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Ghrelin O-acyl transferase (GOAT) is a recently identified enzyme responsible for the unique n-acyl modification of ghrelin,
a multifunctional metabolic hormone. GOAT structure and activity appears to be conserved from fish to man. Since the acyl
modification is critical for most of the biological actions of ghrelin, especially metabolic functions, GOAT emerged as a very
important molecule of interest. The research on GOAT is on the rise, and several important results reiterating its significance
have been reported. Notable among these discoveries are the identification of GOAT tissue expression patterns, effects on insulin
secretion, blood glucose levels, feeding, body weight, and metabolism. Several attempts have been made to design and test
synthetic compounds that can modulate endogenous GOAT, which could turn beneficial in favorably regulating whole body energy
homeostasis. This paper will focus to provide an update on recent advances in GOAT research and its broader implications in the
regulation of energy balance.

1. Introduction

Ghrelin is a gut hormone discovered in 1999 by Dr. Kojima
and colleagues in the laboratory of Dr. Kangawa [1]. It is
the first known endogenous ligand of the growth hormone
secretagogue receptor 1a (GHS-R1a), which is now known as
the ghrelin receptor [2]. Since its discovery, ghrelin has been
identified and functions characterized in a large number of
animals [3, 4]. A unique aspect of ghrelin, the only known
orexigenic hormone from the gut, is the presence of a post-
translational acyl modification, mainly the attachment of
the octanoyl group to the third serine residue of the N-
terminal region of the peptide [3, 4]. Several variations of
this modification were found [3, 4], while the mechanisms
that result in this modification, which is critical for many
biological actions of ghrelin remained elusive. A decade of
waiting ended in 2008 when two research teams indepen-
dently identified the membrane bound O-acyl transferase
(MBOAT) responsible for ghrelin acylation and named it the
ghrelin o-acyl Transferase (GOAT) [5, 6].

2. Discovery and Characterization of GOAT

Yang et al. [5] first identified 16 MBOAT protein sequences
from the mouse genome. They found the 11 putative catalytic
regions in these BOATs highly conserved among the 16
sequences, and it all contained the asparagine and histidine
residues thought to be involved in the catalysis. Three differ-
ent murine endocrine cell lines (AtT-20, INS-1, and MIN-6)
were transfected with the preproghrelin sequence and were
found to produce acylated ghrelin when cotransfected with
the GOAT sequence. Mutation of the third serine to alanine
prevented the acylation of ghrelin by GOAT, indicating that
the third serine is indeed the amino acid to which the moiety
is attached. It was also determined that both asparagine
in position 307 and histidine in position 338 of mouse
GOAT are essential for the catalytic activity of this enzyme
(Figure 1). These results provide the first published [5]
evidence for GOAT.

Meanwhile, Gutierrez et al. [6] performed gene-silencing
experiments to determine whether a member of the MBOAT
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Figure 1: Alignment of amino acid sequences in the highly con-
served catalytic regions of GOAT. The online sequence analysis tool
available at the following link was used to generate the figure:
http://www.protocol-online.org/tools/sms2/color align prop.html.
The proposed catalytic residues (asparagine and histidine) of
GOAT are marked by asterisks. Partial sequences of GOAT
were obtained from full-length amino acid sequences obtained
from the GenBank. Accession numbers of sequences are human
(NP 001094386.1), pig (NP 001177352.1), cow (NP 001179186.1),
dog (NP 001188260.1), rat (NP 001100787.2), mouse (NP
001119786.1), chicken (NP 001186218.1), and zebrafish (NP
001116416.1).

family could mediate the acylation of ghrelin in human
medullary thyroid carcinoma (TT) cells. They discovered
that the silencing of GOAT (MBOAT4), but not other
MBOAT sequences, results in the attenuation of ghrelin
octanoylation [6]. The GOAT gene has been localized to
the 8p12 region of the human chromosome 8. Further
experiments by Gutierrez et al. [6] determined that only
cotransfection of preproghrelin with GOAT, not with other
MBOATs, yielded third serine octanoylated ghrelin in HEK-
293 cells. The supplementation of the HEK-293 cell medium
with lipids from acetate to tetradecanoic acid resulted in
the GOAT enabled modification of ghrelin with fatty acids
up to tetradecanoic acid. A very high sequence similarity
was found among GOAT proteins from humans to zebrafish
[5, 6]. Interestingly, zebrafish, rat, and mouse GOAT were
able to acylate human ghrelin [6]. Octanoylated ghrelin
was undetectable in the blood of GOAT knockout mice,
providing strong confirmatory evidence for the critical role
of GOAT in acylating ghrelin. Together, the pioneering
research by Yang et al. [5] and Gutierrez et al. [6] led to the
discovery of GOAT, the sole mediator of the unique acylation
found in ghrelin (Figure 2).

More recent in vitro studies by Ohgusu and colleagues [7]
found that recombinant GOAT can acylate a short peptide,
the N-terminal region of ghrelin consisting of just four
amino acids (GSSF). This short peptide is considered as the
bioactive core of ghrelin, and it provides further support to
the notion that this fragment could elicit many physiological
processes regulated by the full-length mature ghrelin. GOAT
also has a preference for n-hexanoyl coA compared to n-
octanoyl CoA. Yang et al. [8] proposed that preproghrelin
is octanoylated in the membranes of endoplasmic reticulum
and the acylation occurs after the signal peptide is removed
from the preproghrelin. These results provide further sup-
port for the four amino acid bioactive core of ghrelin,
intracellular location of ghrelin modification, and multiple
third serine modifications of ghrelin.
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Figure 2: Scheme showing formation of mature, acylated ghrelin
from ghrelin gene. Ghrelin gene in humans is comprised of six
exons and five introns. Upon transcription, the preproghrelin
mRNA is formed, which translates to produce the precursor peptide
that contains a signal peptide, mature peptide (ghrelin), and the
C-terminal peptide. After posttranslational cleavage and processing
by various enzymes including the prohormone convertases, car-
boxypeptidase E, amidating enzymes, and GOAT, the amidated,
acylated mature ghrelin is formed. Amidated ghrelin is currently
reported only in fish.

2.1. Tissue Distribution and Regulation of GOAT Expression.
The discoverers of GOAT found highest levels of GOAT
mRNA expression in the stomach and intestine followed
by the testis of mice [5] and the pancreas and stomach
of humans [6]. A comprehensive reverse transcription-
polymerase chain reaction (RT-PCR) tissue distribution
study by Sakata et al. [9] was in agreement with this initial
finding. GOAT mRNA expression was detected primarily
in the mouse stomach and intestine, while other MBOAT
family of enzymes were found in several other tissues in
addition to the gastrointestinal tract. This result was fur-
ther confirmed by double label in situ hybridization and
immunohistochemistry that found GOAT mRNA expression
in ghrelin immunopositive cells and neighboring cells within
the gastric mucosa. Together, these results indicate that the
primary source of GOAT is gastrointestinal cells that are pos-
itive for ghrelin. Stengel et al. [10] for the first time reported
colocalization of ghrelin and GOAT immunoreactivity in
the stomach mucosa of rats and mice. More GOAT positive
ghrelin cells were found in mice (∼95%) stomach compared
to rats (∼56%). The nonghrelin positive GOAT cells in rat
gastric mucosa were positive for histidine decarboxylase,
which helps in vitamin B6 processing. Western blot analyses
found two bands, one at∼50 kDa, the expected size of GOAT
protein, and a second one at ∼100 kDa, which was consid-
ered as a dimer. Western blots of plasma detected GOAT in
circulation, and blood levels of GOAT were elevated in mice
and rats fasted for 24 hours. Intraperitoneal injections of
lipopolysaccharide (LPS) resulted in a significant reduction
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in plasma acylated ghrelin and caused a corresponding de-
crease in plasma GOAT levels, while a small increase in gut
GOAT was detected [11]. This suggests that ghrelin-GOAT
system may be involved in the infection-induced decrease
in food intake. While species-specific variations exist in the
expression of GOAT in the gut, it is now clear that stomach
and intestine are major sources of GOAT.

In agreement with the original studies, An et al. [12]
found abundant expression of GOAT mRNA and protein in
the whole pancreas, isolated islets and INS-1 cells. Immuno-
localization studies found that GOAT-positive cells are
mainly present in the periphery of rat islets and no GOAT-
insulin colocalization was found, especially in the beta cell
rich core of the islets. González et al. [13], using RT-PCR
analysis, reported GOAT mRNA expression in the stomach,
pancreas, hypothalamus, ovary, serum, placenta, muscle,
heart, and adrenal glands of rats. There were no differences
in the expression of GOAT mRNA in the stomach mucosa
of male rats at postnatal days 10, 25, and 60 [13]. GOAT
expression was also detected in murine cartilage explants,
human primary chondrocytes, and in both human and
mouse chondrocyte cells lines [14]. The expression of GOAT
mRNA in murine chondrogenic cell line ATDC-5 showed a
gradual increase as the cells differentiated, with the lowest
levels being detected in the early stages of differentiation. LPS
significantly reduced GOAT mRNA expression in cultured
cartilage cells [14]. GOAT mRNA was detected in the
hypothalamus and pituitary of mice [15]. It was also found
that GOAT mRNA expression in the cultured primary
pituitary cells of mice was increased by acyl ghrelin, leptin,
and growth hormone releasing hormone, while somatostatin
decreased its expression. No effects were found for neuropep-
tide Y and des-acyl ghrelin on GOAT mRNA expression [15].
GOAT mRNA expression was found increasing with age in
the stomach of rats, while it was found inhibited by a decrease
in testosterone [16]. Collectively, from all studies available
to date, it appears that the gastroenteropancreatic tissues,
which play a major role in postprandial satiety and glucose
homeostasis, are the most abundant sources of GOAT in
mammals. It is also important to note that several metabolic
hormones modulate GOAT expression.

2.2. GOAT and Energy Balance. To date, two lines of evi-
dences are available indicating the involvement of GOAT
in regulating energy homeostasis. The first set of data is
originated from GOAT mRNA expression studies during var-
ious metabolic states. The second type of results arises from
studies directly testing the effects of GOAT by perturbing
the endogenous GOAT. Chronic food deprivation for 21 days
resulted in a significant increase in ghrelin mRNA expression
in the gastric mucosa of rats and a corresponding increase
in GOAT mRNA in the same tissue [13]. Intraperitoneal
injections of leptin, a satiety signal that relays the status
of long-term energy reserves to the brain, also caused a
significant increase in GOAT mRNA expression in 48 fasted
rats but not in ad libitum fed rats. These results indicate
that malnutrition and leptin are two regulatory factors that
determine GOAT mRNA expression. In contrast, fasting
for 12, 24, or 36 hours caused a significant reduction in

stomach GOAT mRNA in mice [17]. No differences in gastric
GOAT mRNA expression were found in ad libitum fed leptin
deficient ob/ob mice compared to wild-type controls [17].
Meanwhile, Gahete et al. [15] found that plasma acylated
ghrelin levels were increased in fasted mice, and this increase
coincided with an elevation in the gut, hypothalamic, and
pituitary GOAT mRNA expression. While accepting that
discrepancies exist between physiological status of animals
and species used, it is interesting that GOAT expression in
rodents in general is modulated by the metabolic status.

The importance of GOAT on metabolism was further
elucidated using GOAT knockout mice, which lack acyl
ghrelin in their circulation. These mice have normal body
weight compared to wild-type control mice, but they gained
significantly less weight and had reduced fat mass when fed
on a high-fat diet for eight weeks [17]. The enrichment of
diet with fatty acids resulted in a leaner body mass for the
GOAT knockout mice, and this reduction was attributed
to increased energy expenditure not alterations in feed
intake. No differences in glucose homeostasis were found
between the knockout and wild-type mice. Transgenic mice
overexpressing human GOAT in the liver, when fed with
medium chain fatty acid containing diet, produced more
acylated ghrelin and had a transient increase in food intake.
Overall, GOAT links the lipid intake into whole body energy
balance. Zhao et al. [18] determined the body weight and
blood glucose levels in the GOAT knockout mice. While
ad libitum feeding on regular or high-fat diets showed
no difference in the metabolic phenotype, calorie-restricted
GOAT knockout mice lost more weight and had low blood
glucose levels compared to wild-type controls. The adverse
effects of GOAT absence on glucose levels were reversed upon
exogenous administration of acylated ghrelin or growth
hormone administration. Overall, the outcome of this
genetic approach highlights the significance of GOAT in
acylating ghrelin and regulating the role of ghrelin on energy
balance. It is important to consider the possibility of GOAT
modulating peptides other than ghrelin. Therefore, whatever
effects resulting from GOAT alterations are possibly not
exclusively due to the absence of acylated ghrelin, as other
metabolically relevant peptides could be affected due to
the absence of GOAT. A new review [19] is now available
that compares the effects of ghrelin and GOAT knock-out
mice. The readers are encouraged to review it for a further
discussion on the above aspect.

Modulating GOAT activity could potentially affect bio-
logical actions of ghrelin and this aspect could be targeted to
design pharmacological approaches to regulate energy intake
and body weight. A successful attempt in this direction was
made when Yang et al. [8] discovered that the octanoylated
short fragment of ghrelin comprised of N-terminal 5 amino
acids (GSSFL) could inhibit GOAT activity. This GOAT
inhibitory activity was further enhanced when an amidated
short peptide was used (GSSFL-NH2). It was also reported
that a modified ghrelin fragment with the third serine
replaced with an octanoylated diaminopropionic acid could
enhance the GOAT inhibitory activity to 45-fold. Such
inhibitors could therefore be used to attenuate active ghrelin
and its effects on metabolism.
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In this regard, other GOAT-specific antagonists have also
been designed and functionally characterized [20]. GO-CoA-
Tat, a bisubstrate analogue that acts as a GOAT inhibitor,
was found to decrease acylated ghrelin production from cells
stably transfected with preproghrelin and GOAT. Similarly,
GO-CoA-Tat administration significantly reduced acylated
ghrelin production in vivo in mice fed with medium chain
fatty acid rich food. In addition, daily administration of
GO-CoA-Tat prevented body weight gain in mice fed on a
high-fat diet. GOAT inhibition in pancreatic beta cells using
the GO-CoA-Tat caused a significant increase in glucose-
stimulated insulin secretion, suggesting an inhibitory role for
ghrelin in this process. Similar increases in glucose-induced
insulin secretion were also found in mice treated with the
GOAT antagonist. The expression of mRNA encoding UCP2,
a potent inhibitor of insulin secretion, was suppressed 20-
fold in GO-CoA-Tat-treated islets. In agreement with these
islet effects, An et al. [21] reported that GOAT mRNA expres-
sion in islet beta-like INS-1 cells is inhibited by insulin. This
effect of insulin was blocked when cells were treated with
wortmannin that inhibits PI3 kinase/Akt pathway. From this
result, it is clear that the inhibitory effects of insulin on GOAT
are mediated via the insulin receptor signaling pathways.
Insulin was also found to reduce GOAT promoter activity in
vitro. In addition, it was also determined that the mammalian
target of rapamycin (mTOR) regulates transcription and
translation of GOAT. Inhibition of mTOR signaling using
rapamycin significantly increased GOAT mRNA in INS-1
cells in a concentration and time dependent manner. Sim-
ilarly, intraperitoneal injection of rapamycin that reduced
mTOR increased GOAT mRNA expression in the pancreas
of C57BL/6 mice. In contrast, leucine, an activator of mTOR,
attenuated GOAT mRNA expression in mice pancreas. Over-
expressing tuberculosis sclerosis complex 1 and 2 (TSC1 and
TSC2), the negative regulators of mTOR action, increased
GOAT activity in INS-1 cells. Together, these results provide
further evidence for an important role for the endogenous
GOAT on glucose homeostasis and insulin secretion, and
intracellular mechanisms that mediate these effects.

3. Perspectives

Currently, GOAT is the only known enzyme that is capable
in acylating ghrelin. It is now clear that GOAT is a critical
component in making bioactive ghrelin, and thus mediating
the physiological functions of ghrelin. Within a short period
since its discovery, enough strong evidence have been
collected to support a clear and very important role for
GOAT in metabolic physiology. GOAT expression is tissue
specific, is modulated by a number of factors, and appears to
vary among organisms. It is especially interesting that GOAT
is regulated by the metabolic status of animals. Whether
GOAT expression is altered in metabolic pathophysiology in
humans remain unknown. Another fascinating discovery is
the development of GOAT inhibitors and its success in pre-
venting weight gain, stimulating insulin secretion and reduc-
ing blood glucose levels. If these findings are translatable,
inhibition of endogenous GOAT using specific inhibitors

could emerge as potential treatment or preventative strategy
for diabetes. Similarly, tweaking GOAT biology may reap
rewards in the march towards curbing overweight and obe-
sity. While several interesting results have been obtained to
date, GOAT research is still in its infancy, and future studies
hold the key to further our understanding of this protein and
enhancing its utilization for the benefit of humans.
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