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Abstract 
An outstanding question in the evolution of gene expression is the relative influence of neutral 
processes versus natural selection, including adaptive change driven by directional selection as 10 
well as stabilizing selection, which may include compensatory dynamics. These forces shape 
patterns of gene expression variation within and between species, including the regulatory 
mechanisms governing expression in cis and trans. In this study, we interrogate intraspecific 
gene expression variation among seven wild C. elegans strains, with varying degrees of 
genomic divergence from the reference strain N2, leveraging this system’s unique advantages  15 
to comprehensively evaluate gene expression evolution. By capturing allele-specific and 
between-strain changes in expression, we characterize the regulatory architecture and 
inheritance mode of gene expression variation within C. elegans and assess their relationship to 
nucleotide diversity, genome evolutionary history, gene essentiality, and other biological factors. 
We conclude that stabilizing selection is a dominant influence in maintaining expression 20 
phenotypes within the species, and the discovery that genes with higher overall expression tend 
to exhibit fewer expression differences supports this conclusion, as do widespread instances of 
cis differences compensated in trans. Moreover, analyses of human expression data replicate 
our finding that higher expression genes have less variable expression. We also observe 
evidence for directional selection driving expression divergence, and that expression divergence 25 
accelerates with increasing genomic divergence. To provide community access to the data from 
this first analysis of allele-specific expression in C. elegans, we introduce an interactive web 
application, where users can submit gene-specific queries to view expression, regulatory 
pattern, inheritance mode, and other information: https://wildworm.biosci.gatech.edu/ase/. 
 30 

Introduction 
Gene expression is an essential step in the translation of genotype to phenotype, and its 
variation reflects historical evolutionary forces. For example, regulatory variants that mediate 
gene expression may represent adaptive change, neutral differences, or relaxed selection 
(reviewed in, e.g., Landry et al. 2007b; Fay and Wittkopp 2008; Romero et al. 2012; Signor and 35 
Nuzhdin 2018, 2019; Price et al. 2022a; Hill et al. 2020). They may also act to stabilize 
expression by buffering changes to expression induced by other variants. Such compensatory 
interactions have been extensively observed across biological scales, including as the trans 
attenuation of RNA expression differences arising in cis (Landry et al. 2005; Signor and Nuzhdin 
2019), as buffering between transcript levels and protein levels (Schrimpf et al. 2009; Khan et 40 
al. 2013; Brion et al. 2020; Buccitelli and Selbach 2020), and as opposite-direction influences on 
the expression of organismal phenotypes (Bernstein et al. 2019; Noble et al. 2017). 
Nevertheless, the degree to which gene expression variation is neutral versus adaptive or 
deleterious and the role of compensation in gene expression regulation remain areas of active 
debate, in part due to methodological constraints (Price et al. 2022a; Fraser 2022; Price et al. 45 
2022b; Fraser 2019; Buccitelli and Selbach 2020). 
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An incisive way to study gene expression regulation and evolution is to examine variation by 
simultaneously capturing expression among wild strains and their F1 hybrid offspring (Wittkopp 
et al. 2004; Landry et al. 2007a). Within the F1, expression differences observed between the 50 
parental alleles may be assigned to mutations in cis, on the same molecule, because the 
diffusible trans environment is shared within cells (Yan et al. 2002; Cowles et al. 2002). Thus, 
comparisons of expression between alleles, between parents, and between F1s and parents 
enable inference of the regulatory architecture and inheritance mode of gene expression 
(Wittkopp et al. 2004; McManus et al. 2010). This approach has been employed in a number of 55 
systems to interrogate various phenomena, including domestication, adaptation, and speciation 
in wild and crop plants (Bao et al. 2019; He et al. 2016; He et al. 2012; Lemmon et al. 2014; 
Rhone et al. 2017; Steige et al. 2017; Steige et al. 2015; Verta et al. 2016; Zhang and Borevitz 
2009); adaptation and the evolution of embryogenesis in Drosophila (Cartwright and Lott 2020; 
Juneja et al. 2016; Coolon et al. 2014; McManus et al. 2010); speciation and cis regulatory 60 
variation in mice (Crowley et al. 2015; Mack et al. 2016); human-specific regulatory evolution in 
chimpanzee-human hybrid cell lines (Gokhman et al. 2021; Starr et al. 2023; Wang et al. 2024); 
RNA and protein regulation in yeast (Artieri and Fraser 2014; Muzzey et al. 2014; Wang et al. 
2015); and speciation and evolution of reproductive mode in nematodes (Sanchez-Ramirez et 
al. 2021; Xie et al. 2022).  65 
 
C. elegans has long been a leading developmental and genetic model organism (Sternberg et 
al. 2024), and the recent establishment of a global collection of wild strains has pushed C. 
elegans to the forefront of quantitative genetics and evolutionary genomics research (Frézal and 
Félix 2015; Andersen and Rockman 2022; Crombie et al. 2024; Crombie et al. 2019; Cook et al. 70 
2017). Yet, while the genetic basis of expression variation has been interrogated via well-
powered eQTL studies (Rockman et al. 2010; Vinuela et al. 2010; Francesconi and Lehner 
2014; Kamkina et al. 2016; Evans and Andersen 2020; Zhang et al. 2022), the regulatory 
architecture and inheritance mode of gene expression variation in C. elegans has not been 
assessed by allele-specific analyses. However, the biology of C. elegans offers rich opportunity 75 
for investigating gene expression variation and its evolution, beyond its well-established 
resources. C. elegans strains persist as predominantly selfing lineages in a diversity of 
ecological habitats across the globe; these lineages exhibit a broad spectrum of genetic 
divergence (Barriere and Felix 2005b; Barriere and Felix 2005a; Crombie et al. 2024; Crombie 
et al. 2019; Lee et al. 2021). The genomes harbor extensive linkage disequilibrium, including 80 
long haplotypes arising from historical adaptive sweeps, and inter-strain crosses often exhibit 
fitness deficits, suggesting disruption of the selfed, co-adapted genotype combinations (Barriere 
and Felix 2005a; Dolgin et al. 2007; Rockman and Kruglyak 2009; Andersen et al. 2012). Thus, 
C. elegans is optimally suited to facilitate investigations into whether and how genetic 
divergence translates to differences in expression, into the scope and correlates of 85 
compensatory interactions in the evolution of gene expression regulation, and into the broader 
evolutionary pressures shaping these trends.  
 
The role of compensatory interactions in the evolution of gene expression is incompletely 
understood, but a growing body of literature suggests that such dynamics are influential and 90 
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pervasive. Gene expression changes often fail to result in protein-level changes (Schrimpf et al. 
2009; Khan et al. 2013; Brion et al. 2020; Buccitelli and Selbach 2020) and regulatory changes 
to expression arising in cis often fail to produce overall differences in gene expression, implying 
that they are buffered by regulation in trans (Landry et al. 2005; Signor and Nuzhdin 2018, 
2019). Studies have reported compensatory buffering of cis-regulated differences in hybrids of 95 
different species, subspecies, and occasionally strains of fruit flies, sticklebacks, cotton, mice, 
yeast, spruce, and more (Landry et al. 2005; Goncalves et al. 2012; Bao et al. 2019; Coolon et 
al. 2014; McManus et al. 2010; Metzger et al. 2017; Verta and Jones 2019; Verta et al. 2016; 
Signor and Nuzhdin 2018, 2019). However, methodological constraints and analytical artifacts 
limit confidence in findings at both the protein and RNA level (Buccitelli and Selbach 2020; 100 
Fraser 2019). In C. elegans, fitness-related traits exhibit compensatory-like architecture, with 
epistasis and tightly-linked opposite-direction effects shaping fertility and fecundity (Noble et al. 
2017; Bernstein et al. 2019). The extent to which C. elegans gene expression has evolved 
compensatory dynamics remains an open question.  
 105 
Here, we examine intraspecific gene expression variation in C. elegans to better characterize 
the evolutionary dynamics shaping this phenomenon. We define the regulatory architecture and 
inheritance mode of expression variation and assess how they are influenced by nucleotide 
diversity, genome evolutionary history, gene essentiality and biological role, and expression 
level. Our findings reveal new relationships and provide evidence for both adaptive and 110 
stabilizing forces in determining gene expression variation and its evolution.  
 
Results 
An experiment to reveal extent and mode of gene expression variation in C. elegans  
To interrogate intraspecific gene expression variation in C. elegans, we captured expression 115 
differences among the reference strain N2 and seven wild strains. Specifically, we estimated 
pairwise differential expression between each wild strain and N2, as well as allele-specific 
expression in the F1 offspring of each strain crossed to N2 (Figure 1A, Table S1). Allele-
specific expression analyses are uniquely sensitive to identify cis regulatory changes (Cowles et 
al. 2002; Yan et al. 2002; Wittkopp et al. 2004), and analyzed in conjunction with differential 120 
expression of parental strains, they can reveal the regulatory pattern and inheritance mode of 
gene expression across the genome (Figure 1B). The seven wild strains were chosen to 
represent a range of nucleotide divergence from N2 and spanned the species tree: EG4348; 
DL238; CB4856 (‘Hawaii’); ECA722; QX1211; and ECA701 and XZ1516, two extremely 
diverged strains (Figure 1C). 125 
 
To maximize power and limit confounding effects, we conducted the experiment in one batch, 
generating young adult selfed offspring of the parental strains simultaneously with their cross 
offspring with N2 (Figure 1A, Methods). Replicate RNA-seq samples clustered neatly in gene 
expression space, indicating true differences between strains and generations (principal 130 
components analysis, Figure S1). To analyze these gene expression data for signatures of 
differential expression (DE) and allele-specific expression (ASE), we developed a framework 
that 1) minimized reference bias, wherein sequence reads from the reference genome have 
higher rates of alignment than reads from the non-reference genome (Degner et al. 2009), 2)  
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 135 
 
Figure 1. Interrogating gene expression variation in wild C. elegans. 
A. Experimental regime. B. The three expression level comparisons from this experiment. Left, allele-
specific expression (ASE) is estimated from per-allele, allele-specific read quantification within each set of 
F1s. Center, comparison of total RNA amounts between parental strains yields differential expression 140 
(DE) estimates. Comparisons of ASE and DE enable determination of regulatory pattern of expression 
differences. Right, comparison of total RNA amounts between the F1 and its parents enables inference of 
inheritance mode of each gene’s expression. C. Genetic similarity of the strains in this study. Color 
denotes the first strain in this study in which the given haplotype was observed; the same color shows 
that haplotype as identical-by-descent with at least one other strain in the entire population (data from 145 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 18, 2024. ; https://doi.org/10.1101/2024.10.15.618466doi: bioRxiv preprint 

https://doi.org/10.1101/2024.10.15.618466
http://creativecommons.org/licenses/by-nd/4.0/


 5 

(Lee et al. 2021)). White means no significant identity by descent with any other strain in the entire 
population. D. Proportion reference alleles in each ASE-informative gene’s RNA seq. (See Table S2 for all 
gene ns.) E. The relationship between number of ASE-informative genes (see main text) to the genome 
divergence between the wild parental strain and reference genome N2.  
 150 
equivalently handled strains and genomes with varying levels of difference from each other 
without introducing bias, and 3) generated comparable estimates of among-parent and F1-
parent differences (DE) and ASE, enabling direct comparison (Methods). Although the wild 
strains exhibit a substantial span in their genetic differentiation from the reference, we observed 
no reference bias; the proportion of reference alleles called per gene was tightly centered 155 
around 50% for all strains (Figure 1D). To estimate DE among strains, we included in the 
analysis 18,647 genes with nominal expression. To estimate ASE within the F1 hybrids, 
transcripts must carry genomic variant(s) that discriminate between the parental genotypes and 
be reasonably highly expressed, so not all expressed genes permit ASE analysis. The genes 
informative for ASE comprised 22-53% of all nominally expressed genes; the proportion scales 160 
with genetic difference from N2 (Figure 1E). In this manuscript, we refer to these as “ASE-
informative” genes.  
 
Here, we present the insights derived from these gene expression data for all C. elegans genes, 
including those in hypervariable (previously called hyperdivergent) haplotypes (Lee et al. 2021), 165 
as global trends persisted across different gene inclusion criteria (Discussion).  
 
Regulatory pattern and inheritance mode of gene expression 
To evaluate inheritance mode in gene expression, we compared, for each gene, the differential 
expression between the F1 offspring and each of its parents (McManus et al. 2010): genes for 170 
which the F1 exhibits the same expression as parent 1 but different expression from parent 2 
were inherited in a parent 1-dominant manner; genes with expression intermediate to the 
parents were inherited additively; and genes with expression significantly higher or lower in the 
F1 than in both parents exhibited transgressive (overdominant or underdominant) inheritance 
(Figure 2A; Figure S2; Methods). Similarly, for ASE-informative genes, we compared the allele-175 
specific difference in expression, which occurs in cis, to the expression difference between the 
parents to determine the regulatory pattern of each gene (McManus et al. 2010): genes with 
similar magnitude ASE and DE were inferred to be regulated in cis; genes with DE but no ASE 
were inferred to be regulated in trans; and, in cases of potential buffering, genes with ASE but 
no DE were inferred to carry cis differences that are compensated in trans (Figure 2B; Figure 180 
S3; Methods). This regulatory pattern classification method operates identically across strains, 
enabling inter-strain comparisons, and avoids a common pitfall of this type of analysis wherein 
the influences of cis and trans effects on a gene’s expression are artifactually negatively 
correlated (Note S1; Fraser 2019; Zhang and Emerson 2019). 
 185 
Each major category of inheritance mode and regulatory pattern were observed in each strain 
(Figure 2C; Figure S4A). More genes were dominant than additive (though this may in part 
reflect the statistical difficulty of making an additive call), and in every strain some genes were 
transgressive, i.e., expressed higher or lower in the F1 than in either parent (Figure 2C; Figure 
S4A). Most genes had conserved expression: of the ASE-informative genes, 9-15% exhibited  190 
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Figure 2. Inheritance mode and regulatory pattern of gene expression 
A-D, see Table S2 for all gene ns. A. Inheritance mode is inferred at each gene by comparing DE 
between the F1 and their N2 parent (x axis) and DE between the F1 and their wild strain parent (y axis) 195 
(McManus et al. 2010). One point per analyzed gene, excluding 20 exceeding the axis limits. Figure S2 
shows this classification for all strains. B. Regulatory pattern is inferred at each gene by comparing DE 
between the two parental strains (x axis) with DE between the two alleles in the F1 (i.e., ASE) (y axis) 
(McManus et al. 2010). One point per ASE informative gene, excluding 10 exceeding the axis limits. 
Figure S3 shows this classification for all strains. C. Global proportion of ASE-informative genes exhibiting 200 
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each combination of inheritance mode and regulatory pattern (excluding genes without expression 
differences, the conserved and no change genes, for scale). Figure S4 shows proportion of genes in each 
inheritance mode and regulatory pattern category separately. D. Proportion of genes with any expression 
change compared with strains’ genetic difference from reference strain N2 (left: inheritance mode 
classifications; r = 0.82, p = 0.03; right: regulatory pattern classifications; r = 0.89, p = 0.01). Figure S5 205 
shows proportion of each individual inheritance mode and regulatory pattern category vs. genomic 
divergence from reference strain N2. E. Gene-set enrichment analysis results (Holdorf et al. 2020) for 
transgressively inherited genes (underdominant) vs. all analyzed genes. X axis ticks mark all gene 
categories analyzed in this comparison; only significant enrichments are labeled (Bonferroni-adjusted p < 
0.05).  Figure S6 shows among-strain overlap in genes called ASE informative and ASE. Figure S7 shows 210 
gene set enrichment analysis results for all analyzed gene sets. F. Example collagen genes with 
underdominant expression in multiple strains. N2 parental gene expression is the same in each sub-plot 
(the same three N2 samples serve as the N2 parent for all strains). n = 45. Web app 
wildworm.biosci.gatech.edu/ase shows these plots and further information for any queried gene.  
 215 
expression differences in cis, trans, or a combination. (Figure 2C; Figure S4B). Similar 
numbers of genes were regulated primarily in cis and primarily in trans, and at many genes the 
cis regulatory difference was compensated by a change in trans (Figure 2C; Figure S4B).  
 
C. elegans strains persist predominantly as selfing lineages, resulting in the accumulation of 220 
genetic changes and a spectrum of genomic differentiation between more closely or more 
distantly related strains (Barriere and Felix 2005b; Barriere and Felix 2005a). We leveraged this 
aspect of C. elegans biology to assess the relationship between genomic differentiation and 
gene expression variation. Specifically, we asked whether the proportion of genes with 
expression differences changes with genomic differentiation. Overall, yes: for each strain, the 225 
proportion of genes with differences in expression scaled positively with genetic distance from 
N2, regardless of regulatory or inheritance pattern; the proportion of cis genes, trans genes, 
compensatory/cis-trans opposing genes, additive, and N2 and wild-strain dominant genes all 
increased as genetic distance from N2 increased (Figure 2D, Figure S5). When examining all 
genes with expression differences (Figure 2D), we estimate that increasing the number of 230 
genetic variants by 100 thousand increases the proportion of variable expression genes by one 
percentage point (1%) (linear regression per 1000 variants: b = 1.05 x 10-4, p = 0.005 for 
inheritance mode; b = 1.2 x 10-4, p = 0.004 for regulatory pattern). This trend is not explained by 
the increased number of ASE-informative genes in more highly differentiated strains, as the 
estimates are specific to the ASE-informative genes for each strain. Thus, these results reflect 235 
an amplification of gene expression differences with genomic differentiation.  
 
We wondered whether the same genes differed in expression across multiple strain pairs and 
whether any such differing genes were likewise regulated similarly. All crosses shared N2 as a 
parent, so expression differences arising from derived changes in N2 are likely to be shared; 240 
alternatively, expression differences arising from changes specific to individual wild strains may 
not exhibit consistent patterns across all seven wild strains. Overall, genes with allele-specific 
cis regulatory differences tended not to be shared across strains, with only 13 genes detected 
as ASE in all seven F1s (Figure S6). In fact, of genes that were ASE-informative in all strains, a 
preponderance (51.9%, 275 of 530) of those exhibiting ASE did so in only a single strain. 245 
(Though we note that this analysis may overestimate strain differentiation as it requires the 
same individual genes to overcome specific statistical thresholds in specific ways in multiple 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 18, 2024. ; https://doi.org/10.1101/2024.10.15.618466doi: bioRxiv preprint 

https://doi.org/10.1101/2024.10.15.618466
http://creativecommons.org/licenses/by-nd/4.0/


 8 

strains.) One example of shared expression pattern occurred at fog-2 (WBGene00001482), 
which exhibited allele-specific expression in each cross. We deleted this spermatogenesis gene 
from the N2 parent to facilitate obligate selfing; its regulatory class was compensatory, which 250 
makes sense given the parental N2 sequenced had wildtype fog-2.  
 
To determine whether functionally related groups of genes tended to be regulated and inherited 
the same way within and across strains, we performed gene set enrichment analyses (Figure 
S7) (Holdorf et al. 2020). Notably, genes with transgressive expression, i.e., with higher or lower 255 
expression in the F1 than in either parent, were heavily and consistently enriched for collagen 
genes relative to all other categories (Figure 2E). Yet, the pattern of expression varied by gene 
and by strain. Some collagen genes, such as col-81 (WBGene00000657), were lower 
expressed in the F1 than in either parent in all strains, with some wild strains having equivalent 
expression to N2 and others having intermediate expression between the F1 and N2 (Figure 260 
2F). Other genes, such as dpy-5 (WBGene00001067), had equivalent expression between the 
parental strains but much lower expression in the F1 (Figure 2F). Strain XZ1516 often showed 
unique patterns, suggesting its collagen network may have strain-specific regulation. At least 
some of the expression variation in collagen genes likely originates with the N2 genotype, which 
participated in each cross; N2 carries a derived mutation that modifies the phenotypic 265 
penetrance of cuticle mutations commonly used as markers in lab work (Noble et al. 2020). 
However, the differences by gene and expression patterns across strains suggest that collagen 
genes may be especially evolutionarily labile. Collagen genes interact in complex networks to 
form the worm cuticle (Higgins and Hirsh 1977; Cox et al. 1980; Kramer 1994; McMahon et al. 
2003), and pathway architecture, including redundancies, may facilitate functional diversification 270 
across strains. 
 
Location, nucleotide diversity, and essentiality define genes with expression differences  
To investigate patterns of gene expression variation, we interrogated gene sets with different 
regulatory patterns for association with genomic location, nucleotide diversity metrics, and gene 275 
essentiality.  
 
The C. elegans genome harbors extensive evidence of the unique recombination history of the 
species, with more recombination in the chromosome arms and less in chromosome centers 
(Rockman and Kruglyak 2009): gene density tends to be higher in the centers while nucleotide 280 
diversity is higher on chromosome arms (Rockman and Kruglyak 2009; Andersen et al. 2012). 
Genes informative for ASE analyses must have coding sequence polymorphisms; 
commensurately, they are enriched in chromosome arms and exhibit higher nucleotide diversity 
across all strains (Figure 3A-B; Figure S8-9). However, even accounting for this background 
enrichment, genes with expression differences (in cis or trans) were more likely to reside on 285 
chromosome arms than on centers (Figure 3A, Figure S8) and in regions with more genetic 
variation between the two parents (Figure S9). All seven strains exhibited this pattern, 
suggesting that it is common to the population; furthermore, genes with expression differences 
had elevated nucleotide diversity across the species, not just across the two parents (Figure 
3C, Figure S10). These results reinforce earlier observations that genes variably expressed 290 
across wild C. elegans strains are more likely to reside in arms, as mapped as eQTLs by  
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Figure 3. Location, nucleotide diversity, haplotype, and essentiality differentiate expression 
diverged genes. Results shown here are for all strains combined (Methods). See Table S2 for all gene 295 
ns. A. Proportion of genes in each region of the chromosome (tip, arm, and center, denoted by alternating 
white and gray background) that have the described attribute. Figure S8 shows similar data for all strains 
individually. B-C. Distribution of nucleotide diversity (per site) from the whole population of 300+ wild C. 
elegans strains across genes categorized by their expression patterns. Each point represents one gene 
and points fill a violin plot; boxes denote median +/- interquartile range. C. (right), Tukey’s HSD on 300 
annotated ANOVA cis > conserved (p = 9.8 x 10-9); enhancing > conserved (p = 9.8 x 10-9); trans > 
conserved (p = 9.8 x 10-9); cis-trans opposing > conserved (p = 9.8 x 10-9); cis > trans (p = 9.8 x 10-9), cis 
> cis-trans opposing (p = 9.8 x 10-9), enhancing > trans (p = 4.5 x 10-5), enhancing > cis-trans opposing (p 
= 0.0003) (all p values Bonferroni corrected; other comparisons non-significant). Figure S9 shows 
pairwise, rather than population-wide, nucleotide diversity for all strains individually. Figure S10 shows 305 
same population-wide nucleotide diversity data for all strains individually. D. Proportion of genes with 
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each expression characteristic of interest that are located in a region in parent N2 with evidence of 
historical positive selection (selective sweep in N2). Figure S11 shows this breakdown for each strain 
individually. E. As in D, but each bar shows the proportion of genes in that category that are predicted to 
be essential in C. elegans. Figure S12 shows this breakdown for each strain individually. 310 
 
linkage (Rockman et al. 2010) or by association (Zhang et al. 2022). Further, we clarify that this 
bias in chromosomal location goes beyond variant density enrichment, as variably expressed  
genes show an excess of polymorphism beyond that which makes them informative for analysis 
of ASE. This trend parallels recent findings in humans that genes with higher variation in 315 
expression harbor more genetic polymorphism (Wolf et al. 2023). Moreover, our analysis 
showed that genes with cis regulatory differences compensated in trans tended to be less 
enriched in chromosome arms than non-compensated genes (Figure 3A) and had lower 
nucleotide diversity, but they were more enriched in chromosome arms and had higher 
nucleotide diversity than genes with conserved expression (Figure 3C). Put another way, genes 320 
that had their cis regulatory differences compensated (expression stabilized) tended to be in 
less nucleotide diverse regions of the genomes and exhibited less nucleotide diversity. Taken 
together, these results might be interpreted as globally relaxed selection at genes with 
expression differences. 
 325 
The C. elegans genome exhibits evidence of selective sweeps, in which haplotypes comprising 
large portions of individual chromosomes have risen in frequency across the population 
(Andersen et al. 2012; Lee et al. 2021). A footprint of strong historical selection, these sweeps 
dominate the genomes of non-Hawaiian isolates and may underlie adaptation associated with 
the colonization of new habitats (Zhang et al. 2021). We hypothesized that swept haplotypes 330 
are also associated with changes to gene expression. In our study, the non-Hawaiian strains N2 
and EG4348 carry swept haplotypes over 65% and 37% of their genomes, respectively; the 
other strains were sampled from the Hawaiian part of the species tree, which harbors no swept 
haplotypes (Lee et al. 2021). Therefore, all our F1s share swept haplotypes inherited from N2, 
and only F1s derived from EG4348 carry additional swept haplotypes. Across strains, ASE-335 
informative genes were less likely to reside in locations associated with N2 swept haplotypes 
(Figure 3D, Figure S11). However, genes with cis regulatory differences (ASE) and genes with 
expression differences (DE) were both more likely to reside in locations associated with sweeps 
in N2 (Figure 3D, Figure S11); we suggest that these expression differences may have helped 
drive shifts in allele frequency and facilitated adaptation as C. elegans lineages colonized new 340 
habitats (Zhang et al. 2021). Genes with cis regulatory differences compensated in trans tended 
to be less likely to be associated with swept haplotypes, but these trends were not always 
statistically significant across strains and gene sets (Figure 3D; Figure S11).  
 
Next, we asked whether gene essentiality was associated with differences in expression. 345 
Essential genes, defined as those with an RNAi or allele phenotype leading to lethality or 
sterility (Sternberg et al. 2024), were significantly depleted among genes with cis-regulatory 
differences and expression differences in cis or in trans, even as informative genes were 
enriched for essentiality (Figure 3E; Figure S12). These results reinforce earlier findings that 
essential genes are depleted among eQTL genes (Rockman et al. 2010; Zhang et al. 2022) and 350 
parallel observations from humans that genes with less expression variability tend to be less 
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tolerant of loss of heterozygosity (Wolf et al. 2023). Moreover, genes with cis regulatory 
changes whose expression differences were compensated in trans tended not to be depleted 
for essential genes compared to genes whose cis regulatory differences caused differential 
expression (Figure 3E; Figure S12). Essential genes are therefore likelier to have cis 355 
regulatory differences buffered in trans, stabilizing their expression. These results suggest that 
genes with expression differences are less evolutionarily constrained, consistent with lower 
essentiality. 
 
Genes with expression differences are less highly expressed 360 
We next examined whether genes with expression differences tended to have higher or lower 
expression than those without. As higher expression enables the detection of ASE and DE, an 
association of increased baseline expression with calls of differential expression might arise as 
an artifact of the method; genes informative for ASE were higher expressed than those not ASE-
informative (Figure 4A, Figure S13). However, if higher expressed genes are less likely to have 365 
expression differences, it might suggest that higher expressed genes are under stronger 
stabilizing selection, and evolutionarily constrained, relative to low-expression genes. 
 
In fact, genes with expression differences exhibited lower average expression: of ASE-
informative genes, those with cis regulatory differences (ASE) and genes with differential 370 
expression caused either by cis or trans regulatory differentiation were on average less 
expressed than genes with conserved regulatory and expression patterns (Figure 4B, Figure 
S13). Moreover, genes with cis regulatory changes compensated in trans had higher expression 
than expression-changed (uncompensated) genes, but lower expression than conserved 
expression genes (Figure 4B, Figure S13). This higher-than-conserved expression suggests 375 
that missed DE calls or spurious ASE calls are unlikely to underpin calls of compensation. 
Moreover, this result supports the inference that ‘important’ genes may have stabilized 
expression by buffering cis regulatory changes in trans. Taken together, these results strengthen 
the conclusion that genes with expression differences may be under relaxed selection and that 
higher-expression genes may be under stabilizing selection. To our knowledge, these 380 
observations describe a novel relationship between gene expression levels and gene 
expression variation. Because this pattern was clear in each strain, it is likely a general feature 
of C. elegans gene expression rather than an idiosyncrasy of a single strain (Figure S13). 
 
To evaluate whether this relationship between gene expression level and variability extended 385 
beyond C. elegans, we examined expression data from humans. Specifically, we re-analyzed 
data from a meta-analysis of human gene expression studies, comprising 57 studies with a 
median of 251 individuals included per study, which computed a mean expression and mean 
variability rank for each gene (Wolf et al. 2023). In their study, the authors observed patterns 
consistent with our observations of gene essentiality and evolutionary constraint: genes with 390 
high expression variance exhibited more genetic polymorphism and were less likely to be 
enriched for important cell processes than genes with low variance; moreover, more highly 
expressed genes also seemed more evolutionarily constrained, with higher expression genes 
being less tolerant of loss of heterozygosity (Wolf et al. 2023). In their determination of gene 
expression and variability ranks, the authors corrected for the statistical relationship between  395 
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Figure 4. The relationship between expression level and expression variation.  
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A-B Results shown are for all strains combined (Methods). Y axis denotes gene expression amount 
(length and library size normalized and variance stabilized, averaged across the two parental strains). 400 
Each point represents one gene and points inhabit a violin plot; boxes denote median +/- interquartile 
range. See Table S2 for all gene ns. In B. (right), ANOVA Tukey’s HSD conserved > cis (p = 9.6 x 10-9); 
conserved > trans (p = 9.6 x 10-9); conserved > cis-trans opposing (p = 9.6 x 10-9); cis > enhancing (p = 
9.6 x 10-9), cis-trans opposing > cis (p = 9.6 x 10-9), trans > enhancing (p = 9.6 x 10-9), enhancing > cis-
trans opposing (p = 0.014); (p = 9.6 x 10-9), cis-trans opposing > trans (p = 9.6 x 10-9) , (all p values 405 
Bonferroni corrected; other comparisons non-significant). Figure S13 shows expression vs. these various 
gene categories for all strains individually. C. Human gene expression variability vs gene expression level 
(Spearman’s rho = -0.075 and p  = 8 x 10-18). Data: rank of mean gene expression and gene’s expression 
variance from many studies from Wolf et al. 2023 . Each point is a gene; genes are grouped into 10 gene 
expression variability deciles (1: lowest 10% variability, 10: highest 10% variability) for ease of 410 
visualization; points fill a violin plot and boxes denote median +/- interquartile range. Tukey’s HSD 
between lowest and highest variability deciles p = 2 x 10-11 (Bonferroni-corrected p-value; more among-
decile comparisons are significant, e.g., highest variability decile has significantly lower expression than 6 
independent lower variability deciles) (n = 13,139 genes, 1313-1314 per decile). D. Example C. elegans 
genes with top 10% expression levels that nonetheless exhibit DE caused by cis regulatory divergence. 415 
Top: total gene expression for each sample. N2 samples are the same across plots/crosses. Bottom: 
within-sample allelic proportion from allelic counts. n = 3 per strain per generation (45 total). Web app 
wildworm.biosci.gatech.edu/ase shows these plots and further information for any queried gene. 
 
mean and variance and accounted for among-study differences, ultimately generating a robust 420 
across-study rank of mean expression and expression variance for each gene that 
encompassed variation driven by genotype and other sources. We used these estimates to 
determine if more variable genes were less highly expressed. Indeed, more variably expressed 
human genes tended to be less expressed; the relationship is small in quantitative magnitude 
but statistically significant and visible by eye (Figure 4C). We conclude that the pattern of 425 
expression differences tending to occur at genes with lower mean expression generalizes 
beyond C. elegans.  
 
The observation that differentially expressed genes have lower expression on average provides 
a platform for identifying potentially important outliers: genes with very high expression that 430 
nonetheless have expression differences might be targets of adaptive evolution or directed 
differentiation across strains. Of genes in the top 10% of gene expression, nine had cis 
regulated differential expression (those with ASE and DE at similar magnitudes) in one or more 
strains (Table S3). Anecdotally, these genes reflect dominant aspects of C. elegans biology: 
first, collagen genes col-8 (WBGene00000597) and col-142 (WBGene00000715, Figure 4D) 435 
are part of the extensive, epistatic network of genes coding for the collagen cuticle matrix. 
Second, vitellogenin genes vit-3 (WBGene00006927, Figure 4D) and vit-5 (WBGene00006929) 
code for extremely highly expressed yolk proteins that dominate young adult C. elegans’ mRNA 
and protein generation (Perez and Lehner 2019) and whose gene products are even 
hypothesized to be used for offspring provisioning as a sort of ‘milk’ (Kern et al. 2021). Third, 440 
rsd-6 (WBGene00004684, Figure 4D) and deps-1 (WBGene00022034) are involved in the P 
granule and piRNA processing (Grishok 2013; Sternberg et al. 2024). Such small RNA 
pathways predominate worm biology and exhibit remarkable diversity in function and gene 
makeup across strains (Youngman and Claycomb 2014; Felix 2008; Chou et al. 2024). Although 
these identified genes exhibit similar high expression level and similar expression regulation, 445 
they are likely shaped by different evolutionary histories. For example, rsd-6 is expressed at a 
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lower level in all strains than in N2, suggesting an N2-specific mutation or function at this gene, 
perhaps consistent with N2 performing RNAi and other small RNA functions remarkably well 
compared to many wild strains (Felix 2008). On the other hand, vit-3 exhibits different 
expression differences across strains, suggesting potentially different genetic or evolutionary 450 
histories at play.  
 
Discussion 
Main findings  
Our study of intraspecific variation in gene expression includes the first allele-specific analysis in 455 
C. elegans and offers insight into the evolutionary forces shaping gene expression in this 
system. Our results suggest that stabilizing selection is a dominant influence in maintaining 
expression phenotypes within the species, in part because genes with higher overall expression 
tend to exhibit fewer expression differences and because differences in cis are often 
compensated in trans. We conclude that differences in gene expression are more likely to occur 460 
at neutrally evolving genes, while a subset of gene expression divergence may be adaptive. The 
enrichment of expression-diverged genes in chromosome arms and their association with higher 
nucleotide diversity implies reduced evolutionary constraint, as does their depletion among 
essential genes, their lower overall expression, and their tendency towards strain-specificity. 
These results extend earlier findings demonstrating the influence of genomic location on gene 465 
expression (Rockman et al. 2010). However, some expression differences may represent 
adaptive change: genes with expression differences were more likely to reside in locations at 
which the N2 haplotype experienced a selective sweep, which may include genes that facilitated 
adaptation during colonization of new habitats (Zhang et al. 2021). Relatedly, it is possible that 
some sequence-diverse genes with strain-specific expression variation reflect not relaxed 470 
selection but instead adaptive diversification, for example in environmental sensitivity or immune 
response, and that their lower expression occurs in the lab environment in the absence of 
pathogens or other inducible factors. Genes with expression divergence that are exceptions to 
the trend of lower expression and lower constraint may also represent adaptive gene expression 
variation with a history of directional selection. 475 
 
We observed that many expression differences regulated in cis were buffered in trans, ultimately 
producing similar overall levels of expression between strains. We hypothesize that these 
expression levels are likely maintained under stabilizing selection, as genes exhibiting 
compensatory regulation have lower levels of nucleotide diversity population-wide, suggestive of 480 
constraint; are more likely to be essential; and have higher expression on average than genes 
whose cis regulatory changes are not compensated. The high incidence of expression 
compensation in C. elegans may be due in part to extensive linkage across the genome arising 
from its predominantly selfing mode of reproduction (Barriere and Felix 2005b; Barriere and 
Felix 2005a; Rockman and Kruglyak 2009): fitness in C. elegans has been shown to be 485 
mediated by opposite-effect, closely linked regions of the genome (Bernstein et al. 2019), and 
compensatory cis-trans elements are closely linked in self-fertilizing spruce trees (Verta et al. 
2016). 
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Given these inferences, we also tested for differences in selection history among genes with 490 
expression differences versus those without, using nucleotide sequence-based metrics 
(Methods). These analyses were inconclusive, with some metrics showing signals in some gene 
sets but not others. The inconsistency of the results may reflect the difficulty of implementing 
these metrics in a predominantly selfing organism such as C. elegans (Barriere and Felix 
2005a) and/or over genomes with extensive hypervariable haplotypes (Lee et al. 2021).  495 
 
Our discovery that genes with expression divergence tend to be expressed at lower levels than 
those without expression divergence, not just in C. elegans but also in humans (Figure 4), 
represents a potentially surprising new characteristic of heritable variation in gene expression. 
This relationship may have been overlooked previously given that most studies control for the 500 
positive correlation between mean and variance in RNA quantification, which may have 
discouraged investigation into the larger phenomenon. The observation invites a number of 
questions, including more complete characterization of the pattern and better resolution of why it 
occurs; whether it is a common feature of heritable expression variation across the tree of life; 
whether it characterizes inter-species as well as intra-species expression variation; whether the 505 
relationship extends to—or depends on—other forms of expression variation, including tissue- 
or cell-specific differences and non-heritable, inter-individual differences; and whether and how 
it translates to other molecular phenotypes, such as the expression of proteins.  
 
We found that as genomic differentiation between the wild strains and N2 increased, the 510 
proportion of genes with expression differences also increased, reflecting an amplification of 
expression divergence with genomic divergence (Figure 2D). As C. elegans persists as 
predominantly selfing lineages and experiences relatively low intraspecific gene flow, this 
pattern may reflect gene expression evolution representative of early speciation. Regulatory 
divergence has also been observed to scale with genetic divergence among marine-freshwater 515 
ecotypes in sticklebacks (Verta and Jones 2019), to plateau at high genetic divergence between 
yeast species (Metzger et al. 2017), and to not necessarily increase with divergence within and 
among Drosophila species, but accelerate in specific crosses (Coolon et al. 2014). Though 
analyses of this relationship can shed light on the evolution of the genotype-phenotype map and 
the interplay between genetic variation, gene expression, and speciation (Mack and Nachman 520 
2017; Orr 1995), it remains incompletely understood. The acceleration of gene expression 
divergence with genomic divergence within C. elegans may offer an access point for deeper 
investigation within a highly tractable genetic system.  
 
In our study, each wild strain was crossed to the common reference strain N2, so N2-specific 525 
differences such as laboratory-derived adaptations would likely show up as common differences 
across the strain set. We observed only a small number of genes with common differences 
across all wild strains; instead, many genes with expression differences were specific to a single 
wild strain (Figure S6). Genes in the worm cuticle network exhibited both shared and strain-
specific trends. For example, most wild strains exhibited transgressive expression at the same 530 
collagen genes (Figure 2E-F), suggesting N2-specific differentiation. This result may relate to 
the derived mutation in col-182 in N2, which increases the phenotypic penetrance of classical 
lab mutations affecting cuticle phenotype (such as rol-1) that are suppressed in the ancestral 
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background (Noble et al. 2020). However, strain XZ1516 and its F1s exhibited distinct collagen 
gene expression phenotypes, suggesting divergent evolution in collagen or cuticle pathways 535 
along the XZ1516 lineage. The collagen gene network is especially large and complex (Cox et 
al. 1980; Kramer 1994; McMahon et al. 2003), features that might facilitate lineage-specific 
changes arising from directional selection on function or from diversification under either 
stabilizing or relaxed selection. Anecdotally, in our hands XZ1516 was difficult to manipulate on 
the plate, which we hypothesize may be due to a sensitive cuticle. Moreover, another wild strain, 540 
XZ1514, was so fragile that we refrained from using it in this study, suggesting potential further 
genetic differentiation in collagen function across C. elegans. 
 
Comments about experimental system and design 
Controlling for confounding variation poses a particular challenge in gene expression studies. 545 
For example, wild strains mature at different rates (Gems and Riddle 2000; Stastna et al. 2015; 
Zhang et al. 2021; Hodgkin and Doniach 1997; Poullet et al. 2015; Harvey and Viney 2007). We 
observed differences in developmental rate among our experimental strains, including that 
parental strain QX1211, and to a lesser extent XZ1516, its F1 with N2, and the N2 parent, 
developed more slowly than other strains (Table S1). While most F1 offspring developed at a 550 
rate similar to one parent or intermediate between both parents, the F1 offspring of QX1211 and 
N2 reached young adulthood over an hour faster than either parent (Table S1). To reduce the 
influence of developmental variation on gene expression differences, we harvested worms at a 
consistent developmental stage rather than a consistent chronological age, nevertheless all 
within three hours of one another (Methods). Further, we estimated the transcriptional age of 555 
each sample using an N2 gene expression time course as a ‘ruler’ (Bulteau and Francesconi 
2022); all estimates fell within a five and a half hour time range (Table S1). These computational 
estimates differed across samples within strains despite the fact that such samples appeared 
identical and were harvested at the same time, suggesting further work is needed to understand 
discordance between experimental observations and computational predictions as well as inter-560 
individual timing variation. 
 
Our analysis of allele-specific expression avoided a common pitfall wherein cis and trans 
estimates are negatively auto-correlated, leading to inflated inferences of compensatory 
interactions (Fraser 2019; Zhang and Emerson 2019) (Note S1). Our observation of widespread 565 
compensation, evidenced by genes with ASE that were buffered in trans, is further bolstered by 
the fact that this class exhibits many differences from genes regulated solely in cis or in trans 
(Figure 3, Figure 4A,B). Nevertheless, we note the concern that this compensatory class could 
be comprised in part by genes from other categories, e.g., false positives for ASE that should 
have been called conserved and false negatives for DE that should have been called cis. 570 
However, as compensatory genes are expressed at higher levels than those with differential 
expression, such false calls seem unlikely, as both would be more probable at lower expression. 
We also note that while cis effects may be intuitively expected to be inherited additively (Lemos 
et al. 2008), we observed many genes as cis regulated and dominantly inherited (Figure 2C). 
This result may reflect the fact that the statistical threshold for additivity, which requires the 575 
intermediate F1 expression level to be distinct from both parents, is harder to achieve than that 
for dominance, which requires distinction from only one. This cis-dominant pattern was similarly 
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observed in a cross-species analysis between C. briggsae and C. nigoni, for which the authors 
offer potential biological explanations (Sanchez-Ramirez et al. 2021). Still, the multiple possible 
interpretations attributable to widescale patterns exemplify the uncertainty that remains in 580 
understanding and detecting gene expression variation even in well-controlled ASE studies. 
 
Our inferences in this study, including expression classifications and trends between differently 
regulated genes, were robust to the inclusion or exclusion of genes in hypervariable haplotypes 
(Lee et al. 2021). Hypervariable regions differ substantially from the N2 reference sequence, 585 
making alignment and variant calling from short read data unreliable; recent RNA-seq studies in 
C. elegans sensibly and conservatively excluded genes in these regions (Lee et al. 2021; Zhang 
et al. 2022). However, we recently conducted gene expression analyses that showed that 
genome-wide trends appear robust to including or excluding genes in hypervariable haplotypes 
(Bell et al. 2023). Therefore, we performed each of our genome-wide analyses both including all 590 
genes and excluding genes classified as hypervariable as well as genes with evidence of other 
possible analytical hurdles (Methods). The vast majority of trends detected when all genes were 
included were recapitulated when excluding hypervariable genes. We note, though, that results 
at individual genes are still likely to be influenced by hypervariability and genomic context, so 
these features should be considered when assessing small numbers of genes or conducting 595 
gene-specific queries. For example, our gene set enrichment analysis results (Figure 2E, 
Figure S7) were similar when including or excluding hypervariable genes, and whenever 
specific genes were used as exemplars of trends these genes were not hypervariable or 
otherwise concerning (e.g., Figure 2F, Figure 4D). 
 600 
In this study, we focused on global, large-scale patterns in gene level expression and did not 
quantify specific isoforms. However, recent evidence, and common sense, suggest that wild 
strains differ in expression of specific transcripts (Zhang et al. 2022). The extent to which non-
reference strains express novel isoforms and how F1 cross progeny mediate the expression of 
parent-specific isoforms remain unexplored questions. A particularly intriguing possibility is that 605 
transgressive isoforms could be expressed in F1 heterozygous backgrounds but not in their 
native background, akin to cis regulatory changes that are revealed in hybrids but compensated 
among the parents. 
 
Conclusion 610 
Our experimental approach had many advantages (Figure 1), among them our model system: 
the wealth of experimental data in C. elegans and its curation and accessibility via WormBase 
(Sternberg et al. 2024) makes this system especially amenable to analyses that add new 
molecular detail to existing experimental phenotypes. In turn, our in-depth interrogation of gene 
expression variation, including its regulation and inheritance, improves our understanding of C. 615 
elegans and the large-scale forces jointly influencing the evolution of gene expression in this 
system. To aid in future genetics, trait mapping, and other C. elegans research, we have made 
the data from this study accessible via an interactive web application, where users can query 
their favorite gene to view its expression, regulatory pattern, inheritance mode, and other 
information: https://wildworm.biosci.gatech.edu/ase/.  620 
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Methods 
Experimental methods 
In addition to the following descriptions, we provide a detailed protocol describing the 
experimental methods at protocols.io (dx.doi.org/10.17504/protocols.io.5jyl8p15rg2w/v1, Bell et 625 
al. 2024). 
 
Worm strains 
Table S1 provides the complete list of strains used in this study. In selecting parental strains to 
cross with the N2 laboratory reference strain to generate F1s in which to investigate allele-630 
specific expression (ASE), we aimed to represent the range of nucleotide diversity present in 
the species as well as capture outlier strains. All chosen strains differed at more than 127,000 
nucleotides from N2 (>1.27 variants per kilobase average) (per CaeNDR, Crombie et al. 2024) 
to ensure that the F1s harbored many genes with differences from the reference in coding 
regions. To ensure that we generated F1s with one copy of the genome from each parent, rather 635 
than N2 self-progeny, we used the N2 strain feminized via a deletion of fog-2 as the N2 ‘female’ 
parent (referred to in the text as N2fog-2, strain CB4108): fog-2 deficient hermaphrodites are 
incapable of producing sperm and therefore function as female (Hodgkin 2002; Schedl and 
Kimble 1988). 
 640 
Worm husbandry 
We thawed fresh aliquots of each wild strain and grew them without starving for at least three 
generations, but for no more than one month, prior to starting the experiment. We followed 
standard protocol (Stiernagle 2006) for worm culture, using 1.25% agarose plates to prevent 
wild strains’ burrowing. Prior to the start of the experiment, all strains were maintained at 18°C 645 
to allow slower growth of large quantities of worms and to avoid QX1211’s mortal germline 
phenotype, which is more penetrant at higher temperatures (Frezal et al. 2018). 
 
Generating parallel F1 crosses and self-progeny 
As described in detail in our protocol (Bell et al. 2024), we first bleach synchronized all parental 650 
strains to ensure that the parents that would be mated were of similar developmental stage, as 
parental age can impact offspring development and transcriptional program (Perez et al. 2017; 
Webster et al. 2023). To ensure that we would have many L4 parent worms to move to mating 
plates, we grew several plates of all bleached strains at 18°C, 19°C, and 20°C, and additionally 
grew the N2fog-2 parent (from whom we needed the highest number of worms) at room 655 
temperature. 
 
After allowing these worms to grow for two days, we generated mating plates by placing 60-80 
N2fog-2 L4 pseudo-hermaphrodites onto each of five 6cm plates with small bacteria spots and 
added 40 L4 males of the appropriate strain to each plate. We concurrently moved 80 individual 660 
L4 hermaphrodites to each of three 6cm plates for each parental strain (N2 and seven wild 
strains) to simultaneously generate the parental strains used for sequencing from self-matings 
while the F1 crosses were generated from cross-matings. 
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After allowing mating for 48 hours, we collected and synchronized the offspring for the crosses 665 
and self-matings by collecting all parental worms and embryos from the bacterial lawn, treating 
with bleach, and allowing embryos to develop into L1 larvae and arrest over 30 hours in liquid 
buffer. After 30 hours, L1s were transferred directly to the bacterial lawn of 6cm plates at a 
density of ~400 L1s per plate. 
 670 
After allowing the worms to develop for ~36 hours, we removed males from the F1 plates as 
soon as they were detectable and screened the parental plates for any spontaneously 
generated males, which were also removed. Plates used for RNA sequencing (at least 3 per 
strain) had all males removed as L4s or young adults. 
 675 
Worm harvesting  
Worms were harvested as day 1 reproductively mature young adults, specifically when most 
worms were gravid with embryos and laid embryos were visible on the plates. Because 
developmental timing differs across wild strains (Gems and Riddle 2000; Stastna et al. 2015; 
Zhang et al. 2021; Hodgkin and Doniach 1997; Poullet et al. 2015; Harvey and Viney 2007), we 680 
chose to match developmental stage rather than hours of development; even so, all worms 
reached reproductive maturity and were harvested within 3 hours of each other. Worms were 
rinsed off plates, washed with M9 buffer, and resuspended in TRIzol (Invitrogen #15596026) in 3 
tubes (replicates) per strain before immediate flash freezing in liquid nitrogen and storage at -
80°C until RNA extraction. 685 
 
RNA library preparation and sequencing 
RNA was extracted from worms stored in TRIzol (Invitrogen #15596026) following standard 
procedure (following He 2011, also described in our protocol, Bell et al. 2024) using a TRIzol 
(Invitrogen #15596026) chloroform (Fisher #C298-500) extraction and RNeasy columns (Qiagen 690 
#74104). This extraction was performed in 3 batches of 15 over two consecutive days, with one 
replicate from each strain included in each batch. RNA was stored at -80°C for ~1 week prior to 
library generation. Library preparation and sequencing for all samples was performed by the 
Molecular Evolution Core Laboratory at the Georgia Institute of Technology. Specifically, 
following RNA quality checks (all RINs 9.8 or greater), mRNA was enriched from 1μg RNA with 695 
the NEBNext Poly(A) mRNA magnetic isolation module (NEB #E7490) and sequencing libraries 
generated using the NEBNext Ultra II directional RNA library preparation kit (NEB #E7760) with 
8 cycles of PCR. Libraries were quality checked and fluorometrically quantified prior to pooling 
and sequencing. Libraries were sequenced on an Illumina NovaSeq X using a 300 cycle 10B 
flowcell. A median of 65 million 150x150bp sequencing read pairs were generated per library 700 
(range 25-93 million, Table S1). 
 
Analytical methods 
The code written for this study is available at https://github.com/paabylab/wormase. Some 
scripts are explicitly noted below while less central scripts are not described here but are 705 
included in the github repository in case useful. 
 
Expression quantification 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 18, 2024. ; https://doi.org/10.1101/2024.10.15.618466doi: bioRxiv preprint 

https://doi.org/10.1101/2024.10.15.618466
http://creativecommons.org/licenses/by-nd/4.0/


 20 

Before expression quantification, we generated strain-specific transcriptomes as described 
previously (Bell et al. 2023) by inserting known SNV and INDEL polymorphisms (from the 710 
CeNDR (Cook et al. 2017; Crombie et al. 2024) 2021021 release hard-filter VCF) into the C. 
elegans reference genome (ws276 from WormBase, Sternberg et al. 2024 ) and extracting 
transcripts. We created pseudo-diploid strain transcriptomes by combining these strain-specific 
transcriptomes for the two parent strains. Tools used in generating these transcriptomes 
included g2gtools (v0.1.31) (https://github.com/churchill-lab/g2gtools), gffread (v0.12.7) (Pertea 715 
and Pertea 2020), seqkit (v0.16.1) (Shen et al. 2016), and bioawk (v1.0) 
(https://github.com/lh3/bioawk). For comparison purposes, we also created pseudo-diploid and 
strain-specific transcriptomes using script create_personalized_transcriptome.py from the 
Ornaments code suite (initial version) (Adduri and Kim 2024) tool, with the ws286 genome build 
and 20220216 CeNDR VCF. 720 
 
For quantification used in allele-specific expression and differential expression analyses, we 
estimated allele-specific and total RNA counts using EMASE (emase-zero v0.3.1) (Raghupathy 
et al. 2018) with input quantifications generated by running Salmon (v1.4) (Patro et al. 2017) 
against the pseudo-diploid transcriptomes. Specifically, we generated a salmon index for the 725 
diploid transcriptome using salmon index with options -k 31 --keepDuplicates (no decoy, all 
other parameters default). To prepare RNA-seq data for quantification, we trimmed Illumina 
adapters using trimmomatic (v0.39) (Bolger et al. 2014) with parameters ILLUMINACLIP: 
TruSeq3-PE-2.fa:1:30:12:2:True. Salmon quantification with equivalence class outputs saved 
was performed against the pseudo-diploid transcript’s index with salmon quant -l ISR --dumpeq 730 
--fldMean <sample-specific mean> --fldSD <sample-specific SD> --rangeFactorizationBins 4 --
seqBias --gcBias. Salmon outputs were converted to .bin inputs for emase-zero using alntools 
salmon2ec (v0.1.1) (https://churchill-lab.github.io/alntools/). Finally, emase-zero was run on this 
input using parameters --model 4 -t 0.0001 -i 999. For comparison, we separately generated 
quantification estimates using kallisto (v0.50.1) (Bray et al. 2016) against strain-specific 735 
transcriptomes generated by Ornaments, and estimated allele-specific RNA counts using 
ornaments quant (initial version), which implements WASP (van de Geijn et al. 2015)-style 
allele-specific quantification on top of kallisto quantification and includes INDELs in its analysis. 
Workflows to perform these steps are available in our code repository internal to the following 
directories: data_generation_scripts/getdiploidtranscriptomes; data_generation_scripts/emase; 740 
data_generation_scripts/ornaments 
 
We pulled our data into DESeq2 (v1.42.0) (Love et al. 2014) to obtain final RNA quantifications 
for downstream modeling. For differential expression analyses, we used the “total” column of 
the “gene.counts” output from emase-zero. For allele-specific analyses, we used the allelic 745 
counts columns of the “gene.counts” output from emase-zero. Both counts were converted to 
DESeq2 format via the DESeqDataSetFromMatrix function. For kallisto quantifications, 
transcript TPMs were combined to gene-level, normalized quantifications for DESeq2 using 
tximport (v1.30.0) (Soneson et al. 2015). In all cases, genes with at least 10 total reads when all 
samples’ read counts were combined were retained for downstream analysis. For obtaining 750 
general best expression quantification estimates (rather than for differential expression 
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modeling), we used DESeq2’s variance stabilizing transformation (vst function) to get log-scale, 
variance normalized, length and library size normalized gene expression estimates. 
 
Age estimation 755 
We estimated each sample’s age in hours against a developmental timing ‘ruler’ from the N2 
strain via RAPToR (v1.2.0) (Bulteau and Francesconi 2022) using DESeq2’s vst corrected gene 
counts from total emase-zero outputs. The age reference used (provided with RAPToR) was 
Cel_YA_2. The script used to perform this analysis is available in our code repository: 
data_classification_scripts/RAPToR.R 760 
 
Differential expression and allele-specific expression calling  
Each sample was assigned to its generation-strain group (e.g., CB4856 F1). Total gene counts 
from emase-zero “total” gene.counts output were binomially negatively modeled by DESeq2 as 

𝑙𝑜𝑔!$𝑞"#& = 𝛽$"𝑥# + 𝛽!"𝑦# 765 
Where, for gene i, sample j, q is proportional to RNA concentration/counts (Love et al. 2014), bs 
give the effects for gene i for RNA extraction replicate (x) and each generation-strain pair (y). 
The Wald test was used for significance testing. Results were pulled out for each pairwise 
comparison of interest using DESeq2’s contrasts: each wild strain parent vs N2, each F1 vs N2 
parent, and each F1 vs wild strain parent. All log2 fold changes were adjusted using ashr (v2.2-770 
63) (Stephens 2016). For differential expression to be called, both a fold change of greater than 
1.5 after ashr adjustment (for significance testing and calling) and a genome-wide adjusted p 
value less than 0.05 were required. 
 
For genes to be considered in allele-specific expression analyses, we required them to have 5 775 
gene and allele-specific alignments. The total counts of alignments per gene and those that 
were gene and allele-specific were derived by analyzing of salmon’s equivalence class output 
file, which assigns equivalence classes of kmers to transcripts from which they derive and gives 
the counts of reads aligning to each equivalence class. We investigated several thresholds of 
gene- and allele-specific alignments for considering a gene ASE-informative; we found that our 780 
RNA sequencing was deep enough that once genes in a given F1 genotype had more than 
three allele- and gene-specific alignments in each sample from that genotype, they usually had 
many allele- and gene-specific alignments. Therefore, we required genes to have a slightly 
conservative five allele- and gene-specific alignments to be considered informative for ASE 
analysis.  785 
 
To model allele-specific expression in the F1s, each allele’s count was represented in its own 
column in the model matrix. Within each strain, each sample was assigned its sample blocking 
factor such that sample was controlled for in the modeling. We used DESeq2’s negative 
binomial modeling to model allele counts: 790 

𝑙𝑜𝑔!$𝑞"#& = 𝛽$"𝑥# + 𝛽!"𝑥#𝑦# +	𝛽%"𝑧# 
Where, for gene i, allele (rather than sample) j, q is proportional to allelic RNA 
concentration/counts (Love et al. 2014), b1 gives the effect of RNA extraction replicate (x), b2 
gives the effect of the interaction between RNA extraction replicate and specific sample (xy), 
and b3 gives the effect of the allele/genotype (z). Here, library size correction was not used for 795 
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modeling because all comparisons were being done within-sample, where library size was 
identical, and counts were of alleles rather than total. Library size was excluded by setting all 
DESeq2 size factors to 1 prior to differential expression testing. Results were extracted for each 
allelic pairwise comparison of interest (wild strain allele vs. N2 allele) and were used in 
downstream analysis for ASE-informative genes. ASE-informative genes were considered to 800 
have ASE if their ashr-adjusted fold change was greater in magnitude than 1.5 (equivalent to 
having 60% of alleles come from one haplotype) and their genome-wide-adjusted p value was 
less than 0.05 (the same thresholds required for DE calls; fold change threshold used in both 
significance testing and calling). Both log2 fold changes and the proportion of alleles deriving 
from the reference and alternate genomes were used for downstream analytical interpretation; 805 
alternate allele proportion was calculated from the ashr-adjusted log2 fold change (LFC) as 

2&'(

(1 + 2&'()
 

The scripts used for these analyses are available in our code repository: equivalence class 
processing for ASE-informative decisions in data_generation_scripts/ salmonalleleeqclasses.py; 
ASE and DE modeling in data_classification_scripts/ 810 
ase_de_annotategenes_deseq2_fromemaseout.R 
 
Inheritance mode classifications 
Inheritance mode categories were called from differential expression testing results (from global 
RNA counts) (Figure 2a, Figure S2); categories and definitions followed McManus et al. (2010)  815 
and others, with the specific thresholds tuned for our specific statistical testing framework as 
follows. All p values used were genome-wide adjusted and FCs/LFCs (fold changes/log2 fold 
changes) used were ashr adjusted. Genes were called no_change if there was no DE between 
the parents, between the F1 and the N2 parent, or between the F1 and the other parent (all p > 
0.05 or |FC| < 1.5). Genes were called overdominant if the F1 had higher expression than both 820 
parents (FC > 1.5 and p < 0.05). Genes were called underdominant if the F1 had lower 
expression than both parents (FC < -1.5 and p < 0.05). Genes were called N2_dominant if the 
parents were differentially expressed and the F1 was potentially differentially expressed from 
the wild parent in the same direction as N2 was (N2 vs wild strain |FC| > 1.5 and p < 0.05, F1 vs 
wild strain p < 0.05 and FC in the same direction as N2’s), or if the parents were potentially 825 
differentially expressed and the F1 was differentially expressed in the same direction from the 
wild parent as N2 was (N2 vs wild strain p < 0.05 and FC in the same direction as F1’s; F1 vs 
wild strain |FC| > 1.5 and p < 0.05). Genes were called alt_dominant the same way as 
N2_dominant but requiring the F1 to be differentially expressed from the N2 parent in the same 
way as its wild parent. Genes were called additive if the parent strains were differentially 830 
expressed (p < 0.05 and |FC| > 1.5) and the F1 had nominally called differential expression with 
expression amount falling between the two parents (p < 0.05, FC > 0 if parental FC > 0 and FC 
< 0 if parental FC < 0). Genes whose DE results did not meet any of the above requirements 
were called ambiguous, for example when parental DE was not called but the F1 had DE called 
from one parent (these genes might be either additively inherited or dominantly inherited, but 835 
the statistical evidence was not strong enough for making the call one way or another). The 
inheritance mode classification script is available in our code repository: 
data_classification_scripts/ f1_parental_inhmode_withinstrain.R 
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Regulatory pattern and related classifications 840 
Regulatory pattern categories were called from comparisons of allele-specific expression (N2 
vs. wild strain allele) calls and differential expression (N2 vs. wild strain total RNA counts) calls 
(Figure 2b, Figure S3); categories and definitions followed McManus et al. (2010) and others, 
with the specific thresholds tuned for our specific statistical testing framework as follows. All p 
values were genome-wide adjusted and FCs/LFCs (fold change/log2 fold changes) were ashr 845 
adjusted and categorizations were only considered if genes were ASE-informative. Genes were 
called conserved if they had neither ASE nor DE (both allelic and strain-wise p > 0.05 and |FC| < 
1.5). Genes were called cis (i.e., cis-only or cis-dominant regulatory divergence) if ASE and DE 
were both present and in the same direction and if their 99.9% confidence intervals on effect 
size overlapped (allelic p < 0.05 and |FC| > 1.5, strain-wise p < 0.05 without FC threshold, 850 
log2FC(DE) / log2FC(ASE) > 0). Genes were called trans (i.e., trans-only or trans-dominant 
regulatory divergence) if they did not have ASE but did have DE (allelic p > 0.05, strain-wise p < 
0.05 and |FC| > 1.5). Genes were called enhancing (i.e. cis-trans enhancing or cis+trans) if they 
had both ASE and DE in the same direction and DE was of greater magnitude than ASE with 
non-overlapping 99.9% confidence intervals of the ASE and DE estimates (ASE p < 0.05 and 855 
|FC| > 1.5 and DE p < 1, or ASE p < 0.05 and DE p < 0.05 and |FC| > 1.5; and log2FC(DE) / 
log2FC(ASE) > 1). Genes were called compensating (i.e. cis and trans regulatory changes in 
opposite directions, with the cis effect larger than the trans effect) if they had ASE and DE in the 
same direction with larger ASE than DE and non-overlapping 99.9% confidence intervals on the 
ASE and DE estimates (0 > log2FC(DE)/log2FC(ASE) > 1, allelic p < 0.05 and |FC| > 1.5 and 860 
strain-wise p < 0.05 or allelic p < 0.05 and strain-wise p < 0.05 and |FC| > 1.5). Genes were 
called compensatory (i.e., cis and trans regulatory changes in opposite directions, with trans 
changes fully offsetting the cis changes) if there was ASE but not DE (allelic p < 0.05 and |FC| > 
1.5, strain-wise p > 0.05). Genes were called overcompensating (i.e., cis and trans regulatory 
changes in opposite directions, with the trans change more than offsetting the cis effect) if they 865 
had ASE and DE in different directions with non-overlapping 99.9% confidence intervals on the 
ASE and DE estimates (log2FC(DE)/log2FC(ASE) < 0; allelic p < 0.05 and |FC| > 1.5 and strain-
wise p < 0.05 or allelic p < 0.05 and strain-wise p < 0.05 and |FC| > 1.5). Genes were called 
ambiguous if they did not meet the above criteria, specifically when ASE and DE were called but 
with overlapping estimates’ confidence intervals and ASE and DE were in opposite directions. 870 
The regulatory pattern classification script is available in our code repository: 
data_analysis_scripts/ase_de_cistransclassifications.R 
 
We simplified these regulatory patterns for ease of understanding and visualization in a couple 
of ways. First, genes were classified as cis-trans opposing anytime they had opposite direction 875 
cis and trans effects, i.e., when their regulatory pattern was compensating, compensatory, or 
over-compensating. Second, we used the regulatory patterns to investigate compensation in a 
more targeted way, classifying genes as compensated if their simplified regulatory pattern was 
cis-trans opposing and as not compensated if their regulatory pattern was cis or enhancing. 
Genes without cis regulatory changes therefore are neither compensated or not compensated 880 
and were not included in compensation-specific analyses. 
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Gene filtering  
We performed all analyses including all nominally expressed genes, excluding genes 
overlapping hypervariable haplotypes or with aberrantly low or high DNA sequence coverage in 885 
the focal strain, and excluding all genes called hypervariable in any of 328 strains analyzed by 
CeNDR (Lee et al. 2021). Focal strain gene haplotype hypervariability was called if the gene 
region overlapped any hyperdivergent haplotype in the focal strain in the hyperdivergent 
haplotype BED file from the CeNDR 20210121 release (Lee et al. 2021). Genes were flagged 
as having aberrantly low or high DNA sequence coverage if they had <0.3 or >2.5 times the 890 
median gene’s coverage in that strain, with coverage calculated across all exonic bases from 
CeNDR DNA sequence BAMs (20210121 release), as described previously (Bell et al. 2023). 
The list of genes hypervariable in any strain population wide was obtained from Lee et al (Lee et 
al. 2021). 
 895 
Gene set enrichment analyses 
We used WormCat (Holdorf et al. 2020) to perform gene set enrichment analyses by writing a 
script extension to the WormCat R package (v2.0.1) that allowed us to provide a custom 
background gene set for enrichment tests (the original tool and package only allowed use of a 
couple built in gene sets as background). We performed the following tests with genes from 900 
each strain separately (formatted here as test gene set vs background gene set, Figure S7): DE 
genes vs all analyzed genes, ASE genes vs ASE-informative genes, compensatory genes vs 
ASE-informative genes, compensatory genes vs ASE genes, transgressive (overdominant + 
underdominant) genes vs all analyzed genes, overdominant genes vs all analyzed genes, 
underdominant genes vs all analyzed genes, DE genes that are ASE-informative vs ASE-905 
informative genes, ASE-informative genes vs all analyzed genes, N2 dominant genes vs all 
analyzed genes, wild dominant genes vs all analyzed genes, cis genes that were not called 
additive inheritance mode vs ASE-informative genes, and cis genes that were not called additive 
inheritance mode vs ASE genes. The WormCat extension and analysis scripts are available in 
our code repository: data_analysis_scripts/wormcat_givebackgroundset.R and 910 
data_analysis_scripts/combinewormcatout_aseetc.R. 
 
Meta-strain results: combined comparisons across strains 
We performed all analyses within each strain/strain pair, but we also combined strains’ results 
into one ‘meta-strain’ to be able to display and report one set of results (rather than seven) when 915 
results across strains were largely consistent (as in Figures 3-4). In this meta-strain, genes 
were considered ASE-informative if they were ASE-informative in all seven strains and not ASE-
informative if they were not informative for ASE in any strain; genes had to be informative in all 
strains or not informative in any strain to be compared in informative-vs-not analyses. Then, to 
compare ASE vs. not, DE vs. not, and regulatory pattern, genes informative in all strains were 920 
included for each strain: each gene is present on each plot seven times, in the category of its 
classification for each strain. For example, one gene might be called ASE in three strains and 
not ASE in four strains and would be represented by three points in the ASE group and four 
points in the non-ASE group. In some cases, other characteristics of the gene (such as 
essentiality, see below) was the same across strains and therefore represented identically 925 
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seven times while in others (such as expression level, see below) both the ASE characterization 
and the other characteristic are different in each strain. 
 
Genome, population genetic, and gene essentiality metrics 
Genes were assigned to chromosome region bins (centers, arms, tips) based on which region 930 
from Rockman and Kruglyak (2009) the gene’s midpoint fell into. Nucleotide diversity statistics 
population-wide pairwise segregating sites p and among-parental-pair proportion segregating 
sites p were calculated from the 20210121 hard-filter CeNDR VCF from biallelic SNVs only 
using PopGenome (v2.7.5) (Pfeifer et al. 2014). Nucleotide diversity p and Tajima’s D were also 
obtained from Lee et al. (2021), with their per-kb p per site converted to per-gene p per site by 935 
taking the median (missing data excluded) of all 1kb windows overlapping the gene +/- 500 bp. 
Tajima’s D, Fay & Wu’s H, and FST in  non-Hawaiian and Hawaiian sub-populations were 
obtained from Ma et al. (2021). When we had multiple sources for the same statistic, we tested 
all of them, and found results were generally consistent across statistic source when they were 
internally consistent across strains and gene sets; we use p from Lee et al. (2021) in the figures 940 
in this study. Whether the gene fell in a haplotype with a selective sweep in N2 was inferred 
from the swept haplotype data from Lee et al. (2021). To assign genes as essential or not, we 
downloaded gene annotations including “RNAi Phenotype Observed” and “Allele Phenotype 
Observed” for all genes in the C. elegans genome from WormBase using SimpleMine 
(Sternberg et al. 2024). Genes with lethality or sterility phenotypes from RNAi or alleles were 945 
considered essential (specifically, we searched for “lethal” and “steril” in the “RNAi Phenotype 
Observed” and “Allele Phenotype Observed” columns). Relevant scripts used in these analyses 
are available in our code repository: 
data_generation_scripts/nucdivcendr_geneswindows_allandasestrains.R, 
data_analysis_scripts/chrlocenrichment_asederpim.R, 950 
data_analysis_scripts/aseetc_vs_general.R 
 
Expression level analyses 
For comparing gene categories to the expression level of each gene, we used the average 
normalized expression level from the six relevant parents in each cross. Specifically, kallisto 955 
quantification estimates to strain-specific transcriptomes were length and library size normalized 
followed by variance-stabilizing transformation (all via DESeq2), then averaged across the 
appropriate samples. For analyses of human gene expression variability vs human gene 
expression level, we used the S4 dataset from Wolf et al. (2023), which comprises ranks of 
gene variation and expression level derived from principal components analysis of across-57-960 
study correlation in gene expression variation and (separately) mean gene expression. Prior to 
this cross-study variance and level ranking, the authors corrected for the mean-variance 
relationship of gene expression within each study. We performed correlation tests on the input 
data as well as assigning genes to deciles of gene expression variability (1313 or 1314 genes 
per decile, 13139 genes in dataset) and interrogating the deciles for differences in central 965 
tendency of gene expression level via ANOVA. Relevant scripts used in these analyses are 
available in our code repository: data_analysis_scripts/aseetc_vs_general.R, 
data_analysis_scripts/ wolf2023humexpanalyses.R 
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General software tools used for analyses and figures 970 
Tools used for specific analytical purposes are described in the relevant sections; here, we 
share tools used for general data processing and figure creation. 
 
Analysis scripts were largely written in R (v4.3.2) (R Core Team 2023), with a few written in 
Python (v3.7) (www.python.org). Workflow scripts were written and run using Nextflow 975 
(v22.10.7) (www.nextflow.io). Compute-intensive analyses and workflows were run via the 
Partnership for an Advanced Computing Environment (PACE), the high-performance computing 
environment at the Georgia Institute of Technology. 
 
General data wrangling R packages used included data.table (v1.14.99) (Dowle and Srinivasan 980 
2022), argparser (v0.7.1) (Shih 2021), and formattable (v0.2.1) (Ren and Russell 2021). R 
packages used for data display and figure creation included ggplot2 (v3.5.1) (Wickham 2016), 
cowplot (v1.1.2) (Wilke 2020), ggforce (v0.4.1) (Pedersen 2022), ggVennDiagram (v1.2.3) (Gao 
2021), and ggpmisc (v0.5.6) (Aphalo 2024). Color schemes were developed using 
RColorBrewer (v1.1-3) (Neuwirth 2022) and Paul Tol's color palettes 985 
(https://personal.sron.nl/∼pault/). 
 
Data availability 
Raw and processed gene expression data are available at GEO with accession number  
GSE272616. Per-gene per-strain data (used to perform all analyses and generate all figures), 990 
including regulatory pattern and inheritance mode classifications and underlying statistical 
differential expression results, are available via the Zenodo repository at 
https://doi.org/10.5281/zenodo.13270636. Per-gene information is interactively available via 
user query at web app https://wildworm.biosci.gatech.edu/ase/. 
 995 

Code availability 
Code used in this study’s data processing and analysis is available at 
https://github.com/paabylab/wormase. Methods fully describes all existing and new software 
and analyses used in this study.  
 1000 
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