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Abstract

Human DICER1 protein cleaves double-stranded RNA into small sizes, a crucial step in production of single-stranded RNAs
which are mediating factors of cytoplasmic RNA interference. Here, we clearly demonstrate that human DICER1 protein
localizes not only to the cytoplasm but also to the nucleoplasm. We also find that human DICER1 protein associates with the
NUP153 protein, one component of the nuclear pore complex. This association is detected predominantly in the cytoplasm
but is also clearly distinguishable at the nuclear periphery. Additional characterization of the NUP153-DICER1 association
suggests NUP153 plays a crucial role in the nuclear localization of the DICER1 protein.

Citation: Ando Y, Tomaru Y, Morinaga A, Burroughs AM, Kawaji H, et al. (2011) Nuclear Pore Complex Protein Mediated Nuclear Localization of Dicer Protein in
Human Cells. PLoS ONE 6(8): e23385. doi:10.1371/journal.pone.0023385

Editor: Fatah Kashanchi, George Mason University, United States of America

Received April 4, 2011; Accepted July 15, 2011; Published August 15, 2011

Copyright: � 2011 Ando et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by Research Grant for RIKEN Omics Science Center from Ministry of Education, Culture, Sports, Science and Technology
(MEXT) Japan to YH, Grant of the Innovative Cell Biology by Innovative Technology (Cell Innovation Program) from the MEXT to YH, and grant for the Genome
Network Project from MEXT to YH. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: rgscerg@gsc.riken.jp

. These authors contributed equally to this work.

Introduction

MicroRNA (miRNA) and small interfering RNA (siRNA) are

small RNA approximately ,23 nucleotides in length which

influence gene expression through post-transcriptional regulation

of complementary target mRNA in the cytoplasm [1]. miRNA has

also been linked to transcriptional silencing and heterochromatin

formation in the nucleus [2] though the mechanistic details of

these processes remain unclear, particularly in mammals.

DICER, widely conserved across eukaryotic lineages, is a

member of the RNase III family of endoribonucleases and targets

precursor miRNA (pre-miRNA) or long double-stranded RNA

(dsRNA) to produce miRNA or siRNA as part of its essential role

in various RNA interference (RNAi) pathways [3,4]. In mammals,

the fundamental role of DICER in the RNAi pathway is thought

to explain its linkage to a wide range of developmental process-

es including early development [5], centromeric silencing in

embryonic stem (ES) cells [6], oocyte maturation [7,8], stem cell

proliferation [9], and differentiation of many tissues [10,11,12].

The Schizosaccharomyces pombe DICER1 ortholog Dcr1 primarily

accumulates in the nucleus and is associated with the nuclear

pore complex at the nuclear periphery [13]. In the nucleus, Dcr1

associates with chromatin independent of the local level of

transcriptional activity [14]. In humans, however, the initial

discovery linking DICER1 to cytoplasmic RNAi and the

subsequent detailed characterization of its functional role in this

pathway [15,16,17] has led to the prevailing notion that the

DICER1 protein is present solely in the cytoplasm [18,19,20].

However, several recent lines of investigation have questioned this

assumption. First, evidence linking core RNAi components to

heterochromatin formation in mammals have been provided by

several reports [6,21]. Second, it has been shown that Dicer-

deficient mouse embryonic stem (ES) cells are defective in

the maintenance of centromeric heterochromatin structure and

centromeric silencing [6]. Third, the DICER1 protein is known to

regulate the transcription of an intergenic region of the human and

chicken b-globin gene cluster [22,23]. Finally, human DICER1

associates with ribosomal DNA chromatin on the mitotic

chromosomes [24]. Combination of the above observations

suggested to us that human DICER1 protein might also localize

and function in the nucleus.

Most nuclear proteins are transported into the nucleus through

the nuclear pore complex (NPC), a structure comprised of ,30

different proteins known as nucleoporins (NUPs) which functions

as a nuclear ‘‘gate’’ regulating the transport of macromolecules like

proteins and nucleic acids across the nuclear membrane [25,26],

via interaction with importin family proteins which often recognize

specific amino acid sequences in the imported protein known as

Nuclear Localization Signals (NLS). The importin-a family of

nucleocytoplasmic shuttling proteins bind with NLS-containing

proteins and transport the proteins into the nucleus with the

assistance of an importin-b family protein [27]. Some proteins are

shuttled independent of importin-a, relying exclusively on

importin-b. For example, the importin-b family protein, trans-

portin-1 (TNPO1) binds with proteins containing dsRNA-binding

domains (dsRBDs) and transports these proteins into the nucleus
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[28]. Interestingly, several NUPs of the NPC, long thought to

act as passive structural components, were recently reported to

have active transporter-like roles involving the binding of

nucleus-targeted proteins and the shuttling of these proteins

to the NPC for subsequent transport across the membrane

[29,30,31,32]. This NUP-based transport is representative of

several recent reports describing importin-independent nuclear

transport pathways [27,33,34,35]. Given that human DICER1

appears to lack a canonical NLS for nuclear localization, we

further reasoned that nuclear transport could be mediated by

such non-canonical transport mechanisms that are just begin-

ning to be understood.

We demonstrate here that human DICER1 protein is localiz-

ed mainly in the cytoplasm but is also clearly present in the

nucleoplasm. Further, we find that human DICER1 protein

associates with the NUP153 protein in the cytoplasm and also at

the nuclear periphery. On the basis of our results, we propose that

NUP153 protein assists the DICER1 protein during transport

and localization to the nucleus.

Results

Nuclear localization of human DICER1 protein
To investigate the possibility of nuclear localization of human

DICER1 protein, Western blot analysis was performed using the

cytoplasmic and nuclear extracts fractionated from 293T and

HeLa cells (Fig. 1A). Distinctive DICER1 bands were detected on

the lanes loaded not only in the cytoplasmic extract but also the

nuclear extract. To determine if DICER1 protein was actually

present inside the nucleus instead of being present at the surface of

the nuclear membrane, we treated isolated nuclei from 293T cells

with protease K and performed a Western blot analysis (Fig. 1B).

The signals of NUP214 and NUP153 proteins, located on the

periphery of nuclear pore complex, decreased after treatment

Figure 1. Nuclear localization of human DICER1 protein. (A) Western blot analysis for either cytoplasmic (Cyt) or nuclear (Nuc) extracts from
293T and HeLa cells using anti-DICER1, anti-LaminA and anti-GAPDH antibodies. LaminA and GAPDH were used as a nuclear or cytoplasmic marker
protein, respectively. Each lane was loaded 50 mg of cytoplasmic extract or 100 mg of nuclear extract, respectively. (B) Western blot analysis for
isolated nucleus with (+) or without (2) protease K treatment using anti-NUP214, anti-NUP153, anti-RNA polymerase II, anti-LaminA and anti-DICER1
antibodies. The signal intensity of each band was quantified using ImageJ software and intensity ratios were calculated from the ‘‘+’’ sample relative
to the ‘‘2’’ sample. ‘‘Input’’ means the sample on 5% of volume used for immunoprecipitation (IP). (C) Confocal immunofluorescence images of
DICER1 protein in HeLa cells without or with digitonin treatment. The signals of DICER1 protein (red) were detected using anti-DICER1 (12B5/4C6)
antibody. Nuclei were counterstained with DAPI (blue) and cytoplasmic regions were co-stained with phalloidin (green). Scale bar represents 10 mm.
doi:10.1371/journal.pone.0023385.g001

NUP153 Helps the Nuclear Transport of DICER1
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while the signals of the RNA polymerase II and LaminA proteins,

located in the nucleus, remained about the same. In this condition,

the signal of DICER1 protein did not change after protease K

treatment (Fig. 1B, input). These results were confirmed by

immunoprecipitation of the same samples using the anti-DICER1

antibody (Fig. 1B, DICER1 IP). These results showed that human

DICER1 protein localizes to the inside of the nucleus.

To further confirm the localization of DICER1 protein in the

human cells, HeLa cells were immunostained with anti-DICER1

antibody. The confocal image in Figure 1C (2digitonin treat-
ment) showed that most DICER1 protein signals, shown as red dots,

were located in the cytoplasm but several signals overlapped with

DAPI staining (blue colored). It was difficult to distinguish whether

these signals were in the nucleoplasm or on the surface of the nucleus.

Therefore, we permeabilized HeLa cells by digitonin treatment,

washed out the cytoplasm and followed by immunofluorescence

analysis using anti-DICER1 antibody (Fig. 1C, +digitonin treat-
ment). Treatment of digitonin in appropriate concentration to the

cells increases the permeability of the plasma membrane to cytoplasmic

proteins without causing permeabilization of the nuclear membrane.

The confocal image showed that DICER1 protein signals remained in

the nucleus after digitonin treatment (Fig. 1C, +digitonin
treatment). This supports localization of the DICER1 protein to

the nucleoplasm, consistent with the result in Figure 1B. Our data

demonstrated that human DICER1 protein is located in both the

cytoplasm and nucleoplasm.

Identification of nucleoporins as DICER1-associated
proteins

As human DICER1 protein lacks a canonical NLS for nuclear

localization via interaction of importin-a proteins, this suggested

nuclear DICER1 protein could be imported by a non-canonical

transport system. In order to identify novel nuclear transport

factors associated with human DICER1 protein, we co-immuno-

precipitated DICER1-associated proteins using anti-DICER1

antibody from the cytoplasmic extract of 293T cells transiently

expressing His-DICER1. TARBP2 (TRBP) [36,37] and PRKRA

(PACT) [38] proteins, known as DICER1-associated proteins, co-

immunoprecipitated with DICER1 protein (Fig. 2). The proteins

were compared with the co-immunoprecipitated proteins from

native 293T cells using the same antibody and the changed bands

were analyzed using mass spectrometry (MS) (Table S1). We

could detect four known DICER1-associated proteins (AGO2

[39], KHSRP [40], FMR1 [41] and TRBP [36,37]) (Table 1) as

well as several interesting RNA-binding proteins like PUM1 and

PUM2 [42,43], but failed to detect PACT and any importin family

proteins in the MS results (Table S1).

Five NPC proteins (NUP214, NUP153, NUP98, NUP88 and

SEC13), previously implicated in nucleocytoplasmic shuttling

[29,30,31,32], were detected as candidate interacting proteins

(Table 1). In particular, the NUP153 protein has been described

as a highly mobile nucleoporin [44,45,46,47] which interacts

directly with canonical nuclear import factors (Fig. 3). We focused

our efforts on characterizing the extent of NUP153 protein

interaction with the DICER1 protein due to the possibility of the

NUP153 protein assisting in nuclear transport and also because

the Mascot score [48] of the NUP153 protein was among the

highest observed in the MS analysis (Table 1).

DICER1 protein interacts with NUP153 protein in HeLa
cells

To validate the DICER1-NUP153 association, we performed co-

immunoprecipitation with anti-DICER1 antibody using whole cell

extract from 293T cells. Anti-DICER1 antibody immunoprecipitated

with endogenous NUP153 protein, but mouse normal IgG did not

(Fig. 4A). The co-immunoprecipitation experiments with anti-His

antibody were performed using whole cell extract from 293T cells

overexpressing His-DICER1 and NUP153 protein was detected in the

co-immunoprecipitates (data not shown).

To investigate the association between DICER1 and NUP153

proteins in the cell, an in situ Proximity Ligation Assay (PLA) was

performed. PLA is a method to detect protein-protein interactions with

highly selectivity and sensitivity [49]. Briefly, in PLA, if two modified

antibodies binding their respective epitopes are in sufficiently close

proximity (typically less than 40 nm), this interaction is detected

through emission of a red PLA signal. The PLA signals of DICER1-

NUP153 association were detected mainly in the cytoplasm and partly

at the nuclear periphery (Fig. 4B and Movie S1). In contrast, most

signals of NUP153-LaminA association were detected only around

the nuclear periphery, specifically localizing just inside of the nuclear

membrane (Fig. 4C and Movie S2). No signal was observed in the

absence of primary antibodies (Fig. 4D and Movie S3). This result

indicated that DICER1 proteins associate with mobile NUP153

proteins in the cytoplasm, a fraction of DICER1 proteins associated

with the NUP153 protein on the periphery of the NPC, and DICER1-

NUP153 association was not observed in the nucleoplasm. This

suggested that cytoplasmic association with NUP153 protein is

meaningful for DICER1 protein and the cytoplasmic NUP153 protein

may function in shuttling DICER1 protein to the NPC.

The NUP153 protein contributes to nuclear import of the
DICER1 protein

To better characterize the involvement of NUP153 protein

in nuclear transport of the DICER1 protein, a knockdown

experiment was performed using siRNA for the NUP153 gene.

Knockdown efficiency of the NUP153 gene was achieved at an

80% level, as determined by quantitative real-time PCR (qRT-

PCR) averaging over three independent experiments (data not

Figure 2. Co-immunoprecipitation (co-IP) of known DICER1-
associated proteins with DICER1 protein in HeLa cells. Co-IP
experiments using anti-DICER1 (12B5/4C6) antibody from HeLa total cell
extracts followed by Western blot analysis with indicated antibodies.
‘‘Input’’ means the sample on 5% of volume used for IP.
doi:10.1371/journal.pone.0023385.g002
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shown). This was confirmed by Western blot analysis of HeLa cell

extracts using an anti-NUP153 antibody (Fig. 5A). The intensity

ratio (Nuc/Cyt) of the DICER1 protein was significantly reduced

in NUP153 knockdown (KD) samples compared to negative

control (NC) samples transfected with NC siRNA (Fig. 5B).

Meanwhile, the signals of LaminA and GAPDH proteins were not

affected by NUP153 KD (Fig. 5A). Furthermore, immunofluo-

rescence analysis was performed using human fibroblasts trans-

fected with NC and NUP153 siRNAs (Fig. 5C). These results

suggest that the NUP153 protein at least partially contributes to

DICER1 protein import into the nucleus from the cytoplasm.

A recent report described nuclear import of the human ADAR1

protein via the importin-b-like TNPO1 protein which recognizes and

interacts with a dsRBD of ADAR1 [28]. As human DICER1 also

contains a dsRBD, we tested the potential role of TNPO1 in possibly

supplementing the proposed NUP153-mediated transport. Western

blot analysis was performed using co-immunoprecipitated samples

with the DICER1 protein. No signal was detected between TNPO1

and DICER1 protein (Fig. S1). Interestingly, we similarly tested

interaction with the importin-b1 (KPNB1) protein which is linked to

importin-a-mediated nuclear transport and detected a very weak

signal (Fig. S1). This data indicates that while DICER1 is not likely

involved in TNPO1-mediated transport, some importin-b family

members could contribute to nuclear transport, possibly in con-

junction with NUP153.

Discussion

We demonstrate that DICER1 protein localizes not only to the

cytoplasm but, like its counterparts in RNAi, the AGO-like

proteins, DICER1 is also found in the nucleoplasm of human cells.

This finding has the potential to expand the research fields

Figure 3. Co-IP of nuclear import receptor proteins with NUP153 protein. (A) Co-IP experiments with NUP153 protein from cytoplasmic
extracts of HeLa cells followed by Western blot analysis with indicated antibodies. ‘‘Input’’ means the sample on 5% of volume used for IP and ‘‘FT’’
indicates the samples on 5% of flow-through solution of IP samples. The asterisk shows the non-specific band using anti-GAPDH antibody. (B) Co-IP
with NUP153 protein from nuclear extracts of HeLa cells followed by Western blot analysis with indicated antibodies.
doi:10.1371/journal.pone.0023385.g003

Table 1. Proteins associated with human DICER1 protein.

Gene ID Gene name Synonym Mw
Number of
identified peptides Mascot Score

Known components of pre-miRNA processing complex

23405 DICER1 Endoribonuclease Dicer 217,490 88 2,223

27161 EIF2C2 (AGO2) Protein argonaute-2 97,146 4 18

8570 KHSRP (KSRP) Far upstream element-binding protein 2 73,101 2 43

2332 FMR1 Fragile X mental retardation 1 protein 71,131 3 41

6895 TARBP2 (TRBP) RISC-loading complex subunit TARBP2 39,015 5 85

Nuclear pore complex proteins

8021 NUP214 Nuclear pore complex protein Nup214 213,488 7 78

9972 NUP153 Nuclear pore complex protein Nup153 153,843 35 650

4928 NUP98 Nuclear pore complex protein Nup98-Nup96 187,673 3 29

4927 NUP88 Nuclear pore complex protein Nup88 83,489 1 31

6396 SEC13 Protein SEC13 homolog 35,518 2 54

doi:10.1371/journal.pone.0023385.t001
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relating to a small RNA in the nucleus, including its mechanism of

biogenesis. In murine cells, pre-mmu-mir-1982 RNA, which is a

mirtron with an 11 nt tail at the 59 end, is spliced out [50]. This

unusual pre-miRNA structure is not compatible with nuclear

export by Exportin-5 [51]. Despite this, miR-1982* miRNA

emerges without 11 nt-59 overhangs from the deep sequencing

data of murine cells [50,52]. We recently reported that human

DICER1 protein could process this pre-mmu-mir-1982 RNA to

mature double-stranded miRNA without 59 overhangs in vitro [53].

These observations suggest human DICER1 protein could fun-

ction in the processing of small RNAs in the nucleus.

Several lines of very recent investigation also hint at other

possible function roles for DICER1 in the nucleus. In fission yeast,

it was recently reported that Dcr1 protein physically associates

with chromatin and H3K9 methylation is not required for the

association [14]. Sinkkonen et al. showed human DICER1 protein

associates with ribosomal DNA loci via immunostaining of mitotic

chromosomes [24]. Intriguingly, chromatin immunoprecipitation

(ChIP)-seq data with anti-DICER1 (12B5/4C6) antibody suggests

the DICER1 protein associates with specific DNA regions and

most adjacent genes to the regions were transcribed (unpublished

observations, Ando Y, et al.). The combination of the above

observations together with the experimental data presented in this

manuscript could suggest that human DICER1 proteins, while

mainly localizing in the cytoplasm as an important component of

the RNAi pathway, are also imported actively into the nucleus

under the guidance of the NUP153 protein and ultimately

associate with active regions of chromatin. Future work will be

Figure 4. Association of NUP153 protein with DICER1 protein in HeLa cells. (A) Co-IP experiments from total cell extracts of HeLa cells
followed by Western blot analysis with indicated antibodies. Endogenous NUP153 proteins were immunoprecipitated using anti-DICER1 antibody but
not using mouse normal IgG (control). ‘‘Input’’ means the sample on 5% of volume used for IP. (B) In situ protein-protein associations between
DICER1 and NUP153 were detected by Proximity Ligation Assay (PLA). HeLa cells were stained with mouse monoclonal anti-DICER1 and rabbit
polyclonal anti-NUP153 antibodies and performed PLA. The association signals were detected by Duolink 100 Detection Kit 613 (red), and nuclei were
counterstained with DAPI (blue). Samples co-stained with phalloidin (green) allow visualization of cell borders. Each red dot represents the detection
of protein-protein association complex. White arrows indicate the signals at the nuclear periphery. Scale bar represents 10 mm. (C) PLA image shows
the protein-protein associations between NUP153 and LaminA inside of nuclear membrane. (D) A negative control experiment of PLA was performed
without addition of any primary antibodies.
doi:10.1371/journal.pone.0023385.g004
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required to more clearly elucidate functions of human DICER1

protein in the nucleus.

In total, we identified 70 novel DICER1-associated protein

candidates from cytoplasmic extract, shown in Table S1. In the list,

we identified five nucleoporins (NUP214, NUP153, NUP98, NUP88

and SEC13) (Table 1). All of these proteins have a demonstrated

ability in nucleocytoplasmic shuttling and function in the nucleocy-

toplasmic transport of macromolecules [29,30,31,32]. Our study

links the import of human DICER1 protein with the NUP153

protein. However, it is very likely that another factor also contributes

to nuclear import and we cannot rule out the possibility that a

decrease of NUP153 protein as a structural component of the NPC

may lead to a general decrease in nuclear transport.

We also identified 30 RNA-binding proteins, defined from Gene

Ontology (http://geneontology.org/) analysis, and some RISC-

associating proteins [54] associating with DICER1 in Table S1.

Recently, it was reported that two RNA-binding proteins PUM1

and PUM2, identified as DICER1-associated protein candidates

in this study, regulate miRNA-dependent gene silencing [42,43].

The binding of the PUM proteins to target mRNA induces a local

conformational change in the 39 UTR of target mRNA that

exposes a specific miRNA-binding site [42]. The DICER1 protein

may mediate this regulation via its associations with RNA-binding

proteins and RISC-associating proteins.

In summary, these findings have wide-ranging implications for

the functional role and interacting partners of human DICER1.

Figure 5. Effects of siRNA knockdown against NUP153. (A) Western blot analysis of negative control (NC) and NUP153 knockdown (KD)
samples with indicated antibodies. Each lane was loaded 40 mg of cytoplasmic or nuclear extract, respectively. (B) Intensity ratio (Nuc/Cyt) of DICER1
protein in NUP153 KD sample is normalized to the intensity ratio of NC sample. The signal intensity of each band was quantified using ImageJ
software. These plots show average values of the relative intensity ratio bracketed by s.e.m. error bars; calculated from three independent
experiments. (C) Confocal immunofluorescence images in human fibroblasts transfected with NC or NUP153 siRNAs. The signals of NUP153 and
DICER1 proteins were detected using rabbit polyclonal anti-NUP153 and mouse monoclonal anti-DICER1 antibodies, respectively. Nuclei were
counterstained with DAPI. In merged figure, red, green and blue colors represent the signals of NUP153, DICER1 proteins and DAPI, respectively. Scale
bar represents 10 mm.
doi:10.1371/journal.pone.0023385.g005
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We also provide the first possible mode of molecular import via

interaction with the nuclear shuttling factor, NUP153.

Materials and Methods

Antibodies
Mouse monoclonal anti-hDICER1 (12B5/4C6) was raised in

house by using full-length human DICER1 protein as antigens.

Rabbit polyclonal anti-hDICER1 (H212, SantaCruz, sc-30226),

rabbit polyclonal anti-hTRBP (Abcam, ab42018), rabbit poly-

clonal anti-hNUP153 (Abcam, ab84872), mouse monoclonal anti-

hNUP153 (QE5, Abcam, ab24700), rabbit polyclonal anti-

hNUP214 (Abcam, ab70497), mouse monoclonal anti-hLaminA

(133A2, Abcam, ab8980), rabbit polyclonal anti-hLaminA (Ab-

cam, ab2559), goat polyclonal anti-hGAPDH (I-19, SantaCruz,

sc-48166), mouse monoclonal anti-RNA polymerase II CTD

repeat YSPTSPS (4H8, Abcam, ab5408), mouse monoclonal anti-

hKPNB1 (31H4, Sigma, I2534) and mouse monoclonal anti-

hTNPO1 (D45, Sigma, T0825) were used as primary antibody for

Western blotting and immunofluorescence. Mouse Normal IgG

(Millipore, 12-371) was used as a control for immunoprecipitation.

Alexa flour 488 Donkey anti-rabbit IgG(H+L) (Molecular probe,

A11055), Alexa flour 488 Donkey anti-mouse IgG(H+L) (Molec-

ular probe, A21202), Alexa flour 594 Donkey anti-rabbit

IgG(H+L) (Molecular probe A21207) and Alexa flour 594 Donkey

anti-rabbit IgG(H+L) (Molecular probe A21203) were used as

secondary antibody for immunofluorescence. Phalloidin Alexa

flour 488 (Molecular probe A12379) and DAPI was used for

cytoplasmic and nuclear staining, respectively.

Cell culture, cytoplasmic and nuclear protein extraction
The 293T and HeLa cells were cultured in DMEM (Invitrogen,

11885) and 10% FBS in a 5% CO2 at 37uC. The human normal

skin fibroblast cells (NB1RGB), which were established in RIKEN

BioResource Center from male 3days old neonate, were cul-

tured in MEM alpha (Wako, 135-15175) supplemented with 10%

FBS and Penicillin/Streptomycin (Invitrogen) in a 5% CO2 at

37uC. All cell lines were purchased from RIKEN BioResource

Center.

Cultured cells were collected, washed twice with cold PBS and

incubated in SolutionA (50 mM Tris-HCl pH 7.5, 0.8 M Sucrose,

150 mM Potassium chloride, 5 mM Magnesium chloride, 6 mM

b-mercaptoethanol, 0.5% NP-40 and protease inhibitor) for

10 min on ice [55]. Cytoplasmic extracts were cleared by

centrifugation at 16,0006g for 15 min at 4uC. Pellets were

washed twice with SolutionA (isolated nucleus) and suspended

with RIPA buffer by vortexing and sonication. Nuclear extracts

were cleared by centrifugation at 16,0006g for 15 min at 4uC.

The extracts were quantified using a Protein Assay Kit (Biorad).

Isolated nuclei were treated with 2 ng/ml protease K (Invitrogen)

in PBS for 5 min at 37uC, washed with PBS and suspended with

RIPA buffer by vortexing and sonication.

Western blot analysis
The protein samples were separated by 4–12% NuPAGE Bis-

Tris Gel (Invitrogen) and transferred to the PVDF membrane

(Millipore). Detection was achieved with primary antibodies

described above and peroxidase-conjugated anti-rabbit (GE

Healthcare), anti-mouse (GE Healthcare) and anti-goat (Biorad)

antibodies were used as secondary antibodies. The signal intensity

of each band was quantified with ImageJ software (http://rsbweb.

nih.gov/ij/). The membrane was re-probed by different antibodies

after removal of antibodies using Restore PLUS Western Blot

Stripping Buffer (Thermo Scientific) from Western blots.

Cytoplasmic membrane permeabilization
Cells grown on Lab-tek chamber slide (Nunc, 177402) were

washed two times with ice cold Transport Buffer (20 mM HEPES

pH 7.3, 110 mM Potassium acetate, 5 mM Sodium acetate,

2 mM Magnesium acetate, 1 mM EGTA, 2 mM DTT and

protease inhibitor). Washed cells were permeabilized with 40

mg/ml digitonin in Transport buffer for 5 min on ice. Permiabi-

lized cells were preceded to immunoflorescence after washing

twice with Transport Buffer and washing twice with PBS [56].

Immunofluorescence and Proximity Ligation Assay
The procedure for immunofluorescence was essentially as

previously described [57] with some modification. Cells grown

on Lab-tek chamber slide were fixed with 4% paraformaldehyde

in PBS for 10 min at room temperature and permeabilized with

0.5% Triton X-100 in PBS for 4 min at room temperature.

The chambers were subsequently incubated for blocking with

Blocking One (Nacalai, 03953-95) for 30 min at 37uC. After

blocking, cells on chamber were incubated with Blocking One

and diluted primary antibody for 45 min at 37uC. After primary

antibody incubation, cells were washed with PBS three times

and incubated with Blocking One, diluted secondary antibody

and phalloidin for 45 min at 37uC. Cells were subsequently

washed with PBS three times and mounted with Vectashield

with DAPI (Vector laboratories, HT-1200). The Proximity

Ligation Assay was performed with DuoLink system (O-link)

according to the manufacturer’s instructions. Immunofluores-

cence and proximity ligation assay samples were observed and

photographed at 636 magnifications under a confocal laser

scanning microscopy system (Leica).

cDNA cloning and construction of plasmid
We assembled a full-length cDNA of human DICER1 protein

from HeLa total RNA. This cDNA sequence was identical to the

coding sequence cited in the Swiss-Prot Protein Database (http://

au.expasy.org/sprot/) [Swiss-Prot: Q9UPY3]. The cDNA was

cloned in a pDEST26 vector (Invitrogen). N-terminally His-tagged

human DICER1 protein (His-DICER1) was expressed in 293T

cells transfected with the plasmid pDEST26-DICER1.

Co-immunoprecipitation
Co-immunoprecipitation of DICER1-associated proteins was

performed using anti-DICER1 (12B5/4C6) antibody and Dyna-

beads Protein G (Invitrogen) according to manufacturer’s in-

structions. Each immunoprecipitated protein was detected by

Western blot analysis to check for successful co-IP using anti-

DICER1, anti-TRBP and anti-PACT antibodies. For the co-

immunoprecipitation experiments with NUP153 proteins, anti-

NUP153 (QE5) antibody was used. Mouse Normal IgG (Millipore)

was used as a control for co-immunoprecipitation. Tenty-five ml of

Dynabeads Protein G was mixed with 2.5 mg of the antibody.

Then, 200 mg of each cytoplasmic and nuclear extracts in 150 ml

B&W buffer (0.1 M sodium phosphate buffer pH 8.2, 0.01%

Tween20) was added to the beads-antibody complex and mixed by

rotation for 2 hours at 4uC. Supernatants were used as a

flowthrough fraction. Beads were washed four times with B&W

buffer, and each bound complex was eluted by adding 20 ml of

premixed NuPAGE LDS Sample Buffer (Invitrogen) and

NuPAGE Sample Reducing Agent (Invitrogen). Immunoprecipi-

tated proteins were separated by NuPAGE Novex 4–12% Bis-Tris

gel for Western blot analysis and 10% SDS-PAGE gel for MS

analysis.
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Identification of proteins by MS
Protein bands were excised from gels stained by Silver Stain MS

Kit (Wako), and in-gel digestion was performed as previously

described [58]. Briefly, the gel pieces were washed three times with

60% acetonitrile that contained 50 mM NH4HCO3, and then

dried completely. The dried gel pieces were incubated with

50 mM NH4HCO3 that contained 25 ng/ml trypsin (Trypsin

Gold, MS Grade; Promega) for 16 hours at 37uC. After digestion,

1 ml of formic acid was added to the buffer to stop the reaction.

The peptide fragments were desalted and concentrated with

ZipTip (Millipore), then eluted with 80% acetonitrile and 0.1%

formic acid. The samples were dried completely and solved with

10 ml of formic acid, then injected into LC/LIT-TOF MS

(NanoFrontier eLD, Hitachi High-Tech). The peptide mass

fingerprints were analyzed using the MASCOT search program

(Matrix Science, http://www.matrixscience.com), searching the

Swiss-prot database (http://au.expasy.org/sprot/). The quality of

peptide product ion spectra is shown as a Mascot score [48].

siRNA transfection and RNA extraction
Stealth siRNA for NUP153 (59-UGGGAGUGUUCAGUAUG-

CUGUGUUU-39) and NC siRNA (Stealth RNAi Negative

Control Medium GC Duplex #2) were purchased from Invitro-

gen. Transfections of siRNA were performed with Lipofectamin

RNAiMAX (Invitorogen) in Opti-MEM medium (Invitrogen)

according to the manfacturer’s instruction. Total RNAs were

extracted 48 hours after transfection with TRIzol (Invitrogen) and

FastPure RNA kit (Takara Bio) as previously described [59]. RNA

was quantified with NanoDrop (NanoDrop Technologies).

qRT-PCR for mRNA expression analysis
Expression levels of gene in the gene specific siRNAs or the

calibrator negative control siRNA transfected cells were estimated

by qRT-PCR with gene specific primer pairs. Reverse transcrip-

tion reaction was performed with PrimeScript RT-PCR Kit

(Perfect Real Time, Takara Bio) according to the manufacturer’s

instructions. qRT-PCR was performed in 10 ml reaction mixture

with SYBR Premix Ex Taq (Perfect Real Time, Takara Bio) on an

ABI 7500 Fast Real-Time PCR system (Applied Biosystems).

Details of procedure and condition were essentially same as

previously described [60]. The primer sequences used for qRT-

PCR in this study are NUP153-F: 59-GGCGACAACAGCATC

AGGGCA-39 and NUP153-R: 59-TCTGGCCAGCGTGGAAC

CTC-39.

Supporting Information

Figure S1 Co-immunoprecipitation of nuclear import
receptor proteins with DICER1 protein. Co-immunopre-

cipitation of DICER1 protein from cytoplasmic extracts of HeLa

cells followed by Western blot analysis with indicated antibodies.

‘‘Input’’ means the sample on 5% of volume used for immu-

noprecipitation (IP) and ‘‘FT’’ indicates the samples on 5% of

flow-through solution of IP samples. The asterisk shows the non-

specific band using anti-GAPDH antibody.

(TIF)

Movie S1 Related to Figure 4B. Confocal image of PLA

using mouse monoclonal anti-DICER1 (12B5/4C6) and rabbit

polyclonal anti-NUP153 antibody.

(MOV)

Movie S2 Related to Figure 4C. Confocal image of PLA

using mouse monoclonal anti-NUP153 and rabbit polyclonal anti-

LaminA antibodies.

(MOV)

Movie S3 Related to Figure 4D. Confocal image of PLA

without addition of any primary antibodies.

(MOV)

Table S1

(DOC)
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