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Abstract: A consideration of the antibacterial efficacy of metal-based nanoparticles, from the point of
view of their physicochemical properties, suggests that such efficacy arises from the protein coronas
that form around them, and that the contents of the coronas depend on the chemical groups found
on the nanoparticle surfaces. We offer a new perspective and new insights, making use of our
earlier observations of the physicochemical properties of nanoparticle surfaces, to propose that the
nanoparticle serves as a mediator for the formation and activation of the protein corona, which
attacks the bacterium. That is, the nanoparticle enhances the body’s natural defenses, using proteins
present in body fluids.

Keywords: antibacterial efficacy; corona functionalization; epitope mediation; nanoparticle alloys;
surface component

1. Introduction

In today’s society, there is a pervasive view that, no matter what ails one, there is a
pill for that. This, and the undue consumption of antibiotics in animal husbandry and
fish farming, together with the extensive use of pesticides and herbicides in agriculture,
have led to the overuse and, ultimately, abuse of medications. Such abuse has given rise to
bacterial mutations that are impervious to the antibiotics once used to overcome them; as an
example, although methicillin is used to treat Staphylococcus aureus, the medical community
also recognizes the existence of methicillin-resistant Staphylococcus aureus. The crisis this
situation has created has provoked a search for new methods to combat diseases; among
them is the renewed consideration of metals, particularly in the form of nanoparticles.

There is a long history of the use of metals as antibiotics. Copper, for example, has been
used as such for at least 4000 years [1] and silver, even longer [2]. Indeed, a perusal of the
literature [3] indicates that many metal-based nanoparticles have antibacterial properties.
The mechanisms thought to underlie such properties have been reviewed [3], including
those for the Ag, Cu systems already mentioned, and their mixtures and alloys [4]. The
reader is directed to references [3] (196 references) and [4] (286 references) for detailed
discussions of the various toxicity mechanisms and pertinent references. A characteristic
of all the studies referred to in these reviews is the assumption of the highest purity for all
the nanoparticles considered, from core to surface.

Basing ourselves on several decades of work that we have carried out on the physico-
chemical characterizations of First, Second and Third Transition Series metal nanoparticles
and their surfaces, we know that this assumption is untrue: all the nanoparticle surfaces are
heavily oxidized, and also contain adventitious carbon. Thus, it is the chemical structure of
the real surface that should concern us, not the zerovalent metal. It is our purpose here to
use our earlier results to discuss the real nanoparticle surface, the groups that are present
there, and how they may convey antibacterial properties. We do not pretend to offer a final
view of how bacteria are attacked by metal nanoparticles: there are too many avenues yet
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unexplored for us to do that. We offer, instead, suggestions as to the avenues that need to
be considered.

2. Nanoparticle Surface Oxidation

Chemical thermodynamics indicates that reactions occur when the change in Gibbs
free energy is negative. At surfaces, the Gibbs free energy is replaced [5,6] by the Helmholtz
free energy, which is directly related to the surface tension. That is, the reactions occurring
at surfaces lower the surface tension. Thus, metals, having surface tensions ranging to
3000 mJ m−2, will react with the ambient atmosphere to reduce their surface tensions. This
is, in fact, why metals corrode and why adventitious carbon (oxidized carbon-containing
materials deposited from the vacuum background) deposits onto samples under vacuum.

We have studied the surfaces of nanoparticles of First (e.g., Cu [7]), Second (e.g., Ag [8])
and Third (e.g., Pt [9]) Transition Series metals. Each was deposited onto freshly cleaved
highly oriented pyrolytic graphite, under a vacuum of ~10−10 torr, in a baked-out X-ray
photoelectron spectrometer (XPS), and analyzed without exposure to atmosphere. In all
cases, despite being deposited under high vacuum, the nanoparticle surfaces were both
highly oxidized and covered with adventitious carbon. Indeed, in the case of commercial
Ti [10], the oxide layer, on receipt, was so thick that zerovalent Ti could not be seen by
XPS, indicating that the oxide layer thickness was greater than 4.5 nm, the probe depth at
~795 eV, the kinetic energy of the Ti 2p3/2 peak.

It is thus clear that, given the opportunity, the metal at the nanoparticle surface will
react with ambient gases, so as to reduce its surface energy. This being so, there seems
little likelihood that bare metal surfaces exist for any length of time, and certainly not in
practical applications.

3. The Antibacterial Properties of Metal Oxides

Given the fact that the surfaces of metal nanoparticles are oxidized, it behooves us to
consider whether such surfaces have antibacterial properties. The antibacterial efficacies
of many metal oxides, such as CuO [11] and Ag2O [12], against both Gram-negative and
Gram-positive bacteria are well known. These oxides have been used to decontaminate
air, water, soil, textiles and wounds. We emphasize that each of these use environments is
different, and the results and antibacterial mechanisms of one cannot be compared to those
of another.

The physicochemical characterizations of the metals we have studied have always
included high resolution XPS. The spectra so obtained were separated into component
peaks, using symmetric component line shapes [13], which revealed the binding energies
of the separated peaks contributing to each spectrum. In this way, the metal and oxygen
peaks of each surface oxide were identified. When compared to literature values of pure
bulk oxides [14], they were found to be indistinguishable, indicating that the structure of
the surface oxide is very close to that of the bulk oxide.

4. The Antibacterial Properties of Oxometallates

Oxometallates are compounds in which the metal oxide exists as the anion (e.g., cuprates,
ferrates, etc.). We have not investigated oxometallates. However, some have been char-
acterized by XPS, and are found in the NIST XPS Database [14], along with their formal
oxides. Comparisons of peak positions of the oxides and oxometallates of specific metals
find them at equivalent binding energies, implying similar structures.

The antibacterial properties of oxometallates have not been widely evaluated. Nonethe-
less, where evaluated (e.g., vanadates [15]), they show antibacterial behavior. Although
such behavior may be due, in part, to the associated cations, minimum inhibitory con-
centration (MIC) test values [15] are similar for oxide and oxometallate, suggesting simi-
lar mechanisms.

A recent article [16] proposed the use of oxometallate (and metal oxide) nanoparticles,
incorporated into membranes, for antibacterial water remediation. While the situation
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differs from the one presently considered (no protein corona is formed, no obvious water
components capable of reducing any ions emitted from the nanoparticles, etc.), they
support their proposal with references to the use of both oxometallates and metal oxides in
toxicity studies.

5. The Surface Structures of Metal Oxides

All metal oxides [17,18] are characterized by the M–O–M structure (other structures,
such as M=O and M–OH may also be present). On exposure of the oxide surface to
water (or humidity), the M–O–M structure at the surface is hydrolyzed to give M–OH.
The isoelectric points of metal oxides appear to depend on their electronegativities [19],
and range from pH 1 to pH 12. Thus, at the pH of human blood and plasma, ~7.35, the
nanoparticle surface may, depending on the metal oxide, exist mostly as M-OH2

+ or M-O-.
Both species are capable of reacting with proteins and similar structures [20–22].

6. The Protein Corona

Authors often include graphical illustrations of proteins in the act of forming coronas;
they invariably show the proteins adsorbing onto the nanoparticle surface without chang-
ing form [23]. However, actual TEM photomicrographs reveal something quite different:
with rare exceptions, the proteins in the corona have lost their structure and, as a result, the
corona is amorphous, and totally surrounds the nanoparticle [24]. This is to be expected:
The sheets and helices of proteins are formed by both bonded and nonbonded interactions.
Perturbing such interactions, by adsorption onto a nanoparticle, results in changes to the
unbonded structure and, in extreme cases, in complete unfolding.

Although papers identifying nanoparticle corona proteins that were adsorbed from
protein-containing liquids, such as blood and plasma, are rather scarce, several [25–34]
do exist. A number of points that are important to the present discussion can be gleaned
from them:

• The hard corona is generally irreversibly adsorbed.
• The proteins adsorbed depend on the nanoparticle material (Ag, Au, Fe3O4, etc.).
• For a given nanoparticle material, the proteins depend on nanoparticle shape.

The first and third of these are understandable from the point of view of chemical
bonding of the proteins to the functional groups available on the nanoparticle surface, and
both occurrences change the bio-identity of the nanoparticle. Further, the loss of initial
protein structure on adsorption means that new epitopes are formed on the corona-covered
nanoparticle surface; these have the capacity to react with the bacterial surface. The second
point clearly shows that the chemical character of the corona depends on the material on
which it is formed.

This raises several questions on the role of the nanoparticle in the body. What is the
function of the nanoparticle in the attack on the bacterium? Does it participate in the attack
(e.g., release ions) or is it merely the carrier for the new corona protein epitope, which
carries out the attack?

The protein corona must act, at the very least, as a partial diffusion barrier to the
release of metal ions. Both blood and plasma contain components capable of reducing metal
ions to zerovalent metal atoms [35]. Is it, then, possible for the nanoparticles to release ions
or is its function rather to react with specific proteins from among the thousands [36] that
are present in human biofluids?

The corona-forming interactions that apply to the nanoparticle must also apply to
the bacterium. However, the type of corona forming around the bacterium, whether hard
or soft, is presently unknown. As to whether a corona actually forms, TEM photomicro-
graphs [37] show a shell of some sort, surrounding bacteria in blood.

Further, the coronas forming around Gram-positive bacteria are, without a doubt,
different than those forming around Gram-negative bacteria. This is due to their different
surface structures [38,39]:
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• Gram-positive bacteria have a surface layer comprised of a thick transpeptidation-
crosslinked [40] latticework of peptidoglycan.

• Gram-negative bacteria have a surface layer comprised of a lipid bilayer, whose outer
leaf is composed of glycolipids, and whose inner leaf is composed of phospholipids.

In order to exert an antibacterial effect, the epitope formed by the protein corona must
be able to attack the bacterial surface; this may be one reason why nanoparticles display
different antibacterial behaviors against Gram-positive and Gram-negative bacteria.

7. The Exceptional Antibacterial Efficacy of Nanoparticle Alloys

In a recent review of Ag and Cu nanoparticles, and their mixtures and alloys [4], the
conclusion was reached that the order of antibacterial efficacy was Ag ≈ Cu < a mixture
of Ag + Cu < AgCu alloy. This has been confirmed in a recent investigation [41]. The
authors of that study used an aqueous mixture of soluble Ag and Cu salts, which were
then reduced by aqueous NaBH4 in the presence of polyvinyl pyrrolidone and polyvinyl
alcohol. While the increased efficacy of a mixture of Ag + Cu over either Ag or Cu (a
mixture of Ag + Cu > Ag ≈ Cu) may be accounted for by synergy, the increased efficacy of
AgCu alloy over a mixture of Ag + Cu (AgCu alloy > a mixture of Ag + Cu) cannot.

This increased efficacy is surprising, especially since Ag and Cu are mutually immisci-
ble [42]. Although a trace of one metal may exist in the other, introduction by intentional
doping showed the dopants to be located in the grain boundaries [43,44]. Similar excep-
tional efficiencies, both antibacterial [45,46] and antiviral [45–47], have been found for
oxometallates formed from two metal oxides.

Our perception of this exceptional efficacy, in light of our earlier results on the physic-
ochemical characterizations of such nanoparticle surfaces and our discussion of the depen-
dence of the protein corona content on the nanoparticle material (above), lead us to the
following view. The chemical groups present on the surface of a nanoparticle depend on
the identity of the nanoparticle, as do any residual surface groups, which depend on how
it was made [48–50]. The chemical properties of these surface groups, in an alloy, result in
reaction with a combination of specific proteins not found on the individual nanoparticles,
and the formation of a corona that has an antibacterial efficacy that differs from those of
the protein coronas that are formed about the individual nanoparticles of the same metals
(which persist in their mixture). This suggestion, if confirmed, opens several possibilities.

First, the alloy nanoparticle does not function simply as a carrier, but as a bimetallic
mediator, although not in the sense of a recent review [51], in which the bimetallic structure
reorganizes so as to mediate reaction. In the present case, structural reorganization of
the nanoparticle does not occur. Rather, the combination of metals results in the close
proximity of two surface oxides on the nanoparticle surface, mediating the formation
of a new corona, made up of a combination of proteins not found in the coronas of the
individual monometallic nanoparticles.

In the case of the Ag, Cu system, the isoelectric point of CuO is ~9 [19], and that of
Ag2O, ~12 [52]. (The reader should note that isoelectric points for a given oxide, reported
in the literature, generally cover a wide range of pH values, reflecting the surface com-
ponents present; as mentioned earlier, these depend on the particular fabrication process
used [48–50]. While we believe that the values that we quote represent the oxides, we have
no way of confirming this.) The values are noticeably different (pH is a logarithmic scale),
both being positively charged at the pH of human blood. Each will react with different
proteins, as may be verified by a comparison of the proteins in the hard coronas of the alloy
and the individual metals. Thus, the combination of these two different sets of proteins
results in a corona different from those of the individual metal nanoparticles. We believe
that the epitope of this new corona conveys the enhanced antibacterial properties found.

Second, this view, if confirmed, opens the possibility of engineering alloy nanoparticles
with even greater antibacterial efficacy, specific to a given bacterium. This can be done by
changing alloy components or component ratios, as well as by surface functionalization: as
noted earlier, both M-OH2

+ and M-O− are reactive [20–22], and can react with molecules
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having other functional groups (e.g., −COOH, −SH, etc.) capable of selectively reacting
with designated blood proteins. The modulation of the contents of the corona by surface
functionalization is an established fact [25–34,53].

Thus, we propose that the antibacterial efficacy of a metal-based nanoparticle, in the
human body, is due to protein corona-bacterium interactions. These are enhanced and
accelerated by the well-established behavior of nanoparticle surfaces [51]. This view is
compatible with all of the observations which we have presented here. A recent review [54]
discusses antibacterial peptides, offering several scenarios of how they may attack the
bacterial surface. This further supports the view presented here.

8. Summary and Commercialization

We propose a new view of the antibacterial efficacy of nanoparticles. We use our
earlier observations to provide new insights, and to propose that the chemical groups on
the nanoparticle surface serve as a mediator for the formation of the protein corona, which
attacks the bacterium. Further, the contents of the corona depend on which specific chemical
groups are situated on the nanoparticle surface, which implies that alloy nanoparticles may
be engineered to have even greater antibacterial efficacy, specific to each bacterium.

Insofar as we have been able to determine by our physicochemical characterizations
of nanoparticle surfaces, the surface oxide is, by far, the major inorganic component. Our
research on the subject indicates that, while there are batch-to-batch variations in the
concentration of surface oxide, even when maintaining strict protocols [55], efficacy tests
similar to those used by drug manufacturers will determine batch acceptability.
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