidneys of early stage DN and advanced-stage DN mice, each row represents one protein, each column
represents one sample.
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FIGURE 6 | Schematic diagram of the linoleic acid metabolism and fatty-acids β-oxidation alterations during DN pathogenesis and progression.

remained altered. Together, the in vivo metabolomics data also
demonstrate that lipid metabolism may play important roles in
DN pathogenesis and progression.

Integrating Multi-Omics Data Indicates
Targeting Fatty-Acids Metabolism
Pathways May Bring Benefits for DN
Patients
To further confirm the role of fatty-acids metabolism pathways
in DN, we treated the HK2 cells (Renal tubular epithelial
cells) with high concentration glucose, the MTT results
showed that high concentration glucose treatment significantly
promoted cell proliferation, fibrosis and inhibited ACOX1
expression (Supplementary Figure S2). And overexpression of
ACOX1 significantly rescued the phenotype triggered by high
concentration glucose treatment (Supplementary Figure S2).
Transcriptome, metabolome, as well as proteome data together
emphasize the great importance of fatty-acids metabolism in
DN. We systematically analyzed the linoleic acid metabolism and
fatty-acids β-oxidation changes in DN pathogenesis (Figure 6).
For the fatty-acids β-oxidation pathway, the transporter protein
ABCD3 was significantly suppressed in the kidneys of db/db
mice, which largely hindered the transport of long-chain fatty

acids from outside to cell. Additionally, downregulation of fatty
acyl-CoA activated enzymes ACOX1, ACOX2, and ACOX3
further prohibited the fatty-acids β-oxidation pathway, which
in turn inhibited the kidney function of db/db mice. For
the linoleic acid metabolism pathway, the linoleic acid was
significantly downregulated that reduced the supply of fatty-
acids β-oxidation pathway. Moreover, several key regulatory
enzymes including COX1, COX2, and DES1 were simultaneously
decreased, which led to the reduced level of related metabolites
including 13′-HODE, stearidonic acid, docosahexaenoic acid,
(±)10(11)-EpDPA in kidneys of db/db mice. The above findings
shed light on that lipid metabolism, especially fatty-acids
β-oxidation and linoleic acid metabolism may be potential
therapeutic targets for DN.

DISCUSSION

DN is one of the worst T2D complications, which develops
in over 40% of T2D patients. It seriously deteriorates patients’
kidney function, and eventually leads to ESRD (Fineberg et al.,
2013; Thomas et al., 2015). Growing evidence suggests that the
disrupted metabolism in patients with DN, as well as some
in vivo and in vitro models (Kalim and Rhee, 2017). Some studies

Frontiers in Genetics | www.frontiersin.org 10 December 2020 | Volume 11 | Article 616435

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-616435 December 8, 2020 Time: 15:36 # 11

Sha et al. Multi-Omics Analysis of Diabetic Nephropathy

also show that supply some lipids such as ketone bodies within
an optimal range may help maintain the energy homeostasis
of kidneys of patients diagnosed with DN, and is likely to be
beneficial for health (Tomita et al., 2020). The present study
demonstrates that lipid metabolism is significantly disrupted
during DN pathogenesis and progression via a combination
of multi-omics data including transcriptome, proteome, and
metabolome using kidney biopsies and DN mice models.

The past few decades have witnessed the great improvements
of the next-generation sequencing (NGS) and LC-MS/MS
technologies, which largely promote genomics, transcriptomics,
epigenomics, and proteomics researches (Yang et al., 2015;
Hasin et al., 2017). These technologies are widely used in
the identifications of new biomarkers and drug targets and
investigations of biological mechanisms of many diseases,
including cancer, T2D, kidney diseases, heart diseases, and so
on (Yang et al., 2015; Rinschen and Saez-Rodriguez, 2020). NGS
and LC-MS/MS technologies have also accelerated the research
for DN, previous studies have unveiled the molecular processes
that initiate DN, influence disease progression and, mediate cell-
type-specific responses to treatment (Van et al., 2017; Eddy et al.,
2020). Meanwhile, cell-level biomarkers and drug targets can
also be identified to assess cellular responses to external stimuli.
Therefore, the researchers will gain a comprehensive molecular
understanding of DN by bridging information across multi-
omics data, which guides the development of targeted therapies
for precision medicine.

Although we characterize the molecular change of DN at
multi-omics levels, and identify the linoleic acid metabolism
and fatty-acids β-oxidation as potential driven events for DN.
However, the in vivo and in vitro functional assays are still
needed for screening which enzyme plays the most important role
in DN pathogenesis and progression, and supplying with some
lipids such as ketone bodies in a reasonable range could remit
glomerular sclerosis and tubular interstitial fibrosis. Moreover,
artificial activation of some key enzymes in lipid metabolism
should be also performed to investigate its roles in DN.

In conclusion, we systematically analyze the landscape
change at RNA, protein, and metabolite levels during DN
pathogenesis and progression. The molecular changes of DN
contain extracellular matrix accumulation, abnormal activated
inflamed microenvironment, and metabolic disorders, bringing
about glomerular sclerosis and tubular interstitial fibrosis.
Although lipid metabolism is found to be disrupted in DN, the
comprehensive alterations at RNA, protein, and metabolite level
remains unclear. Our data show that the linoleic acid metabolism
and fatty-acids β-oxidation are significantly inhibited during
DN in db/db mouse model, here suggest that targeting its key

enzymes may be a promising avenue in the treatment of DN,
especially advanced-stage DN.
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