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Abstract: The large p small n problem is a challenge without a de facto standard method
available to it. In this study, we propose a tensor-decomposition (TD)-based unsupervised feature
extraction (FE) formalism applied to multiomics datasets, in which the number of features is
more than 100,000 whereas the number of samples is as small as about 100, hence constituting
a typical large p small n problem. The proposed TD-based unsupervised FE outperformed other
conventional supervised feature selection methods, random forest, categorical regression (also known
as analysis of variance, or ANOVA), penalized linear discriminant analysis, and two unsupervised
methods, multiple non-negative matrix factorization and principal component analysis (PCA) based
unsupervised FE when applied to synthetic datasets and four methods other than PCA based
unsupervised FE when applied to multiomics datasets. The genes selected by TD-based unsupervised
FE were enriched in genes known to be related to tissues and transcription factors measured.
TD-based unsupervised FE was demonstrated to be not only the superior feature selection method
but also the method that can select biologically reliable genes. To our knowledge, this is the first
study in which TD-based unsupervised FE has been successfully applied to the integration of this
variety of multiomics measurements.

Keywords: prostate cancer; gene expression; genomic regions; protien-coding genes;
tensor decomposition; unsupervised learning

1. Introduction

The term “big data” often indicates a high number of instances as well as features [1,2].
Typical big data comprise a few million images (photos) each composed of several million pixels.
The number of features is as high as the number of instances, or often higher. Most recently developed
machine-learning methods including deep learning (DL) aim to address this manner of problem [1,3–8].
Nonetheless, although less popular than these typical big data problems, there is another branch of big
data problem known as the “large p small n” problem, or “high-dimensional data analysis”. For these
cases, the number of instances is typically smaller than the number of features [9–11]. In this case,
there can be many unique problems that do not exist for the typical big data problems mentioned
above. For example, in discrimination tasks, because there are more features than instances, if we
do not reduce the number of features, the accuracy will always be 100% for no other reason than
overfitting. Alternatively, the so-called “curse of dimensionality” problem describes a shortage of
instances covering sufficiently large spaces. Because of these difficulties, compared with the popular big
data problems, the “large p small n” problem has relatively rarely been investigated comprehensively,
although there are many studies to tackle “large p small n” problem [12–15].
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This might not seem significant, as the “large p small n” problem is relatively rare and not as
important. Nevertheless, dependent on the domains, the “large p small n” problem will inevitably
become typical. For example, in genomic science, the typical number of features is as many as or more
than that of genes (i.e., about 104), whereas the number of samples is the number of patients, typically
at most a few hundred. The length of the DNA sequence of the human genome is approximately
3× 109 [16], whereas the human population is about 1010. Nevertheless, only a very small fraction of
these populations can be considered in an individual study. Thus, in typical genomic studies, the ratio
of the number of features to the number of samples can be in the region of 102 or more.

Nonetheless, Taguchi has proposed a very different method to the typical machine-learning
methods that are applicable to large p small n problems: tensor-decomposition (TD)-based
unsupervised feature extraction (FE) [17]. m-mode tensor is associated with more than two suffix
whereas matrix is associated with two suffix, row and column. In this method, a smaller number of
representative features, referred to as singular value vectors, are generated with linear combinations
of the original large number of features, without considering labeling. These singular value vectors
are attributed to both samples and original features. We have investigated the singular value vectors
attributed to samples. Finally, the selected singular value vectors attributed to the original features
are used to evaluate the importance of the original features; because the singular value vectors are
the linear combinations of original features, their coefficients of linear combinations can be used to
evaluate the importance of individual original features. The original features with larger absolute
values of coefficients are selected. As a result, we can avoid many difficulties in the “large p small n”
problem; for example, we can perform standard discriminant analysis when there is a higher number
of features than instances.

In this paper, we propose a TD-based unsupervised FE formalism, applied to synthetic data
that imitate typical genomic datasets. The proposed method is first compared with five conventional
methods applicable to the “large p small n” problem: random forest (RF), penalized linear discriminant
analysis (LDA) [18], categorical regression, principal component analysis (PCA) based unsupervised
FE, and multiple non-negative matrix factorization (MNMF); the latter has been used especially
often for analysis of multiomics datasets [19]. These six methods are then also applied to a real
dataset consisting of multiomics measurements of prostate cancers, a typical “large p small n” dataset.
The results for the synthetic and real datasets demonstrate the superiority of our proposed method
when compared against the five conventional methods in feature selections.

In this study, we need to deal with categorical data set. Since the labeling is neither binary nor
numeric, no standard regression-based approaches are applicable. Thus, the methods applicable
are restricted to either supervised methods that can deal with categorical labeling, e.g., tissues, or
unsupervised methods that do not require labeling and do not consider sample annotations at all.
The above six methods were selected as representative methods that can satisfy the above requirements.

To our knowledge, this is the first study in which TD-based unsupervised FE has been successfully
applied to the integration of this variety of multiomics measurements. The performance of TD-based
unsupervised FE is highly data-type-dependent, since we cannot intentionally generate singular value
vectors of interest. When singular value vectors generated by TD is not of interest, we cannot do
anything since TD does not have tunable parameters. In this sense, it is challenging to estimate
how many types of multiomics datasets (here, three transcription factor bindings as well as four
histone modifications and one chromosomal state measurement, making eight types in total) can be
successfully integrated with this method.

The types of multiomics data [20] that are possibly dealt with the proposed technology are as
follows: gene (or mRNA) expression profiles, DNA methylation profiles (e.g., promoter methylation),
various histone modification, chromatin structure, protein binding to genome (e.g., transcription factor
biding to DNA), and RNA modification and so on.

A recent review [20] listed handful multi-omics data sets analysis tools (Table 1).
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Table 1. List of number of sample as well as types of omics data analyzed in the review [20].

Omics Data

Model Name Number of Samples Numbers Types

PARADIGM [21] 230 patient samples and 10 adjacent normal tissues two omics data copy number and mRNA expression

iCluster [22] 37 primary breast cancers and four breast cancer cell lines two omics data copy number and mRNA expression

91 lung adenocarcinomas two omics data copy number and mRNA expression

iClusterPlus [23] 729 human cancer cell lines three omics data chromosomal copy number, gene expression, and mutation

189 tumors four omics data exome sequence, DNA copy number, promoter methylation, and mRNA expression

LRAcluster [24] 3319 samples four omics data mutation, CNV, DNA methylation, and gene expression

PSDF [25] 106 breast cancer samples two omics data Copy number and gene expression

BCC [26] 348 tumor samples four omics data RNA expression, methylation, miRNA expression, Reverse phase protein array
SNF [27] 215 GBM data samples three omics data DNA methylation, miRNA expression, and gene expression

PFA [28] 415 cell lines two omics gene expression and copy number

PINSPlus [29] 12,158 samples — —

NEMO [30] 173 samples DNA methylation data from 194 samples,
and miRNA expression data from 188 samples three omics data —

DIABLO [31] 150 breast cancer samples three moics mRNA, miRNA, and protein expression

moCluster [32] 83 samples of colorectal cancer three omics data DNA methylation, gene expression, and protein expression

MCIA [33] 266 samples two omics data proteomics and transcriptomics

JIVE [34] 348 breast cancer samples three omics data gene expression, DNA methylation, and miRNA data

MFA [35] 43 glioma samples two omics data CGH-array and transcriptome

rMKL-LPP [36]

glioblastoma multiforme (GBM) with 213 samples, breast
invasive carcinoma (BIC) with 105 samples, kidney renal clear
cell carcinoma (KRCCC) with 122 samples, lung squamous cell
carcinoma (LSCC) with 106 samples and colon adenocarcinoma

(COAD) with 92 samples

three omics data gene expression, DNA methylation and miRNA expression

iNMF [37] 592 samples three omics data gene expression, DNA methylation, miRNA expression



Genes 2020, 11, 1493 4 of 23

As can be seen, the number of samples are from 102 to 103 and numbers of omics data used are at
most four. TD based unsupervised FE (see below) can deal with more extreme case; the number of
samples per omics and tissue is from three to thirty while number of omics is as many as eight. We do
not know any methods other than ours that can deal with this many kinds of omics data set as well as
this small number of samples.

The way by which multiomics data is formatted as a tensor as follows. Suppose that X ∈
RN×M×K×S composed of xijks that represents jth kind of omics data (e.g., gene expression, promoter
methylation, histone modification etc) attributed to ith gene of sth biological replicates of kth organism.
In this case, for kth patients, M kind of omics data were measured using microarray or next generation
sequencing technology measuring variables attributed to N genes at once. Thus, the multiomics
measurements are naturally formatted as a tensor without any special reformat.

The primary difference between PCA based unsupervised FE and TD based unsupervised FE
is as follows. When condition of experiments is restricted to one, e.g., “patients vs healthy control”,
PCA is very useful. However, if it is a combination of multiple ones, e.g., “patients vs healthy controls”
and “multiple tissues”, since tensor is more reasonable format than matrix, TD based unsupervised FE
is more suitable method than PCA based unsupervised FE.

2. Materials and Methods

2.1. Synthetic Data

In the synthetic dataset, we assumed that there are 81 samples composed of three tissue subclasses
(each class has three replicates) and three disease subclasses (each class also has three replicates).
That is, the 81 samples are composed of all possible pairs of one of the nine tissue samples (= three
tissues × three replicates) and one of the nine disease samples (= three diseases × three replicates).
Typically, the three tissues are supposed to be, for example, heart, brain, and skin, while the three
diseases are supposed to be a few exclusive diseases, and healthy controls; this means that we do
not have any biological knowledge of which combinations are more likely to be associated with one
another. The number of genes, which are features, is as many as 105; although so-called protein-coding
genes are at most a few tens of thousands, a higher number of non-coding genes have come to be
considered. Unlike the synthetic data, in the real dataset to which the methods are applied in the later
part of this paper, the number of features corresponds to the number of genomic regions with fixed
DNA sequence length. Thus, it can be even higher than that of the synthetic data. Among these 105

features, only the first 100 features are supposed to be associated with distinction between diseases
and tissues. The purpose of the analysis is to identify these 100 features correctly based upon the
available datasets in a fully data-driven approach. To emulate this situation, we introduced tensor
xijk ∈ R104×9×9, where i, j, k stand for features, tissues, and diseases, as

xijk =

{ ⌈
j
3

⌉ (⌈
k
3

⌉
+ 3
)
+ εijk, i ≤ 100

εijk, i > 100
(1)

where εijk ∼ N (0, 3), N (µ, σ) is a Gaussian distribution with mean µ and standard deviation σ,
and dxe is a ceiling function that gives the smallest integer that is not less than x. The xijk values

are classified into nine subclasses dependent upon pairs
(⌈

j
3

⌉
,
⌈

k
3

⌉)
, 1 ≤

⌈
j
3

⌉
,
⌈

k
3

⌉
≤ 3 because

1 ≤ j, k ≤ 9.
The synthetic data set intentionally model the simplest cases of integrated analysis of multiple

omics data set. j and k are assumed to be two independent omics measurements while replicates are
supposed to be biological replicates in real experiments.

All performances reported in this study is averaged value over one hundred independent trials.
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2.2. Real Dataset

The real dataset consists of multiomics measurements of prostate cancer retrieved from the
Gene Expression Omnibus (GEO) [38], using GEO ID GSE130408. The processed file named
GSE130408_RAW.tar was downloaded and individual files with names starting with “GSM” were
extracted from it. The individual files are composed of eight omics measurements: three transcription
factor bindings, AR, FOXA1, and HOXB13; four histone modifications, H3K27AC, H3K27me3,
H3K4me3, and K4me2; and ATAC-seq. Two additional subclasses, tumor and normal tissue,
were attributed to each. Because the number of biological replicates varies from subclass to
subclass, we randomly selected the following number of ChIP-seq subclasses: two AR, four FOXA1,
four HOXB13, ten H3K27AC, one H3K27me3, one H3K4me3, one K4me2, and one ATAC-seq. In total,
24 multiomics measurement groups were constructed. Each multiomics measurement group is
composed of six samples, comprising two tissue subclasses (tumor and normal prostate), each of which
has three biological replicates (Table 2).

Table 2. Sumary of real dataset.

Number of

Omics Multiomics Tissues Biological
Replicates

AR 2 2 3
FOXA1 4 2 3

HOXB13 4 2 3
H3K27AC 10 2 3
H3K27me3 1 2 3
H3K4me3 1 2 3

K4me2 1 2 3
ATAC 1 2 3
total 24 — —

The values in each file were averaged over 25,000 DNA sequence intervals, giving a total number
of 123,817, as 3× 109, the total DNA length of the human genome, divided by 25,000 is equal to 120,000.
The averaged values were treated as a dataset to be analyzed further.

2.3. Categorical Regression

Categorical regression, also known as analysis of variance or ANOVA, is expressed as

xijk =
3

∑
J=1

aJδJ j +
3

∑
K=1

bKδKk, (2)

where δJ j and δKk take 1 only when j or k belong to the Jth tissue or Kth disease subclass, respectively.
aJ and bK are regression coefficients (for synthetic data).

xijkm =
8

∑
J=1

aJδJ j +
2

∑
K=1

bKδKk, (3)

where δJ j and δKk take 1 only when j or k belong to the Jth multiomics measurement group or Kth tissue
(K = 1: tumor, K = 2: normal prostate) subclass, respectively. aJ and bK are regression coefficients
(for real data).

The computation was performed by the lm function in the base package in R [39]. The computed
p-values were adjusted by the BH criterion [17] and the ith features associated with adjusted p-values
less than 0.01 were selected.
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2.4. RF

RF was performed using the randomForest function implemented in the randomForest
package [40] in R. Synthetic and real data were regarded as 3× 3 = 9 and 8× 2 = 16 subclasses,
respectively, each of which corresponds to one of the (J, K) pairs defined in Equations (2) or (3).
Features included in the out-of-bag error were selected that had non-zero importance given by the
importance function implemented in the randomForest package.

2.5. PenalizeLDA

PenalizedLDA was performed using the PenalizedLDA.cv function implemented in the
PenalizedLDA package [41] in R. Synthetic and real data were regarded as 3× 3 = 9 and 8× 2 = 16
subclasses, respectively, each of which corresponds to one of the (J, K) pairs defined in Equations (2) or
(3). λ was taken to be 0.01, 0.02, 0.03, 0.04 for synthetic data. PenalizedLDA could not be performed for
the real dataset because of the zero in-subclass standard deviations of some features (for more details,
see [18]).

2.6. TD-Based Unsupervised FE

Although the process was fully described in the recently published book [17], here we propose a
variant, which is outlined briefly. First, a dataset must be formatted as a tensor. For synthetic data,
xijk ∈ R105×9×9. For real data, xijkm ∈ RN×24×2×3 represents the averaged value of the ith interval of
the jth omics measurement group of the kth tissue (k = 1: tumor, k = 2: normal prostate) of the mth
biological replicates (1 ≤ m ≤ 3). Here, N = 123,817 is the total number of genomic regions of 25,000
DNA sequence length.

Higher-order singular value decomposition (HOSVD) [17] was then applied to the
tensor, obtaining

xijk =
9

∑
`1=1

9

∑
`2=1

105

∑
`3=1

G(`1`2`3)u`1 ju`2ku`3i (4)

for synthetic data. G ∈ R9×9×105
is a core tensor and u`1 j ∈ R9×9, u`2k ∈ R9×9, u`3i ∈ R105×105

are
singular value matrices that are orthogonal. Conversely, for the real dataset,

xijkm =
24

∑
`1=1

2

∑
`2=1

3

∑
`3=1

N

∑
`4=1

G(`1`2`3`4)u`1 ju`2ku`3mu`4i, (5)

where G ∈ R24×2×3×N is a core tensor and u`1 j ∈ R24×24, u`2k ∈ R2×2, u`3m ∈ R3×3, u`4i ∈ RN×N are
singular value matrices that are orthogonal.

The first step is to check which singular value vectors attributed to sample subclasses (u`1 j
attributed to tissue subclasses and u`k to disease subclasses for the synthetic dataset, and u`1 j attributed
to multiomics measurement groups and u`2k to tissues for the real dataset) represent distinction
between samples of interest. After identifying biologically interesting singular value vectors attributed
to samples (u`1 j and u`2k for the synthetic data, and u`1 j, u`2k, and u`3m for the real data), we next
attempt to find singular value vectors attributed to features (u`3i for the synthetic data and u`4i for the
real data) that share core tensor G with larger absolute values with those identified singular value
vectors attributed to samples. For example, suppose that `′1, `′2 are selected for synthetic data and
`′1, `′2, `′3 are selected for real data. In this case we seek `3 that has G(`′1`

′
2`3) with larger absolute values

for the synthetic data and `4 that has G(`′1`
′
2`
′
3`4) with larger absolute values for the synthetic data.

Next, using the selected u`3i and u`4i, p-values are attributed to the ith feature as [17]

Pi = Pχ2

[
>

(
u`3i

σ`3

)2
]

(6)
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for synthetic data and

Pi = Pχ2

[
>

(
u`4i

σ`4

)2
]

(7)

for real data. Pχ2 [> x] is the cumulative probability of χ2 distribution that the argument is larger than
x. σ`3 and σ`4 are the standard deviations. The computed p-values are corrected by the BH criterion
and features associated with adjusted p-values less than 0.01 are selected.

2.7. MNMF

Suppose that we have multiple matrices sharing the same number of rows, i.e., Xk ∈ RN×Mk .
When there are no non-positive components in these matrices, we can apply MNMF as

min
Q,Hk

∑
k
||Xk −QHk||F, (8)

where Q ∈ RN×n and Hk ∈ Rn×Mk , the column and row vectors of which are n latent variable vectors
attributed to is and samples, respectively, and there are no non-positive components in Q and Hks.
|| · ||F is the Frobenius norm. n is an integer smaller than any N or Mk. MNMF can be easily performed
by applying non-negative matrix factorization (NMF) to the contraction matrix of Xks, X ∈ RN×∑k Mk ,
which is an unfolded matrix of tensors in this study (see Figure 1 and below), because

∑
k
||Xk −QHk||F = ||X−QH||F, (9)

where H ∈ Rn×∑k Mk is a contraction matrix of Hks. NMF was performed by the nmf function in the
NMF package of R.

When MNMF is applied to the synthetic dataset, it is applied to the matrix xi(jk) ∈ R105×81

generated by unfolding tensor xijk ∈ R105×9×9. When MNMF is applied to the real dataset, it is
applied to the matrix xi(jkm) ∈ R123,817×144 generated by unfolding tensor xijkm ∈ R123,817×24×2×3.
Because NMF cannot be applied to matrices with non-positive values, min(xijk) are extracted from
xijk so that NMF can be applied to matrices without non-positive values when applied to synthetic
data. When NMF is applied to the real dataset, 1× 10−10 is added to xijkm when xijkm = 0 (no negative
values are included in xijkm).

2.8. PCA Based Unsupervised FE

Although the process was fully described in the recently published book [17], we briefly explain
the method. PCA was applied to matrices to whch MNMF was applied in the previous subsection so
that PC scores are attributed to i whereas PC loading applied to either (jk) (for synthetic data) or (jkm)

(for real data). After identifying PC loading of interest, using corresponding PC score, p-values are
attributed to is as [17]

Pi = Pχ2

[
>

(
u`i
σ`

)2
]

(10)

where u`i is the `th PC score that corresponds to the PC loading of interest. p-values are corrected by
BH criterion and is associated with adjusted p-values less than 0.01 are selected.

3. Results

Figure 1 shows the flowchart of analyses performed in this study.
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Synthetic data Real data

x ijk∈ℝ
105×9×9 x ijkm∈ℝ123817×24×2×3

TD based unsupervised FE Categorical Regression Random Forest (RF) PenalizedLDA

100 
features

1447 
regions

37.5% 
errors

100-111 
features

106761 
regions

7289 
features

11278 
regions

35% 
errors

100 
features

1785 protein 
coding genes

Metascape

MNMF

(3 tissues with 3 replicates)
 ⨉ (3 diseases with 3 replicates)

(8 classes with 1~10 samples)
 ⨉ (2 tissues ) ⨉ (3 replicates) 

x i( jkm)∈ℝ123817×144
unfolding

x i( jk )∈ℝ
105×81

unfolding

(9 classes, in total 81 samples)

(8 classes, in total 144 samples)

PCA based unsupervised FE

100 
features

Top 100
25% errors

Top 
1447 

regions

Top 
1447 

regions

1267 protein 
coding genes962 protein 

coding genes

Figure 1. Flowchart of analyses performed in this study. Those in red and black are unsupervised and
supervised feature selection, respectively. ×means that no regions or features can be selected.

3.1. Synthetic Data

We applied RF, PenalizedLDA, categorical regression, and TD-based unsupervised FE. Please note
that all performances reported in the below are averaged over one hundred independent trials as
denoted in Materials and Methods. When RF was applied to the synthetic dataset, there were up to
8456 features in average with non-zero importance, although the 100 features with subclass dependence
were correctly selected. Thus, RF has the ability to select all the correct features. Nevertheless, because it
selects too many false positives, it is ineffective. Reflecting this poor ability, as small as 16 samples
among 81 samples were correctly classified in average. Although one might wonder if we select top
100 features with larger importance values provided by random forest, only as small as 73 features are
correctly selected among top ranked 100 features by random forest. In contrast, when PenalizedLDA
was applied to the synthetic dataset, the 100 features with subclass dependence were selected without
any false positives being selected. Thus, PenalizedLDA can outperform RF. The only disadvantage is
that we have to find the optimal λ, which is the weight coefficient of the L1 norm. Through massive
trials and errors, we found that when λ is taken to be 0.01, it achieves the ideal performance mentioned
above for all of one hundred independent trials. Reflecting this, PenalizedLDA can classify 81 samples
with the accuracy of as high as 84 % in average. In contrast, if we select λ as 0.02, it selects as small as
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only nine features in average, although no features with subclass dependence are correctly selected for
λ = 0.03 and 0.04. If we do not have prior knowledge that the correct number is 100, it is impossible
to tune the optimal parameter. Thus, in this sense, PenalizedLDA cannot be regarded as a perfect
method, although it can achieve perfect performance if we can successfully tune the optimal parameter.
Categorical regression is far superior to PenalizedLDA, as it achieves good performances regardless of
the threshold p-value (Table 3).

Table 3. Confusion matrices when categorical regression is applied to synthetic data. p is the threshold
p-value. Features are selected when adjusted p-values less than the threshold p-values are associated
with them. Averaged over 100 independent trials.

p 0.1 0.05 0.01 0.001

i > 100 i ≤ 100 i > 100 i ≤ 100 i > 100 i ≤ 100 i > 100 i ≤ 100
not selected 99,889 0 99,895 0 99,899 0 99,900 0

selected 11 100 5 100 1 100 0 100

It exhibits a maximum of just 11 false positives even if the threshold p-values vary from 0.01 to
0.1. This is in significant contrast to PenalizedLDA that requires sophisticated parameter tuning.

Nevertheless, TD-based unsupervised FE generated good performance results when compared
against categorical regression. Initially, after applying HOSVD to the synthetic dataset, we noticed that
u1j and u2k were associated with distinction between the three subclasses (Figure 2).
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Figure 2. u1j and u1k obtained when HOSVD is applied to the synthetic dataset. Averaged over
100 independent trials.

Thus, we attempted to find which `3 is associated with G(1, 1, `3) of the largest absolute value
(Figure 3).

From this, it was obvious that G(1, 1, 1) had the largest absolute values. Equation (6) with `3 = 1
was used to attribute Pi to the ith feature. Pi was corrected by the BH criterion and features associated
with adjusted p-values less than the threshold values were selected (Table 4). As a result, TD-based
unsupervised FE achieved perfect performances regardless of the threshold p-values.
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Figure 3. G(1, 1, `3) obtained when HOSVD is applied to the synthetic dataset. Averaged over
100 independent trials.

Table 4. Confusion matrices when TD-based unsupervised FE is applied to the synthetic data. p is the
threshold p-value. Features are selected when adjusted p-values less than the threshold p-values are

associated with them.
⌈

j
3

⌉ (⌈
k
3

⌉
+ 3
)

. Averaged over 100 independent trials.

p 0.1 0.05 0.01 0.001

i > 100 i ≤ 100 i > 100 i ≤ 100 i > 100 i ≤ 100 i > 100 i ≤ 100
not selected 99,900 0 99,900 0 99,900 0 99,900 0

selected 0 100 0 100 0 100 0 100

3.2. Real Data

Next, we apply TD-based unsupervised FE to a real dataset, as it was shown to be the best of the
four methods tested on synthetic data in the previous subsection. After applying HOSVD to xijkm,
we realized that u1j and u2j have significant biological dependence upon multiomics measurement
groups (Figure 4). To explain why u1j and u2j are biologically reliable, we need to introduce genomic
science briefly as follows:
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Figure 4. Boxplot of u1j and u2j when HOSVD is applied to the real dataset.

A genome, which is a sequence of DNA, stores the information to be translated into a protein.
Because all cells store the same genome, the distinct functions and structures of individual cells are
controlled by whichever parts of the genome are translated into proteins through transcription to
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RNA. This process is controlled by the various proteins that bind to genomes. In these measurements,
the amounts of three such proteins, AR, FOXA1, and HOXB13, are measured. Another factor that
controls this process is the small molecules that bind to histone. Histone is a core protein around which
DNA wraps itself, and the tightness of this wrapping is the factor that controls the process from DNA
to RNA. H3K27AC, H3K27me3, H3K4me3, and K4me2 are the measures of which small molecules
bind to which parts of histone. Finally, ATAC-seq measures how “open” the DNA is. As DNA becomes
more open, it can produce more RNA. Thus, the number of proteins that bind to DNA, the number
of small molecules that bind to histone, and ATAC-seq are the measures of how many genomes are
transcribed to RNA. The difficulty in multiomics analysis is to identify the combinations of proteins
binding to DNA and small molecules binding to histone that can enhance the openness of DNA,
which is assumed to be observed by ATAC-seq. As we do not know what combination is likely to be
observed, the supervised approach is not easy to employ.

We now explain why u1j and u2j are biologically reliable. H3K4me3 and H3K27ac are known
to be active/open chromatin marks, whereas H3K27me3 is known to be an inactive mark [42].
u1j has higher values for H3K4me3 and H3K27ac but smaller values for H3K27me3, with larger
values for ATAC-seq, which measures the amount of openness of genome. Thus, the dependences
of u1j upon H3K4me3, H3K27ac, H3K27me3, and ATAC-seq are reliable. H3K4me2 [43] is also
known to activate gene transcription in tissue-specific ways. The overall dependence of u1j upon
multiomics measurement groups is reasonable. Nonetheless, three proteins, AR [44], FOXA1 [45],
and HOXB13 [46], are also known to mediate prostate cancer progression, and their enrichment
corresponded with u2j. We decided that u1j and u2j successfully captured the biological aspects of
multiomics measurements.

In contrast, u2k represents the distinction between a tumor (k = 1) and normal prostate (k = 2),
while u1m represents the independence of biological replicates (Figure 5). As we are seeking multiomics
measurements that are distinct between a tumor and normal prostate as well as common between
biological replicates, u2j and u1m represent the properties that we seek. Although we can select
either `1 = 1 or `1 = 2, as both are biologically reliable, we select `1 = 1 because it is the first
(i.e., mathematically primary) factor. To find the u`4i used for attributing p-values to genes i, we seek
G(1, 2, 1, `4) with the largest absolute value (Figure 6).
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Figure 5. u2k and u1m when HOSVD is applied to the real dataset.

It is obvious that G(1, 2, 1, 8) has the largest absolute value. Hence, u8i is employed to assign
p-values to the ith genomic regions using (7) with `4 = 8. The Pi values are corrected using the BH
criterion, and 1447 genomic regions associated with adjusted Pi less than 0.01 are selected from the
total 123,817 genomic regions. This indicates that TD-based unsupervised FE selects approximately 2%
of genomics regions of the whole human genome.
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Figure 6. G(1, 2, 1, `4) when HOSVD is applied to the real dataset.

Various biological evaluations of selected regions are possible, one of which is the number
of protein-coding regions included in these 1447 selected regions. As the genomic regions that
include protein-coding genes comprise less than a few percent of the human genome, and the total
number of human protein-coding genes is up to 2× 104, the expected number of protein-coding genes
included in these 1447 selected genomic regions is at most a few hundred. Nevertheless, as many
as 1785 protein-coding genes can be counted in these regions, which is much higher than expected.
This indicates that TD-based unsupervised FE can select genomic regions that include protein-coding
genes, correctly considering the altered multiomics variables between normal and tumor tissues,
although non-coding RNAs (ncRNAs) have also a key role in regulating the behavior of cells and their
over- and underexpression strongly correlated with cancer.

Another evaluation of these selected 1447 genomic regions is the biological properties of
the 1785 protein-coding genes included in these 1447 genomic regions. If biologically reliable
protein-coding genes are selected, they should be enriched with the genes related to prostate cancer.
To confirm this point, we uploaded these genes to Metascape [47], which evaluates the enrichment of
various biological terms with reducing redundancy.

Figure 7 shows the results of the DisGeNet [48] category of Metascape. It is obvious that prostatic
neoplasms are not only top ranked but also outstandingly enriched. This suggests that TD-based
unsupervised FE can specifically select genes related to prostate cancer.

Figure 8 shows the results of the PaGenBase [49] category of Metascape. It is obvious that LNCaP
cells are not only top ranked but also outstandingly enriched. LNCAP [50] is a model cell line of a
human prostatic carcinoma. This also suggests that TD-based unsupervised FE can specifically select
genes related to prostate cancer.

Figure 9 shows the results of the TRRUST [51] category of Metascape. It is obvious that the
androgen receptor (AR) is not only top ranked but also outstandingly enriched. As mentioned
above, AR is a protein that binds to the genome and mediates prostate cancer progression. This also
suggests that TD-based unsupervised FE can specifically select genes related to prostate cancer.
Although there are more convincing results, the Supplementary Materials include the full report
provided by Metascape.
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Figure 7. Summary of enrichment of the DisGeNet category of Metascape when 1785 protein-coding
genes included in 1447 genomic regions selected by TD-based unsupervised FE are considered.

Figure 8. Summary of enrichment of the PaGenBase category of Metascape when 1785 protein-coding
genes included in 1447 genomic regions selected by TD-based unsupervised FE are considered.

Figure 9. Summary of enrichment of the TRRUST category of Metascape when 1785 protein-coding
genes included in 1447 genomic regions selected by TD-based unsupervised FE are considered.
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4. Discussion

4.1. Synthetic Data

To determine whether TD-based unsupervised FE outperformed the three supervised feature
selections because of its unsupervised nature, we also applied an alternative unsupervised feature
selection, MNMF, to the synthetic data, specifying n = 3 as the number of vectors each of which is
composed of latent variables. Figure 10 shows the latent variable vectors attributed to the samples and
is, respectively, computed by MNMF.
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Figure 10. Boxplot of the first to third latent variable vectors attributed to the 81 samples.
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, 1 ≤ j, k ≤ 3. Averaged over 100 independent trials.

Up to the third latent vector, none is coincident with 9 classes defined in Equation (1).
Thus, it is obvious that MNMF is inferior to TD based unsupervised FE. Thus the reason why TD
based unsupervised FE could outperform other supervised methods is not simply because it is a
unsupervised method.

In order to see if TD based unsupervised FE is a only unsupervised method that can outperform
other supervised method, we also tried PCA based unsupervised FE [17] from which TD based
unsupervised FE developed (Figure 11).
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, 1 ≤ j, k ≤ 3. Averaged over 100 independent trials.
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It is obvious that it is well coincident with :
⌈

j
3

⌉ (⌈
k
3

⌉
+ 3
)

, 1 ≤ j, k ≤ 3. Then we attributed
p-values to i using Equation (10) with ` = 1.

Table 5 shows the confusion matrix when PCA based unsupervised FE was applied to synthetic
data. It is identical to Table 4. Thus, reported results show that TD and PCA-based unsupervised FE
outperforms the other six methods tested on the synthetic dataset.

Table 5. Confusion matrices when PCA-based unsupervised FE is applied to the synthetic data. p is
the threshold p-value. Features are selected when adjusted p-values less than the threshold p-values

are associated with them.
⌈

j
3

⌉ (⌈
k
3

⌉
+ 3
)

. Averaged over 100 independent trials.

p 0.1 0.05 0.01 0.001

i > 100 i ≤ 100 i > 100 i ≤ 100 i > 100 i ≤ 100 i > 100 i ≤ 100
not selected 99,900 0 99,900 0 99,900 0 99,900 0

selected 0 100 0 100 0 100 0 100

TD-based unsupervised FE also has the advantage of its CPU time (Table 6). PCA and TD-based
unsupervised FE are the fastest of the six methods tested on the synthetic data. It can finish within
a few seconds, whereas the others take longer, ranging from a few tens of seconds for categorical
regression to a few minutes for RF. In this sense, PCA and TD-based unsupervised FE are the fastest,
most accurate, and most robust of the six methods tested on the synthetic dataset.

Table 6. CPU times of the six methods required for the synthetic and real datasets. The CPU time
for PenalizedLDA is for testing four λ values with between one and eight discriminant functions.
The CPU time for an individual run is 18 s. Cpu times for synthetic data were averaged over
100 independent trials.

Methods PCA Based
Unsupervised FE

TD Based
Unsupervised FE

Categorical
Regression

Random
Forest

Penalized
LDA MNMF

cpu time [s] synthetic data 1.55 3.5 51.5 118.2 283 (18) 290
real data 17 20 87 321 — 223

4.2. Real Data

We now compare the performances of TD-based unsupervised FE with those of the other five
methods: RF, PenalizedLDA, categorical regression, MNMF and PCA based unsupervised FE. First,
RF was applied to the real dataset, which is classified into 16 categorical classes composed of any pairs
of eight mulitiomics measurement groups and two tissues (tumor and normal prostate). RF results in
as many as 11,278 genomic regions having non-zero importance. This number is almost eight times
larger than the number of regions selected by TD-based unsupervised FE (1447). One of the evaluations
of RF performance is its accuracy of discrimination, as RF is a supervised method. RF should have
selected the minimum features that can successfully discriminate between the 16 classes. The error
rate given by RF was as small as 0.35 (Table 7). This indicates that 65% of the 144 samples were
correctly classified into the 16 classes (see Table 2 for details of how the 144 samples were classified
into the 16 subclasses). To validate the discrimination performances of the 1447 genomic regions
selected by TD-based unsupervised FE, we carried out the following. u1j, u2k, u3k were recomputed by
HOSVD using only the 1447 genomic regions selected by TD-based unsupervised FE. The 144 samples
were then discriminated using linear discriminant analysis, employing the product u1ju2ku3k as input
vectors (Table 8 with leave-one-out cross-validation). The error rate was as small as 37.5%, similar to
that of RF (0.35). Considering the fact that TD-based unsupervised FE employed only one-eighth of
the number of genomic regions selected by RF, we concluded that TD-based unsupervised FE can
outperform RF.



Genes 2020, 11, 1493 16 of 23

Table 7. Confusion matrix for RF applied to the real dataset. N: normal prostate, T: tumor. The error
rate is 35%.

AR ATAC FOXA1 H3K27AC H3K27me3 H3K4me3 HOXB13 K4me2 Class

N T N T N T N T N T N T N T N T Error

AR_N 5 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1/6
AR_T 0 0 0 0 1 3 1 0 0 0 0 0 0 1 0 0 1
ATAC_N 0 0 0 2 0 0 0 1 0 0 0 0 0 0 0 0 1
ATAC_T 0 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 2/3
FOXA1_N 1 0 0 0 9 0 0 0 0 0 0 0 2 0 0 0 1/4
FOXA1_T 0 0 0 0 4 5 0 0 0 0 0 0 0 3 0 0 7/12
H3K27AC_N 0 0 0 0 0 0 26 4 0 0 0 0 0 0 0 0 2/15
H3K27AC_T 0 0 0 0 0 0 6 24 0 0 0 0 0 0 0 0 1/5
H3K27me3_N 0 0 0 0 0 0 0 0 1 2 0 0 0 0 0 0 2/3
H3K27me3_T 0 0 0 0 0 0 0 0 1 2 0 0 0 0 0 0 1/3
H3K4me3_N 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 1
H3K4me3_T 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 1
HOXB13_N 0 0 0 0 2 0 0 0 0 0 0 0 9 1 0 0 1/4
HOXB13_T 0 0 0 0 0 0 0 0 0 0 0 0 1 11 0 0 1/12
K4me2_N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 1
K4me2_T 0 0 0 0 0 0 0 1 0 0 0 0 0 0 2 0 1

Table 8. Confusion matrix for LDA using u1ju2ku3m given by TD applied to 1447 genomic regions
selected by TD-based unsupervised FE applied to the real dataset. N: normal prostate, T: tumor.
The error rate is 37.5%.

AR ATAC FOXA1 H3K27AC H3K27me3 H3K4me3 HOXB13 K4me2 Class

N T N T N T N T N T N T N T N T Error

AR_N 0 0 0 0 5 0 0 0 0 0 0 0 1 0 0 0 1
AR_T 0 0 0 0 0 5 0 0 0 0 0 0 0 1 0 0 1
ATAC_N 0 0 0 0 0 0 2 0 0 0 1 0 0 0 0 0 1
ATAC_T 0 0 0 0 0 0 0 2 0 0 0 1 0 0 0 0 1
FOXA1_N 0 0 0 0 9 0 1 0 0 0 0 0 2 0 0 0 1/4
FOXA1_T 0 0 0 0 0 9 0 1 0 0 0 0 0 2 0 0 1/4
H3K27AC_N 0 0 2 0 0 0 25 0 0 0 1 0 2 0 0 0 1/6
H3K27AC_T 0 0 0 2 0 0 0 25 0 0 0 1 0 2 0 0 1/6
H3K27me3_N 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0
H3K27me3_T 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0
H3K4me3_N 0 0 1 0 0 0 0 0 0 0 2 0 0 0 0 0 1/3
H3K4me3_T 0 0 0 1 0 0 0 0 0 0 0 2 0 0 0 0 1/3
HOXB13_N 0 0 0 0 4 0 2 0 0 0 0 0 6 0 0 0 1/2
HOXB13_T 0 0 0 0 0 4 0 2 0 0 0 0 0 6 0 0 1/2
K4me2_N 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 1
K4me2_T 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 1

In spite of the comparisons presented in the above, one might wonder that RF can achieve
comparative performances if top ranked restricted number of genomic regions are intentionally
selected. In order to this, we selected 1447 top ranked regions (they are as many as those selected by
TD based unsupervised FE) and identified as many as 1267 gene symbols included in these genomic
regions. These 1267 genes are uploaded to Metascape to evaluate them biologically.

Figure 12 shows the results of the DisGeNet category of Metascape. In contrast to Figure 7 where
prostatic neoplasms was top ranked, it was even not ranked at all in Figure 12. Thus, it is obvious that
genes selected by RF is inferior to those by TD based unsupervised FE.

Figure 13 shows the results of the PaGenBase category of Metascape. In cotrast to Figure 8 where
prostate related cell lines are top ranked, no prostate related cell lines are top ranked in Figure 13.
Thus, again, it is obvious that genes selected by RF is inferior to those by TD based unsupervised FE.

Figure 14 shows the results of the TRRUST category of Metascape. In contrast to Figure 9 where
AR is top ranked, AR is not ranked at all. Thus, it is obvious that genes selected by RF is inferior to
those by TD based unsupervised FE as well.
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Figure 12. Summary of enrichment of the DisGeNet category of Metascape when 11,267 protein-coding
genes included in 1447 genomic regions selected by RF are considered.

Figure 13. Summary of enrichment of the PaGenBase category of Metascape when 1267 protein-coding
genes included in 1447 genomic regions selected by RF are considered.

Figure 14. Summary of enrichment of the TRRUST category of Metascape when 1267 protein-coding
genes included in 1447 genomic regions selected by RF are considered.

Next, we attempted to apply PenalizedLDA to the real dataset, but found that we could not.
To perform LDA, all in-subclass variance must be non-zero. This condition was not fulfilled for the
real data. Hence, PenalizedLDA cannot be employed to process real datasets.

Third, we applied categorical regression to the real dataset by regarding it as 16 categorical
subclasses. The number of features associated with adjusted p-values less than 0.01 was as high
as 106,761 among all 123,817 features. This indicates that categorical regression selected almost
all features and is thus clearly ineffective. The reason categorical regression failed, despite being
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relatively successful (Table 3) when applied to the synthetic dataset, is as follows. In the synthetic
dataset, there was only one dependence upon subclasses. Selecting features with subclass dependence
automatically gives us targeted features. In the real dataset, this cannot stand as it is. There are
many variations of subclass dependence. In TD-based unsupervised FE, by assessing the dependence
of singular value vectors upon subclasses (see Figure 4), we can specify the type of dependence
upon subclasses that should be considered. This allows us to identify a restricted number of
biologically reliable genomic regions. Categorical regression cannot distinguish between various
subclass dependences and can only identify genomic regions associated with any type of subclass
dependence. This results in the identification of almost all genomic regions, as most are likely to be
associated with a type of subclass dependence.

In spite of the comparisons presented in the above, one might wonder that categorical regression
can achieve comparative performances if top ranked restricted number of genomic regions are
intentionally selected. In order to this, we selected 1447 top ranked regions (they are as many as those
selected by TD based unsupervised FE) and identified as many as 962 gene symbols included in these
genomic regions. These 1267 genes are uploaded to Metascape to evaluate them biologically.

Figure 15 shows the results of the DisGeNet category of Metascape. In contrast to Figure 7 where
prostatic neoplasms was top ranked, it was even not ranked at all in Figure 15. Thus, it is obvious that
genes selected by RF is inferior to those by TD based unsupervised FE.

Figure 15. Summary of enrichment of the DisGeNet category of Metascape when 962 protein-coding
genes included in 1447 genomic regions selected by categorical regression are considered.

Figure 16 shows the results of the PaGenBase category of Metascape. In cotrast to Figure 8 where
prostate related cell lines are top ranked, no prostate related cell lines are top ranked in Figure 16.
Thus, again, it is obvious that genes selected by RF is inferior to those by TD based unsupervised FE.
In contrast to Figure 9 where AR is top ranked, we could find no significant enrichment in TRRUST
category of Metascape. Thus, it is obvious that genes selected by RF is inferior to those by TD based
unsupervised FE as well.

Finally, MNMF (n = 3), one of the state-of-the-art methods that are often applied to multiomics
datasets [19], and PCA were applied to xijkm as described in Materials and Methods. Figures 17 and 18
show the latent variable vectors and PC loading attributed to 144 samples, respectively. Although the
dependence upon eight multiomics measurements are similar to those of TD-based unsupervised FE,
because the correspondence with eight types of measurement is clearly inferior to that of TD-based
unsupervised FE (within class variances much larger than those of the singular value vectors obtained
by TD-based unsupervised FE, Figure 4), we employ TD-based unsupervised FE. An additional reason
not to employ MNMF instead of TD-based unsupervised FE is that, although singular value vectors
derived by HOSVD can be assumed to obey a Gaussian distribution, latent variables computed by
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MNMF are unlikely to because they do not take negative values. Thus, there is no way to attribute
p-values to genes, as there is no suitable null hypothesis by which we can compute the p-values.

Figure 16. Summary of enrichment of the PaGenBase category of Metascape when 962 protein-coding
genes included in 1447 genomic regions selected by categorical regression are considered.
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Figure 17. Boxplots of the first to third latent variable vectors attributed to 144 samples classified into
eight subclasses, each of which corresponds to a multiomics measurement. The horizontal red broken
lines are base lines (zero).
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Figure 18. Boxplots of the first to third PC loading attributed to 144 samples classified into eight
subclasses, each of which corresponds to a multiomics measurement. The horizontal red broken lines
are base lines (zero). f
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As a result, none of the five methods (RF, PenalizedLDA, categorical regression, MNMF, or PCA)
can compete with TD-based unsupervised FE when applied to a real dataset.

In addition, the CPU time required of PCA and TD-based unsupervised FE are also the shortest
compared to the other four methods when applied to the real dataset (Table 6). From this perspective,
TD-based unsupervised FE outperforms the other four methods.

4.3. Discussions Not to Specific to Either Synthetic or Real Data

Unlike “genomic regions + samples” structure used in traditional unsupervised learning that
requires a matrix representation, Our TD employs “genomic regions + samples + tissues + biological
replicates” structure that requires a four-axes tensor representation. Reported results via enrichment
analysis show the superiority of our TD, attributed to taking into account the relationships among
genomic regions, samples, tissues, and biological replicates at once. One might wonder why TD
based unsupervised FE is more coincident with subclasses than other supervised or unsupervised
methods. It is simply because of the nature of tensor. As can be seen in Equations (4) and (5),
using TD, dependence of xijk or xijkm upon i, j, k or i, j, k, m is decomposed. Thus distinction between
i, j, k, m or i, j, k is specifically identified. This means that we can identify distinction of xijkm or xijk
between distinct i independent of other index, j, k or j, k, m. Such a detection is impossible since the
distinction between xijk′ and xij′k or that between xijk′m and xij′km where more than one index are
altered simultaneously. This weaken the ability for methods other than TD based unsupervised FE to
identify subclass dependence specifically. This is possibly the reason why TD based unsupervised FE
can outperform other methods on the identification of subclasses.

5. Conclusions

In this study, a TD-based unsupervised FE formalism is successfully applied for the first time to a
variety of multiomics measurements for both synthetic and real datasets that represented a typical
large p small n problem. The proposed method outperformed the conventional supervised feature
selection methods of RF, categorical regression, PenalizedLDA, and MNMF, and was demonstrated to
be superior not only in feature selection but also in selection of biologically reliable genes.

Supplementary Materials: The following are available at http://www.mdpi.com/2073-4425/11/12/1493/s1 ,
Output from Metascape.
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