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Abstract

11β-Hydroxysteroid dehydrogenase-1 (11β-HSD1) predominantly converts inert 

glucocorticoids into active forms, thereby contributing to intracellular glucocorticoid 

levels. 11β-HSD1 is dynamically regulated during inflammation, including in 

macrophages where it regulates phagocytic capacity. The resolution of inflammation in 

some disease models including inflammatory arthritis is impaired by 11β-HSD1 deficiency 

or inhibition. However, 11β-HSD1 deficiency/inhibition also promotes angiogenesis, 

which is beneficial in mouse models of surgical wound healing, myocardial infarction or 

obesity. The cell types responsible for the anti-inflammatory and anti-angiogenic roles 

of 11β-HSD1 have not been characterised. Here, we generated Hsd11b1MKO mice with 

LysM-Cre mediated deletion of Hsd11b1 to investigate whether 11β-HSD1 deficiency in 

myeloid phagocytes is pro-angiogenic and/or affects the resolution of inflammation. 

Resolution of inflammatory K/BxN-induced arthritis was impaired in Hsd11b1MKO mice 

to a similar extent as in mice globally deficient in 11β-HSD1. This was associated with 

>2-fold elevation in levels of the endothelial marker Cdh5 mRNA, suggesting increased 

angiogenesis in joints of Hsd11b1MKO mice following arthritis. A pro-angiogenic 

phenotype was confirmed by measuring angiogenesis in subcutaneously implanted 

polyurethane sponges, in which Hsd11b1MKO mice showed 20% greater vessel density 

than their littermate controls, associated with higher expression of Cdh5. Thus,  

11β-HSD1 deficiency in myeloid phagocytes promotes angiogenesis. Targeting  

11β-HSD1 in macrophages may be beneficial in tissue repair.

Introduction

Glucocorticoids exert anti-inflammatory effects both in vivo 
and in vitro. Whilst the potent effects of synthetic gluco-
corticoids have been widely exploited clinically to treat 
inflammatory disease, including rheumatoid arthritis, the 
role of endogenous corticosteroids in regulating inflamma-
tion is less well understood (Coutinho & Chapman 2011).  

Nevertheless, macrophages have emerged as a key target 
for the anti-inflammatory and immunomodulatory effects 
of endogenous glucocorticoids (Bhattacharyya et al. 2007, 
Tuckermann  et  al. 2007). Macrophages orchestrate much 
of the tissue remodelling that follows injury (Minutti et al. 
2016) and play a key role in the angiogenesis that is 
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important for tissue repair (Nucera et al. 2011). Macrophages 
are also important in the excessive or dysregulated angio-
genesis that contributes to the pathogenesis of many 
chronic inflammatory diseases, a maladaptive response in 
rheumatoid arthritis (Jackson et al. 1997, Koch 1998).

Macrophages express 11β-hydroxysteroid 
dehydrogenase type 1 (11β-HSD1), a glucocorticoid 
metabolising enzyme that, in intact cells, converts the 
intrinsically inert cortisone and 11-dehydrocorticosterone 
into the active glucocorticoids, cortisol and corticosterone, 
respectively (Chapman  et  al. 2013b). 11β-HSD1 thus 
amplifies glucocorticoid action. 11β-HSD1 deficiency or 
inhibition alters inflammatory responses (Chapman  et  al. 
2013a). 11β-HSD1-deficient mice show more severe acute 
inflammation in thioglycollate-induced sterile peritonitis 
(Gilmour  et  al. 2006), following lipopolysaccharide 
(Zhang & Daynes 2007), in carrageenan-induced pleurisy 
(Coutinho et al. 2012), in the K/BxN serum-induced model of 
inflammatory arthritis (Coutinho et al. 2012) and following 
coronary artery ligation in a model of myocardial infarction 
(McSweeney et al. 2010). Macrophages are implicated in the 
altered inflammatory responses of 11β-HSD1-deficient mice. 
In vitro, peritoneal or splenic macrophages from 11β-HSD1-
deficient mice overproduce inflammatory cytokines 
following lipopolysaccharide stimulation (Zhang & Daynes 
2007). During thioglycollate-induced peritonitis, 11β-HSD1-
deficient mice show a delay in the acquisition of phagocytic 
capacity by macrophages, though the inflammation resolves 
at a similar time to that in control mice (Gilmour  et  al. 
2006). Reduced cholesterol accumulation in macrophages 
plays a role in the atheroprotective and anti-inflammatory 
effects of global 11β-HSD1 deficiency or inhibition in 
atherosclerosis-prone Apoe−/− mice (Garcia  et  al. 2013, 
Kipari  et  al. 2013, Luo  et  al. 2013). Following myocardial 
infarction, macrophages accumulate around the infarct zone 
more rapidly in 11β-HSD1-deficient mice (McSweeney et al. 
2010). They switch to a pro-reparative, pro-angiogenic ‘M2’ 
phenotype earlier than in control mice, resulting in greater 
angiogenesis in the healing infarct and better recovery of 
heart function post-myocardial infarction (Small et al. 2005, 
McSweeney et al. 2010, Michailidou et al. 2012). Global 11β-
HSD1 deficiency is also pro-angiogenic in other contexts: in 
the sponge implantation assay (Small et al. 2005); in adipose 
tissue of obese mice where it is associated with reduced 
adipose tissue hypoxia and inflammation (Michailidou et al. 
2012) and in cutaneous surgical wounds, where it is 
associated with improved wound repair (Small et al. 2005).

Here, we have generated mice deficient in 11β-HSD1 
in myeloid phagocytes (Hsd11b1MKO) to investigate the 
role of 11β-HSD1 activity in macrophages. We have 

used models of inflammation associated with a strong 
angiogenic response – the K/BxN serum transfer model of 
inflammatory arthritis and the sponge implantation assay, 
in which the role of 11β-HSD1 activity in macrophages  
is examined.

Materials and methods

Animals

All experiments on animals were carried out in 
accordance with the UK Home Office Animals (Scientific 
Procedures) Act of 1986 and European Directive 
2010/63/EU, following approval by the University of 
Edinburgh Animal Welfare and Ethical Review Body. 
Mice were housed in groups (2–5 per cage) under 
controlled conditions: 12 h light/darkness cycle at 
21°C with free access to standard rodent chow and 
water. Hsd11b1f/f mice, with LoxP sites flanking exon 3 
of the Hsd11b1 gene, were generated by TaconicArtemis 
(Cologne, Germany) onto a C57BL/6 background (Verma 
M, Kipari TMJ, Zhang Z, Man TY, Forster T, Homer NZM, 
Seckl JR, Holmes MC & Chapman KE, unpublished 
observations). Hsd11b1MKO mice with myeloid cell  
11β-HSD1 deficiency were generated by crossing LysM-Cre 
(backcrossed to a C57BL/6 background (Cramer  et  al. 
2003)) with Hsd11b1f/f mice. Experimental (Hsd11b1MKO) 
and littermate control (Hsd11b1f/f) mice were the 
offspring of male Hsd11b1MKO mice bred with female 
Hsd11b1f/f mice. Hsd11b1Del1/Del1 mice (Verma M, 
Kipari TMJ, Zhang Z, Man TY, Forster T, Homer NZM, 
Seckl JR, Holmes MC & Chapman KE, unpublished 
observations) were generated from Hsd11b1f/f mice and 
are homozygous for a germline deletion of exon 3 of 
the Hsd11b1 gene. All experiments used male mice aged 
between 8 and 16 weeks.

Peritoneal myeloid cell isolation and 11β-HSD1  
activity assay

Mice were killed by CO2 asphyxiation. Resident cells 
were harvested from the peritoneum by lavage with 
5 mL ice-cold PBS as previously described (Gilmour et al. 
2006). Inflammatory cells elicited to the peritoneum 
24 h, 72 h or 96 h following intra-peritoneal injection 
of thioglycollate (0.2 mL, 10%) were collected by lavage 
with 5mL ice-cold PBS (Coutinho  et  al. 2016). At 24 h, 
cells comprise mainly neutrophils and monocytes, 
whereas the population is predominantly macrophages at 
72 h and 96 h (Melnicoff  et  al. 1989, Zhang  et  al. 2008, 
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Coutinho  et  al. 2016). Where appropriate, neutrophils 
were isolated with anti-Ly6G antibody (clone RB6-8C5, 
Thermo Fisher Scientific) coupled to anti-rat IgG micro-
beads (Miltenyi Biotec Ltd., Bisley, Surrey, UK) by 
magnetic-activated cell sorting as described previously 
(Coutinho  et  al. 2016). Macrophages were purified by 
adherence to tissue culture plates using an established 
procedure that gives >90% purity (Zhang  et  al. 2008).  
11β-HSD1 activity in cultured cells was measured by 
addition of 5 nM [3H]-11-dehydrocorticosterone to the 
medium, as described previously (Coutinho et al. 2016).

K/BxN serum transfer-induced arthritis

K/BxN serum was generated in-house as described previously 
(Coutinho et al. 2012). To induce arthritis in mice, 100 μL 
serum was injected intraperitoneally. Inflammation was 
scored daily for 21 days by an investigator blind to genotype. 
Scoring was carried out by visual examination according to 
a clinical index in which each joint was ascribed a score 
of 0–3, as described previously (Coutinho et al. 2012). The 
combined scores of all 4 limbs were calculated for each 
mouse. For histology, joints were fixed in 10% formalin for 
1 day and then decalcified in 10% EDTA in neutral buffered 
formalin and paraffin embedded. Joint sections (4 μm) were 
deparaffinised, hydrated and stained with haematoxylin 
and eosin for histopathological examination. The severity 
of pathological changes in the ankle joint was quantified 
on a scale of 0–3 for each mouse, based on a scoring system 
modified from a previous protocol (Ruiz-Heiland  et  al. 
2012). Briefly, the main pathological feature, synovium 
thickening, is assessed and assigned a score of 0 if there 
is no change compared to untreated, 1 if there is mild 
proliferation, 2 if there is extended proliferation and 3 if 
there is severe proliferation with tenosynovitis. RNA was 
extracted from the hind ankle joints using Trizol (Thermo 
Fisher Scientific) following pulverisation using a mortar 
and pestle, under liquid nitrogen.

Sponge implant assay of angiogenesis

Mice were anaesthetised with isoflurane, and a sterilized 
sponge cube measuring 1 × 1 ×1 cm (Caligen Foam, 
Accrington, Lancashire, UK) was implanted subcutaneously 
on each flank, as described previously (Small et al. 2005). After 
21 days, mice were killed and sponges were removed. The 
sponge from the right flank was frozen at 80°C for later RNA 
extraction using Trizol (Thermo Fisher Scientific). The sponge 
from the left flank was fixed in 10% formalin and embedded 

in paraffin. Sections were stained with haematoxylin and 
eosin for angiogenesis scoring. Vessel density was determined 
by Chalkley counting, as described previously (Small et al. 
2005) by an investigator blind to experimental group. 
Briefly, a 25-point Chalkley eyepiece graticule (Graticules 
Ltd, Edenbridge, Kent, UK) was used to count blood vessels 
at ×250 magnification. The graticule was placed so that the 
maximum number of graticule dots overlay with blood 
vessels. The average count values (3 random areas/section, 2 
sections/sample) were recorded as vessel numbers.

Immunohistochemistry

Paraffin-embedded sections (4 µm) were deparaffinised, 
blocked with 10% goat serum after antigen retrieval 
with citrate buffer (pH 6) and incubated overnight with 
primary antibodies against isolectin IB4 (Alexa Fluor 
488-conjugated isolectin B4, 1:100; I21411, Thermo 
Fisher Scientific) and α-smooth muscle actin (anti-actin, 
α-smooth muscle-Cy3 antibody, mouse monoclonal clone 
1A4; C6198-100UL, Sigma-Aldrich) to detect endothelial 
cells and perivascular mural cells, respectively.

Western blotting

Peritoneal cells or purified Ly6G+ cells were homogenised 
in RIPA buffer (R0278, Sigma-Aldrich) supplemented 
with proteinase inhibitor cocktail (1:100 dilution; 
P8340, Sigma-Aldrich) and phosphatase inhibitor 
(1:100 dilution; P2850, Sigma-Aldrich). Proteins (20 µg/
sample) were separated by electrophoresis on a 4–12% 
Bis-Tris gel (NP0323BOX, Thermo Fisher Scientific) and 
then transferred to a 0.4 µm nitrocellulose membrane. 
Antibodies used for Western blotting recognise 11β-HSD1 
(raised in sheep and kindly provided by Dr Scott Webster, 
the University of Edinburgh (De Sousa Peixoto  et  al. 
2008, Coutinho et al. 2016)), β-tubulin (MAB3408, Merck 
Millipore) and GAPDH (ab9485, Abcam).

RNA analysis

RNA (1 µg) was reverse transcribed into cDNA using a 
SuperScript III Reverse transcriptase system kit (Thermo 
Fisher Scientific). Levels of specific cDNAs were measured 
by quantitative (q)PCR in triplicate, using a LightCycler 
480 (Roche) and Universal Probe Library (UPL; Roche)-
based assays. Primer and probe information is shown in 
Supplementary Table  1 (see section on supplementary 
data given at the end of this article). A standard curve 
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was prepared from pooled cDNA samples. Relative 
quantification was provided by LightCycler software 
using the maximum second derivative method and 
mRNA levels were normalised to an internal standard 
(chosen according to invariance between groups and 
validated against 18S RNA); Tbp or Hprt, as indicated in 
figure legends.

Statistics

Values are means ± standard error of means (s.e.m.). Data 
were analysed using GraphPad Prism 5.0. Unpaired t-tests 
(with Welch’s corrections when variance was unequal), 
and one-way and two-way analysis of variance (ANOVA) 
were used, as appropriate. Significance was set at P < 0.05.

Results

Disruption of 11β-HSD1 in resident macrophages

To generate Hsd11b1MKO mice with disruption of 11β-HSD1  
expression in myeloid phagocytes, LysM-Cre transgenic 
mice (Cramer  et  al. 2003) were crossed with mice in 
which exon 3 of the Hsd11b1 gene is flanked by LoxP 
sites (Hsd11b1f/f mice) (recombination strategy shown 
in Supplementary Fig.  1). LysM-Cre transgenic mice are 
reported to efficiently delete LoxP-flanked target genes  
in granulocytes and mature macrophages, with lower 
efficiencies in other myeloid cells (Clausen  et  al. 1999). 

Measurement of 11β-HSD1 activity in myeloid cell 
populations from Hsd11b1MKO mice showed an 89% 
decrease in 11β-HSD1 activity in peritoneal resident cells, 
compared to Hsd11b1f/f littermate controls (Fig.  1A), 
consistent with the disruption of Hsd11b1 in this 
predominantly macrophage population (Clausen  et  al. 
1999). In contrast, there was no significant reduction in 
11β-HSD1 activity in thioglycollate-elicited peritoneal 
cells from Hsd11b1MKO mice collected 24 h (monocytes/
macrophages and neutrophils (Melnicoff  et  al. 1989, 
Coutinho  et  al. 2016)) or 96 h following thioglycollate 
injection (predominantly macrophages (Melnicoff  et  al. 
1989, Zhang  et  al. 2008)) (Fig.  1B and C). Similarly,  
11β-HSD1 activity was not significantly altered in 
purified neutrophils (Ly6G+ cells) from the peritoneum 
of thioglycollate-injected Hsd11b1MKO mice, compared 
to littermate controls (Fig.  1D). 11β-HSD1 activity 
was maintained in these myeloid cell populations 
despite the efficient reduction in Hsd11b1 mRNA levels 
(Supplementary Fig.  2). Western blotting confirmed a 
marked reduction in 11β-HSD1 protein levels in the 
resident peritoneal cell population of Hsd11b1MKO mice, but 
only a modest reduction in peritoneal cells collected 24 h 
or 96 h following thioglycollate injection and in purified 
neutrophils (Supplementary Fig.  3). These data suggest 
that the protein half-life of 11β-HSD1 exceeds the half-
life of the thioglycollate-elicited monocyte/macrophage 
and neutrophil populations, but that 11β-HSD1  
activity is markedly reduced in the longer-lived resident 

Figure 1
11β-HSD1 activity is markedly reduced in resident 
peritoneal macrophages from Hsd11b1MKO mice. 
Resident peritoneal cells, or cells elicited to the 
peritoneum by i.p. injection of 0.2 mL 10% 
thioglycollate (TG), were harvested from 
Hsd11b1MKO (MKO: white bars) and control 
Hsd11b1f/f mice (Con: black bars). 11β-HSD1 
activity in peritoneal cells was measured by 
conversion of [3H]-11-dehydrocorticosterone to 
corticosterone in resident peritoneal cells (A) and 
in cells elicited to the peritoneum 24 h (B) or 96 h 
(C) following thioglycollate injection. Activity was 
also measured in purified neutrophils (Ly6G+ cells) 
isolated from the peritoneum 24 h after 
thioglycollate injection (D). 11β-HSD1 activity is 
expressed as pmol corticosterone/h/105 cells. 
Values are means ± s.e.m. and were analysed by 
unpaired t-test (n = 3–8, *P < 0.05).
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macrophage population. Given this, we sought to test  
the role of macrophage 11β-HSD1 in models of 
inflammation in which the role of resident macrophages 
may be evident.

Resolution of experimental arthritis is impaired in 
Hsd11b1MKO mice

Tissue-resident macrophages have been implicated in the 
development and resolution of inflammatory arthritis in 
mice induced by injection of K/BxN serum (Misharin et al. 
2014). We therefore investigated whether macrophage 
11β-HSD1 deficiency contributes to the more severe arthritis 
that develops in mice globally deficient in 11β-HSD1  
following injection of arthritogenic K/BxN serum 
(Coutinho et al. 2012). Hsd11b1MKO mice did not replicate 
the earlier onset of arthritis seen previously with global 
11β-HSD1 deficiency (Coutinho  et  al. 2012). However, 
resolution of arthritis was impaired in Hsd11b1MKO 
mice, compared to Hsd11b1f/f controls (Fig.  2A and B).  
The course of the resolution phase in Hsd11b1MKO  
mice was very similar to that of Hsd11b1Del1/Del1 
mice globally deficient in 11β-HSD1 (Fig.  2A and B). 
Histopathological examination of the joints showed  

bone erosion and marked fibroproliferation in the 
synovium (Fig. 2C). Quantification of histopathology using 
a scoring index showed more marked histopathological 
changes in Hsd11b1MKO mice, compared to littermate 
controls (Fig. 2D).

Rheumatoid arthritis is associated with neo-
angiogenesis within the affected joint (Jackson et al. 1997, 
Koch 1998). Consistent with this, immunofluorescent 
staining of joints for the endothelial cell marker, 
isolectin IB4, and α-smooth muscle actin (α-SMA), a 
marker of perivascular mural cells, revealed a high degree 
of vascularisation of the soft tissues of joints of both 
Hsd11b1MKO and control mice following K/BxN serum 
transfer arthritis (Fig. 3A). However, qPCR measurement 
of Cdh5 mRNA encoding the endothelial marker, vascular 
endothelial (VE)-cadherin, showed >2-fold higher levels 
of Cdh5 mRNA in joints of Hsd11b1MKO mice, compared to 
littermate controls (Fig. 3B).

Greater inflammatory angiogenesis in Hsd11b1MKO mice 
following subcutaneous sponge implantation

Increased levels of Cdh5 mRNA in joints of Hsd11b1MKO 
mice suggest an increase in neovascularisation of the joint 

Figure 2
Resolution of K/BxN serum transfer-induced 
arthritis is impaired in Hsd11b1MKO mice. Arthritis 
was induced in Hsd11b1Del1/Del1 (global knockout, 
GKO: triangular symbols, n = 3), Hsd11b1MKO 
(MKO: circular symbols/white bars, n = 6) and 
control Hsd11b1f/f mice (Con: square symbols/
black bars, n = 7) by i.p. injection of 100 µL K/BxN 
serum at day 0. (A) Clinical scoring of joint 
inflammation over 21 days. Values are 
means ± s.e.m. for Hsd11b1MKO and control 
Hsd11b1f/f mice. Data were analysed by two-way 
repeated measurement analysis of variance 
(ANOVA) with Bonferroni’s multiple comparisons 
test; *P < 0.05, **P < 0.01, ***P < 0.001. Only the 
mean value is shown for Hsd11b1Del1/Del1 mice. (B) 
The area under the curve (AUC) was calculated 
for the clinical score from days 9 to 21 (the 
resolution phase). Values are means ± s.e.m. Data 
were analysed by one-way ANOVA (P < 0.01) with 
post-hoc Dunnett’s multiple comparisons test 
with the Hsd11b1f/f group as control; *P < 0.05. (C) 
Representative sections of joints from Hsd11b1MKO 
and Hsd11b1f/f mice collected 21 days after 
injection and stained with haematoxylin and 
eosin showing tenosynovitis characterised by 
synovium hyperplasia, bone erosion and new 
bone formation. Scale bars, 100 µm. (D) 
Histopathological changes were quantified using 
a scoring index (see the ‘Materials and methods’ 
section for details) by an investigator blind to 
genotype. Values are means ± s.e.m. Data were 
analysed by Mann–Whitney test, n = 6, *P < 0.05.
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during inflammatory arthritis. Mice with global 11β-HSD1-
deficiency show greater inflammatory angiogenesis 
induced by subcutaneous sponge implantation (Small et al. 
2005). To test whether macrophage 11β-HSD1 influences 

inflammatory angiogenesis, sponges were implanted 
subcutaneously in Hsd11b1MKO and littermate control 
mice, with angiogenesis assessed 21 days later (Figure 4A). 
Quantification of blood vessel density in sponges showed 

Figure 3
Higher Cdh5 expression suggests greater angiogenesis in the joints of Hsd11b1MKO mice. Arthritis was induced by i.p. injection of 100 µL K/BxN serum, 
and the mice were killed 21 days later. (A) Immunofluorescent staining of blood vessels in the mesenchymal tissue of Hsd11b1MKO (MKO: top) and control 
mice (Con: bottom). From left to right: DAPI, isolectin B4, α-SMA. (B) RNA was extracted from hind joints and qPCR used to measure levels of Cdh5 mRNA 
relative to Hprt, used as an internal standard. Values are in arbitrary units (AU) and are means ± s.e.m. Data from Hsd11b1MKO (white bar) and Hsd11b1f/f 
mice (black bar) were analysed by unpaired t-test, n = 5–7, *P < 0.05.

Figure 4
Compared to littermate controls, Hsd11b1MKO mice show greater angiogenesis in the subcutaneous sponge implantation assay. (A) Representative 
images (×125 magnification) of haematoxylin and eosin-stained sections of implanted sponges removed after 21 days, showing neovascularisation 
(blood vessels: arrows). (B) Quantification of blood vessel numbers by Chalkley counting. RNA was extracted from sponges removed 21 days after 
implantation, and qPCR was used to measure levels of: (C) Cdh5 mRNA, (D) Il1 mRNA, and (E) Angiopoietin-1, -2 and -4 mRNAs, relative to levels of Hprt 
mRNA, used as an internal standard (mRNA values in arbitrary units, AU). Values are means ± s.e.m. Data from Hsd11b1MKO (MKO: white bars) and 
Hsd11b1f/f mice (Con: black bars) were analysed by unpaired t-test (A, B, C, E) or unpaired t-test with Welch’s correction (D); *P < 0.05, n = 10–11.

http://dx.doi.org/10.1530/JOE-17-0223
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20% greater vessel density in Hsd11b1MKO mice (Fig.  4A 
and B) associated with almost 2-fold higher levels of Cdh5 
mRNA (Fig. 4C). Levels of mRNA encoding IL-1β, a pro-
angiogenic cytokine (Voronov  et al. 2003), were >3-fold 
increased in sponges from Hsd11b1MKO mice (Fig.  4D) 
and there was also a trend for increased expression of 
mRNA encoding pro-angiogenic angiopoietins (Fig.  4E). 
Consistent with previous data from mice globally 
deficient in 11β-HSD1 (McSweeney et al. 2010), increased 
angiogenesis in Hsd11b1MKO mice was not associated with 
a change in Vegfa mRNA levels, nor were levels of mRNA 
encoding several other cytokines altered (Supplementary 
Fig.  4). These data support a role for macrophage  
11β-HSD1 in controlling angiogenesis and thus promoting 
the resolution of inflammatory arthritis.

Discussion

Our data in Hsd11b1MKO mice demonstrate that 
macrophages are a key cell type responsible for the pro-
angiogenic phenotype conferred by 11β-HSD1 deficiency. 
This suggests that 11β-HSD1-mediated glucocorticoid 
regeneration within macrophages alters their phenotype 
to control an ongoing inflammatory response. In 
Hsd11b1MKO mice, this happens without the perturbation 
in the systemic ratio of active to inactive glucocorticoid 
levels that occurs with global 11β-HSD1 deficiency 
(Harris  et al. 2001; Verma M, Kipari TMJ, Zhang Z, Man 
TY, Forster T, Homer NZM, Seckl JR, Holmes MC & 
Chapman KE, unpublished observations). Whether this 
is mediated by alterations in macrophage polarisation is 
currently unclear. However, in vitro, bone marrow-derived 
macrophages from Hsd11b1−/− mice behave similar to 
wild type (Gilmour  et  al. 2006, Zhang & Daynes 2007), 
suggesting the in vivo environment (and possibly substrate 
availability) is crucial to the physiological outcomes with 
11β-HSD1 deficiency. This is suggested by evidence of an 
earlier macrophage polarisation to a pro-angiogenic ‘M2’ 
phenotype after myocardial infarction (McSweeney et al. 
2010) and by higher expression of the M2 marker, SHIP1, 
in macrophages of Hsd11b1−/− mice than wild-type 
controls (Zhang & Daynes 2007).

Whilst resident peritoneal macrophages from 
Hsd11b1MKO mice showed the predicted reduction in  
11β-HSD1 activity and Hsd11b1 mRNA, our finding of 
near-normal 11β-HSD1 protein and activity in myeloid 
cells recruited to the peritoneum of thioglycollate-injected 
Hsd11b1MKO mice, despite a marked reduction in the 
encoding mRNA, was unexpected. We have previously 

reported a discrepancy between 11β-HSD1 protein/
activity and levels of the encoding Hsd11b1 mRNA in 
mouse neutrophils, with 11β-HSD1 protein present 
despite little encoding mRNA (Coutinho  et  al. 2016). 
Other studies have noted similar discrepancies in other 
cell types (Bujalska  et  al. 2005, Chinetti-Gbaguidi  et  al. 
2012). This suggests that in most myeloid phagocytes 
11β-HSD1 protein has a long half-life and persists without 
renewal from ongoing mRNA translation, at least when 
inflammatory conditions prevail. The reduction in 11β-HSD1  
activity in resident peritoneal macrophages but not in 
thioglycollate-elicited macrophages may reflect the longer 
life span of the resident macrophage population compared to 
recruited bone marrow-derived macrophages (Davies et al. 
2013). Alternatively, the LysM-Cre transgene may be more 
highly expressed in resident macrophages. Expression of 
LysM/Lyz2, encoding LYSM, is known to be heterogeneous 
in macrophage populations (Faust et al. 2000, Hume 2011). 
In peritoneal cells, expression of LYSM is reportedly highest 
in large peritoneal macrophages that are highly phagocytic 
(Lichanska  et  al. 1999) and correspond to the resident 
population (Cain  et  al. 2013). This implicates resident 
macrophages in the pro-angiogenic phenotype seen with 
11β-HSD1 deficiency. Resident macrophages are important 
in tissue repair. They efficiently clear apoptotic cells and 
actively promote revascularisation (Uderhardt et al. 2012, 
Wang & Kubes 2016). Tissue-resident macrophages promote 
vessel anastomosis and thus vascular network complexity, 
acting downstream of vascular endothelial growth factor 
(VEGF)-α (Fantin  et  al. 2010). Our finding of unchanged 
expression of Vegfa in Hsd11b1MKO compared to control 
mice (also unchanged in global 11β-HSD1-deficient mice in 
a model of myocardial infarction (McSweeney et al. 2010)) 
is consistent with 11β-HSD1 acting in tissue-resident 
macrophages to restrain angiogenesis, downstream of 
VEGF-α. However, VEGF signalling is regulated at the post-
translational level and further investigation is required to 
establish whether (or how) VEGF signalling is involved 
in the increased angiogenesis that occurs in Hsd11b1MKO 
mice. Our data also suggest resident macrophages are an 
important target of glucocorticoid action in the resolution 
of inflammation. However, it remains possible that, in 
addition to macrophages, other cell types contribute 
to the pro-angiogenic phenotype observed with global  
11β-HSD1 deficiency.

Thus, Hsd11b1MKO mice support a role for 11β-HSD1 in 
restraining and shaping the healing response orchestrated 
by resident macrophages in ischaemic or injured tissue. 
These mice will be a useful tool with which to dissect the 
contribution of macrophages to beneficial (or otherwise) 
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effects of 11β-HSD1 in other models of tissue repair 
and/or chronic inflammation.
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This is linked to the online version of the paper at http://dx.doi.org/10.1530/
JOE-17-0223.
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