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H I G H L I G H T S  

• Our study comprehensively investigated the function of TGFβ-related genes in the progression and prognosis of osteosarcoma. 
• Our study provided a precise classification of the immune microenvironment and therapeutic response in patients with osteosarcoma by TGFβ risk model.  
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A B S T R A C T   

Osteosarcoma (OS) is a highly heterogeneous malignant bone tumor, and its tendency to metastasize leads to a 
poor prognosis. TGFβ is an important regulator in the tumor microenvironment and is closely associated with the 
progression of various types of cancer. However, the role of TGFβ-related genes in OS is still unclear. In this 
study, we identified 82 TGFβ DEGs based on RNA-seq data from the TARGET and GETx databases and classified 
OS patients into two TGFβ subtypes. The KM curve showed that the Cluster 2 patients had a substantially poorer 
prognosis than the Cluster 1 patients. Subsequently, a novel TGFβ prognostic signatures (MYC and BMP8B) were 
developed based on the results of univariate, LASSO, and multifactorial Cox analyses. These signatures showed 
robust and reliable predictive performance for the prognosis of OS in the training and validation cohorts. To 
predict the three-year and five-year survival rate of OS, a nomogram that integrated clinical features and risk 
scores was also developed. The GSEA analysis showed that the different subgroups analyzed had distinct func-
tions, particularly, the low-risk group was associated with high immune activity and a high infiltration abun-
dance of CD8 T cells. Moreover, our results indicated that low-risk cases had higher sensitivity to 
immunotherapy, while high-risk cases were more sensitive to sorafenib and axitinib. scRNA-Seq analysis further 
revealed that MYC and BMP8B were strongly expressed mainly in tumor stromal cells. Finally, in this study, we 
confirmed the expression of MYC and BMP8B by performing qPCR, WB, and IHC analyses. To conclude, we 
developed and validated a TGFβ-related signature to accurately predict the prognosis of OS. Our findings might 
contribute to personalized treatment and making better clinical decisions for OS patients.   

1. Introduction 

Osteosarcoma (OS) is the most common primary malignant bone 
tumor with high aggressiveness and metastasis, often occurring in 
children and adolescents [1,2]. Surgical intervention is an essential 
treatment for patients with OS [3]. With the spread of neoadjuvant 
chemotherapy options, combination of chemotherapy with surgery has 
achieved a 5-year survival rate of 70% for patients with OS [4]. 

However, patients with recurrent or unresectable OS still have poor 
outcomes even when enrolled in clinical trials, with a 5-year survival 
rate of only 20% [5]. The high complexity and heterogeneity of the OS 
genome has halted the development of novel therapeutic strategies over 
the past decades [6]. Therefore, it is urgent to explore novel biomarkers 
to target treatment and improve prognosis for OS. 

TGFβ is a multifunctional cytokine that regulates cell cycle, cell 
differentiation, migration, apoptosis, and immune response. It plays an 
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important role in cell development and maintaining tissue homeostasis 
[7,8]. TGFβ signaling has different or even opposite effects under 
various pathophysiological conditions, especially in tumors [9]. In 
precancerous cells, TGFβ acts as a tumor suppressor. It maintains 
genomic stability and prevents tumor progression by inhibiting cell 
proliferation and promoting apoptosis. However, as tumors progress, 
tumor cells can adapt to the inhibitory function of TGFβ and utilize the 
pro-growth feature of TGFβ to undergo malignant phenotype trans-
formation [10,11]. Moreover, the release of TGFβ from tumor cells, 
stromal cells, and other cells also facilitates angiogenesis, stromal 
fibrosis and immune escape to mediate tumor invasion and migration 
through the reshaping of the tumor microenvironment [12]. Several 
researchers have found that TGFβ is upregulated in several tumors and is 
correlated with poor prognosis and immune suppression [13,14]. The 
main cause of the highly aggressive nature of OS is the dysregulation of 
the bone matrix remodelling [15–17]. TGFβ is an important cytokine 
involved in tumor progression and is released from the bone matrix 
when OS cells invade bone tissue [18]. Previous studies have demon-
strated TGFβ is associated with metastasis, angiogenesis, and drug 
resistance in OS. However, the prognosis and immune effects of TGFβ- 
related genes in OS remain unclear. 

Due to the advancements in bioinformatics and next-generation 
sequencing technologies, exploring and developing novel biomarkers 
to treat patients with tumors have become highly reliable and feasible 
[19–21]. Here, we systematically evaluated the expression of TGFβ- 
related genes in OS and identified TGFβ subtypes. Then, we constructed 
a TGFβ nomogram to accurately predict the prognostic outcomes of OS. 
We also assessed the tumor immune microenvironment (TIME) and the 
therapeutic responses of different TGFβ risk subgroups. Overall, our 
study identified prognostic indicators in OS and provided new insights 
into personalized treatment. 

2. Materials and methods 

2.1. Data extraction and processing 

We obtained RNA-seq data and relevant clinical characteristics for 
85 OS tissues from the TARGET database. The RNA-seq data of 396 
normal musculoskeletal tissues were downloaded from the GTEx data-
base. To eliminate the differences in the data obtained from the GTEx 
and TCGA databases, the RNA-seq data for the samples were converted 
to log2 (FPKM value + 1). Using the combat function, we integrated the 
GTEx and TARGET datasets into the combined dataset to create a 
training set using the R package “sva”. We also obtained data on 223 
TGFβ-related genes from previous study [22] (Table S1). The gene 
expression data and clinical characteristics of 53 OS patients in the 
GSE21257 from the GEO database were used as the independent vali-
dation set. The clinical information for osteosarcoma patients is pre-
sented in Table S2. 

2.2. Differential expression of TGFβ-related genes and functional 
enrichment analysis 

Using the R package “limma”, the TGFβ differential expression genes 
(DEGs) of OS compared to healthy tissue were analyzed based on the 
thresholds of |log2(fold change, FC)|>1 and false discovery rate (FDR) 
< 0.05. Subsequently, the “ClusterProfiler” package of the R software 
was used for performing the Kyoto Encyclopedia of Genes and Genomes 
(KEGG) and Gene Ontology (GO) analyses of TGFβ DEGs. 

2.3. Consensus clustering 

According to the expression matrix of TGFβ DEGs, the R package 
“ConsensusClusterPlus” was used to recognize TGFβ subtypes for OS 
patients. The clustering matrix and the cumulative distribution function 
(CDF) were used to identify the most appropriate cluster count. Then, we 

performed principal component analysis (PCA) to identify different 
subtype profiles. The KM curve was used to assess the prognostic char-
acteristics of different subtypes. 

2.4. Establishing and verifying the TGFβ signature 

First, we conducted univariate regression to screen for prognosis- 
related TGFβ DEGs in the training cohort. Then, the LASSO regression 
analysis and the multi-factor Cox analysis were performed to further 
optimize and develop the TGFβ signature. The TGFβ risk scores of 
various samples were determined using the formula Risk score = Σin 
(Coefi*Xi) [23,24]. Then, we used the KM and time-dependent receiver 
operating characteristic (ROC) curves to evaluate and confirm the reli-
ability of the TGFβsignature for the training and validation cohorts. 

2.5. Correlation of TGFβ risk scores with clinical features 

We extracted the clinical data (gender, age, and metastatic status) 
from the training cohort and analyzed their relationship with the TGFβ 
risk score. Additionally, by integrating the TGFβ risk scores and the 
clinical features, univariate/multivariate regression was performed to 
determine the independent predictive ability of the risk scores for OS 
prognosis. 

2.6. Nomogram construction and calibration 

We constructed the predictive nomogram for predicting the three- 
year and five-year survival in patients with OS based on the TGFβ risk 
scores and the clinicopathological features. We also used ROC curves, 
calibration plots, and the C-index for weighing the nomogram predicting 
ability. 

2.7. Gene set enrichment analysis (GSEA) 

For determining the differences in functions of high-risk and low-risk 
groups, we performed the GSEA for comparing hallmark gene set 
enrichment levels of both groups, based on the thresholds of |NES| > 1, 
FDR < 0.25, and NOM p < 0.05. 

2.8. Tumor immune microenvironment (TIME) and drug sensitivity 
analysis 

We used the CIBERSORT algorithm for assessing immune cell infil-
tration levels within different risk groups. CIBERSORT can be used to 
evaluate 22 immune cells by deconvolution based on the expression 
matrix. We also evaluated differences in immune checkpoints (CTLA4, 
TIGIT, and BTLA) between risk subgroups to predict responses to 
immunotherapy. Additionally, the half-maximal inhibitory concentra-
tions (IC50) of the targeted drug in different risk subgroups were pre-
dicted using the R package “pRRophetic” [25]. 

2.9. scRNA-Seq data processing and analysis 

The scRNA-Seq of GSE162454 obtained from GEO database, 
including 6 primary osteosarcoma samples. The R package “Seurat” was 
then used to preprocess standardized scRNA-Seq data. To obtain high- 
quality single-cell data, we filtered for genes expressed in fewer than 
three cells, as well as for cells with<200 or>6000 genes detected, in 
addition to those with high mitochondrial content (>15%). After dis-
carding the poor quality cells, a total of 48,484 cells were retained for 
downstream analysis. The scRNA-seq data were normalized using Log-
Normalize before removing batch effects, PCA, and Uniform Manifold 
Approximation and Projection (UMAP) dimensionality reduction. The 
“FindClusters” function in the R package “Seurat” was used to perform 
cell clustering and R package “SingerR” was used to annotate cell sub-
populations. The “FindALLMarkers” function was used to determine the 
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DEGs between subpopulations, with log2|FC| > 0.5 & pvalue < 0.05 set 
as thresholds. 

2.10. Cell culture 

The OS cells (HOS, MG-63) and hFOB 1.19 osteoblasts were pur-
chased from Procell Life Science Technology Co., Ltd. All cells were 
cultured in DMEM, including 1% P/S (Solarbio, China) and 10% fetal 
bovine serum (FBS, Gibco, USA), followed by incubation at 37 ◦C and 
5% CO2. 

2.11. Western blot (WB) assay 

The RIPA lysis buffer (Beyotime, China) was used for extracting 
proteins from cells. We used a BCA protein assay kit (Solarbio, China) for 
quantifying proteins. The proteins were then boiled, loaded, separated 
by electrophoresis, and transferred onto NC membranes. Using suitable 
primary antibodies, including anti-MYC(1:5000, 67447–1-Ig, Pro-
teintech, China), anti-BMP8B(1:1000, bs-3670R, Bioss, China), and anti- 
GAPDH (1:5000, 60004–1-Ig, Proteintech, China), the cell membranes 
were blocked with skim milk and incubated under 4 ◦C overnight, fol-
lowed by incubation with the secondary antibody (1:2,000) for 1 h at 
room temperature and observation by ECL luminescence. 

2.12. Quantitative polymerase chain reaction (qPCR) 

For extracting total cellular RNA, the TRIzol method was used. For 
the reverse transcription of RNA, a cDNA synthesis kit (Takara, China) 
was used. The Bio-Rad CFX96 Real-Time PCR system (Bio-Rad, USA) 
was used for performing qRT-PCR by using TB Green Premix ExTaq II 
(Tli RNaseH Plus). GAPDH was used as the internal control. The primer 
sequences used for performing the PCR are shown in Table 1. The assay 
was repeated in triplicate. 

2.13. Immunohistochemistry (IHC) 

In total, 10 pairs of paraffin-embedded OS tissues and adjacent tis-
sues were collected for further validation of the expression of the 
candidate gene by immunohistochemical analysis. This study was 
approved by the Institutional Review Board of Xijing Hospital, Fourth 
Military Medical University. The participants all provided informed 
consent. All tissue sections were dewaxed, fixed with an antigen, 
blocked, and incubated with primary and secondary antibodies 
(MYC,1:500; BMP8B,1:200). Finally, the DAB kit (CWBIO, CW2035S) 
was used for color rendering and hematoxylin re-staining. The sections 
were examined under a microscope, and the positive rate of each 
immunohistochemically stained section was calculated using the Image 
J software. 

2.14. Statistics 

Statistical analysis was conducted using the R 4.0.5 software, SPSS 
21.0, and GraphPad Prism 8. We performed t-tests to determine differ-
ences between experimental groups and performed a one-way ANOVA 
to determine differences among the three groups. All differences among 

and between groups were considered to be statistically significant at P <
0.05 (*p < 0.05, **p < 0.01, and ***p < 0.001). 

3. Results 

3.1. Determination of TGFβ DEGs and functional annotation 

The flow chart of this study is shown in Fig. 1. In total, 82 TGFβ DEGs 
were detected between OS tissues and normal tissue, of which 48 TGFβ 
genes were upregulated, and 34 were downregulated (Fig. 2A-B). Then, 
functional enrichment of these DEGs was performed, and the results of 
the KEGG analysis showed that these DEGs were associated with the 
TGFβ signaling pathway, Hippo signaling pathway, Human papilloma-
virus infection, and etc., (Fig. 2C). The results of the GO analysis showed 
that these DEGs were mostly involved in Transmemebrance protein 
serine/threonine kinase signaling pathway, Transforming growth factor 
beta receptor, Response to growth factor, and etc., (Fig. 2D). 

3.2. Classification of the TGFβ subtypes by cluster analysis 

Based on the expression profiles of the DEGs, we identified two TGFβ 
subtypes for patients with OS (Fig. 3A-B). The results of the PCA analysis 
showed that these subtypes could be distinguished (Fig. 3C). Sankey 
diagrams were used to demonstrate the clinical features in the different 
subtypes (Fig. 3D). Additionally, as revealed by the results of the KM 
curve analysis, Cluster 2 patients showed considerably shorter survival 
time than Cluster 1 patients, suggesting that TGFβ subtypes could affect 
the prognosis of patients with OS (Fig. 3E). 

4. Construction and validation of a TGFβ prognostic signature 
for OS 

Based on the results of univariate regression, we found 12 TGFβ DEGs 
associated with OS prognosis, with nine genes were risk factors and 
three genes were protective factors (Fig. 4A). The results of the LASSO 
regression and the multivariate Cox regression were used to further filter 
the most significant candidate genes and construct a prognostic signa-
ture for patients with OS (Fig. 4B-C). We detected two genes for con-
structing a TGFβ signature to predict the prognosis of OS. The risk score 
was calculated as follows: Risk score = 0.548 × BMP8B + 0.822 × MYC. 
We then divided the training cohort into two groups based on the risk 
score. The risk score distribution, survival status, and heat map for the 
candidate gene expression patterns are shown in Fig. 5A-B. We found 
that with an increase in the risk score, the patient survival in the training 
set decreased significantly. The KM curve showed that the high-risk 
cases had a considerably poorer prognosis than the low-risk cases 
(Fig. 5C). Additionally, the AUC values for the one-year, three-year, and 
five-year ROC curves were 0.927, 0.792, and 0.814, respectively, sug-
gesting that the TGFβ signature had high accuracy (Fig. 5D). Addition-
ally, we evaluated the prognostic signature in the validation cohort and 
obtained results similar to that of the training cohort (Fig. 5E-F). The 
high-risk cases were associated with a considerably poorer prognosis 
than the low-risk cases (Fig. 5G). The one-year, three-year, and five-year 
AUC values were 0.735, 0.776, and 0.714, respectively (Fig. 5H). These 
results showed that the TGFβsignature was accurate and reliable for 
predicting OS prognosis. 

4.1. Relationship between the TGFβ risk score and the clinicopathological 
characteristics of OS 

We further evaluated the association between the TGFβ risk score 
and the clinicopathological features of OS. The results showed that the 
risk score was not significantly different for gender and age (Fig. 6A-B). 
We found that the risk scores were strongly associated with OS metas-
tasis (Fig. 6C). Based on the classification of OS metastases, the TGFβ 
risk score predicted the prognostic outcome of OS (Fig. 6D-E). The 

Table 1 
The primer sequences of the candidate genes.  

Gene Sequence (5′ -> 3′) 

BMP8B Forward: AAGGCCTAGATGTCTTGCGG  
Reverse: GACTCTTCTTGTTTCTGTGCCG 

MYC Forward: TTACAACACCCGAGCAAGGA  
Reverse: AAATACGGCTGCACCGAGTC 

GAPDH Forward:GGAGCGAGATCCCTCCAAAAT  
Reverse:GGCTGTTGTCATACTTCTCATGG  
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results of the univariate/multivariate regression revealed the indepen-
dent predictive ability of the TGFβ risk score in OS (Fig. 6F-G). 

4.2. Construction of a nomogram 

A nomogram was constructed with gender, age, tumor site, metas-
tases, and risk scores to predict the three-year and five-year OS 

Fig. 1. The flow chart of this study.  

Fig. 2. Identification of TGFβ DEGs between OS and normal tissues. (A). Volcano plot of TGFβ-related gene expression; (B). Heat map of TGFβ DEGs; (C-D). KEGG 
and GO enrichment analysis of DEGs. 
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Fig. 3. Recognition of TGFβ subtypes in patients with OS. (A-B). Consensus clustering of OS patients for k = 2; (C). PCA analysis of two different TGFβ subtypes; (D). 
Sankey diagram showing the distribution of TGFβ subtypes with clinical features; (E). Prognostic analysis of different TGFβ subtypes. 

Fig. 4. The establishment of the TGFβ-related prognosis signature. (A). Forest plot showing prognosis-related TGFβ DEGs in the training; (B-C). Optimization of 
candidate genes by LASSO model with the minimal lambo value. 
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prognostic outcome for the training set (Fig. 7A). The C-index of 
nomogram was found to be 0.875. As indicated by the calibration plot, 
our nomogram signature performed similarly to the ideal signature 
(Fig. 7B-D). We also determined the ROC curves for the constructed 
signature, and the three, five and seven-year AUCs were 0.883,0.909 
and 0.841, respectively (Fig. 7E). 

4.3. GSEA analysis for different risk subgroups 

GSEA was conducted for different TGFβ risk subgroups to determine 
potential hallmarks affecting OS prognosis. Our results showed that 
oxidative phosphorylation, MYC target V1, and E2F target functions 
increased considerably among high-risk cases relative to low-risk cases, 
whereas Interferon γ response, Inflammatory response, and IL6/JAK/ 
STAT3 functions increased considerably among low-risk patients 
(Fig. 8A-B). These findings indicated that there were different biological 
functions in both groups. 

4.4. Evaluation of the tumor immune microenvironment and the 
therapeutic response 

Considering the important functions of the immune microenviron-
ment in the prognosis of OS, we performed an immune assessment of 

patients with different risk subtypes. The results showed that T follicular 
helper cells and CD8 T cells increased considerably in infiltration 
abundance among low-risk patients, while gamma-delta T cells and 
resting dendritic cells showed the opposite results (Fig. 9A). Moreover, 
the expression of immune checkpoints CTLA4, TIGHT, and BTLA 
increased considerably among low-risk patients relative to high-risk 
patients, suggesting that low-risk cases might be the candidates for 
immunoblocking therapy (Fig. 9B-D). The results of a drug sensitivity 
analysis showed significantly lower IC50 values for sorafenib and axi-
tinib among high-risk cases relative to that among low-risk cases 
(Fig. 9E-F). 

4.5. ScRNA-Seq analysis of candidate genes in OS 

After cell quality control, a total of 48,484 cells were identified in 6 
osteosarcoma scRNA-Seq samples (Figure S1). Fourteen distinct clusters 
were identified after PCA and UMAP analysis (Fig. 10A). Then, a total of 
nine cell types were discovered by annotation of subpopulations with 
SingerR and cell-specific marker genes (Fig. 10B). Heat map showing the 
top 10 marker genes for different cell types (Fig. 10C). We found that 
MYC was highly expressed in osteoblasts, mesenchymal stem cells (MSC) 
and cancer-associated fibroblasts (CAF), and BMP8B was highly 
expressed in CAFs. Figure S2 present the distribution of candidate genes 

Fig. 5. Evaluation and validation TGFβ-related signature. Distribution plots of the risk score and survival status in the training (A) and validation cohort (E); Heat 
map demonstrating the expression of candidate genes in the training (B) and validation cohort (F); The survival analysis in the training (C) and validation cohort (G); 
The ROC curve for the training (D) and validation cohort (H). 
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in different cell subpopulations. 

4.6. In vitro validation of candidate genes by qPCR, WB, and IHC 

We further determined the gene expression in OS cells and healthy 
controls by conducting experiments. We found that MYC and BMP8B 
levels increased considerably in OS cells compared to their levels in 
normal cells (Fig. 11A-C). Their expression also increased substantially 
in OS tissues relative to their expression in paracancerous tissues 
(Fig. 11D-G). These findings were similar to the results of the bio-
informatic analysis, thus, increasing the reliability of our study. 

5. Discussion 

In this study, we identified 83 TGFβ DEGs between OS tissue and 
normal control tissue. Following functional enrichment of these DEGs, 
two TGFβ subtypes with distinct prognostic characteristics were iden-
tified by performing cluster analysis. We screened the two most 
important candidate genes (MYC and BMP8B) by univariate/lasso/ 
multivariate analyses and constructed a TGFβ prognostic signature. The 
ROC and KM curves showed that the TGFβ prognosis nomogram 
exhibited excellent predictive capability for OS prognosis for the 

training and validation cohorts. Moreover, we assessed functional 
variance and the TIME features in both risk groups. The patients in the 
low-risk group had a higher immune function and immune cell infil-
tration relative to those in the high-risk group. Finally, scRNA-Seq 
analysis revealed that MYC and BMP8B were highly expressed in stro-
mal cells, suggesting that TGFβ might exert pro-tumor effects through 
regulating the communication between tumor stroma and malignant 
cells. These findings provided a novel perspective for personalized 
treatment, as well as prognosis prediction of OS. 

TGFβ prognostic signature was composed of two genes, MYC and 
BMP8B, both of which were risk factors for the prognosis of osteosar-
coma. MYC has been shown to be an essential proto-oncogene with a 
role in cell cycle progression, apoptosis and cell transformation [26]. In 
normal cells, TGFβ signaling can inhibit cell proliferation through 
blocking the transcription of MYC proto-oncogene. While when MYC 
mutation occurred, it antagonized TGFβ-induced suppressive effect by 
regulating the expression of cell cycle transcription factors, thus leading 
to the proliferation of tumor cells [27,28]. Research has demonstrated 
that upregulation of MYC in osteosarcoma cells may be critical in 
counteracting TGFβ growth inhibitory signaling to regulate cell cycle 
progression [29]. Han et al. found that overexpression of MYC might 
facilitate the invasion of osteosarcoma cells via activating MEK-ERK 

Fig. 6. Relationship between TGFβ risk scores and clinical characteristics. (A). Differences in risk scores of patients with OS with regard to age, sex, and metastatic 
status; (B-C). Survival analysis of patients with OS regrouped according to metastatic status; (D-E). Univariate and multivariate Cox regression analysis tested the 
prognostic role of TGFβ risk score and clinical characteristics. *p < 0.05, **p < 0.01, and ***p < 0.001. 
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Fig. 7. Establishment of a predictive nomogram. (A). The nomogram based on TGFβ risk score and clinical characteristics to predict the prognosis at 3, 5, and 7 years; 
(B-D). The calibration curves of the nomogram in 1, 3 and 5-year, respectively; (E). The ROC curves of the nomogram. 

Fig. 8. Gene set enrichment analysis between the different TGFβ risk subgroups (A-B).  
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pathway [30]. In addition, previous studies established that MYC can 
drive super-enhancer signaling to promote osteosarcoma progression 
and metastasis [31]. BMP8B, a member of the TGFβ superfamily of 
proteins, can regulate signaling by binding to various TGFβ receptors, 
resulting in the recruitment and activation of SMAD family transcription 
factors. BMP8B is able to bind SMAD2 / 3 and SMAD1 / 5 / 9 trans-
duction signals through the TGFβ-BMP pathway, thereby contributing to 
inflammation and affecting wound healing [32]. Mima et al. identified 
that BMP8B upregulation could promote gastric cancer metastasis by 
modulating the bone marrow microenvironment and was strictly asso-
ciated with poor prognosis [33]. Cheng et al. found that BMP8B medi-
ated the survivability and invasion of pancreatic cancer cells by 
modulating the activation of caspase 3/9 [34]. Although the specific 
mechanism of BMP8B in osteosarcoma is less clear, extensive studies 
have confirmed that the BMP family was intimately involved in the in-
vasion and metastasis of osteosarcoma [35]. Our study identified that 
MYC and BMP8B were expressed at high level in osteosarcoma tissues 
and closely associated with poor prognosis. These results provided new 
ideas for targeted therapeutic and prognostic markers in osteosarcoma. 

TGFβ has been shown to play a dual role in tumor initiation [10]. 
During early tumor development, TGFβ can promote cell apoptosis and 
immune surveillance to inhibit tumor proliferation. When the secretion 
of TGFβ increases, it can reshape the tumor microenvironment to 
mediate immune escape and tumor invasion [11,12]. Our study revealed 

that patients in the high-risk group showed remarkably increased tumor 
progression-related pathways. Notably, immune-related functions were 
clearly upregulated in the low-risk group. These findings suggested that 
patients in the high-risk group might be linked to enhanced TGFβ 
signaling to promote tumor proliferation and progression by regulating 
the cell cycle, whereas patients in the low-risk group might be able to kill 
tumor cells by activating adaptive immunity through appropriate TGFβ 
signaling. Further immune analysis suggested that CD8 T cell infiltration 
increased considerably in the low-risk group, while the resting dendritic 
cells showed the opposite pattern. Several studies have shown that TGFβ 
is a major regulator of the TIME, and its accumulation in the tumor 
microenvironment can enhance the accumulation of immunosuppres-
sive cell subsets and induce apoptosis of CD8 T cells to inhibit the im-
mune response [36]. CD8 T cells play a key role in the anti-tumor 
immune response and can specifically recognize tumor-associated an-
tigens to selectively kill tumors. While resting dendritic cell was found to 
induce CD8 T cell immune tolerance by antigen presentation [37]. Be-
sides, we found that TGFβ candidate genes were highly expressed in 
CAFs and MSCs, respectively. CAFs and MSCs are essential components 
of the tumor stroma. TGF-β activation can promote the differentiation of 
fibroblasts and MSCs to CAFs to mediate the fibrotic remodeling of 
extracellular matrix [38,39]. Also, CAFs and MSCs can secrete different 
cytokines to inhibit immune cell activation and infiltration while pro-
moting tumor invasion and metastasis. Thus, we speculated that the 

Fig. 9. TIME analysis and therapeutic response in different TGFβ risk subgroups. (A). Differences in the abundance of 22 immune cell infiltrates in different risk 
subgroups; (B-D). Differential expression of immune checkpoints in different risk subgroups; (E-F). IC50 values for the targeted drugs (sorafenib and axitinib) in 
different risk subgroups. *p < 0.05, **p < 0.01, and ***p < 0.001. 
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TGFβ high-risk group might promote tumor stromal remodeling form an 
immunosuppressive microenvironment, thereby promoting the metas-
tasis and poor prognosis of OS patients. 

Conventional chemotherapy protocols improve the prognosis of most 
patients with osteosarcoma, however, there are still some patients who 
lack sensitivity to chemotherapy. Our results revealed that low risk 
patients showed higher sensitivity to immunotherapy, while high-risk 
patients might be better adapted to targeted therapy (sorafenib and 
axitinib). In OS, the tumor stromal has abundant blood flow, and its 
invasion and metastasis rely on the formation of tumor neo-
vascularization [40]. Sorafenib and axitinib, as tyrosine kinase in-
hibitors(TKI), can effectively target angiogenic signals and exert anti- 
angiogenic effects, thus inhibiting the malignant behavior of OS 
[41,42]. Sorafenib was the first targeted therapy shown to be effective in 
patients with OS. It can significantly prolong survival in patients with 
recurrent or unresectable OS [43]. Currently, accumulating evidence 
indicates that TGFβ activation is responsible for upregulating the 
expression of various receptor tyrosine kinases (RTK), including 
epidermal growth factor receptor (EGFR), fibroblast growth factor re-
ceptor (FGFR) and vascular endothelial growth factor receptor (VEGFR) 
[44,45]. The interaction between TGF-β signaling pathway and RTK 
pathway can accelerate tumorigenesis and metastasis, thus the clinical 
management of TKI in patients with TGF-β high risk might be effectively 
improve the prognosis of patients. Whereas the high expression of im-
mune checkpoints such as CTLA4 in the low-risk group implied that 
immunotherapy could block these immunosuppressive receptors and 
increase the immune activity of CD 8 T cells, resulting in enhanced anti- 
tumor immunity. We argued that classifying patients with OS based on 
TGFβ risk scores to tailor therapy might improve the prognosis in clinical 
decision making. Taken together, these results provided novel insights 
into the personalized treatment of OS. 

There are several limitations of our study. First, this study was based 

on results from publicly available databases, requiring further validation 
in large samples. Second, the specific mechanism by which TGFβ in-
fluences the prognosis of osteosarcoma, especially its relationship with 
TIME, still needs further experimental investigation in the future. 

6. Conclusion 

To summarize, we systematically evaluated the role of TGFβ-related 
genes in the progression and prognosis of OS. We also developed novel 
prognostic signatures that could accurately predict the prognosis and 
might improve the personalized treatment of patients with OS. 
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Fig. 10. ScRNA-Seq analysis of candidate genes in OS. (A).UMAP plot showing 48,484 cells from 6 samples; (B).The cell types identified by R package “SingerR”; (C) 
Heatmap showing the top 10 marker genes in each cell cluster; (D-E) Bubble and violin plots showing the expression levels of candidate genes in different cell types. 
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Fig. 11. Validation of candidate genes by WB, qPCR and IHC. (A-C) The expression levels of candidate genes in different cell lines by WB and qPCR; (D-G). The 
expression levels of candidate genes in OS and paracancerous tissue by IHC, bar = 100um. *p < 0.05, **p < 0.01, and ***p < 0.001. 
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Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.jbo.2023.100484. 
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