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There is an urgent need for therapeutic interventions for desensitization and antibody-
mediated rejection (AMR) in sensitized patients with preformed or de novo donor-specific
HLA antibodies (DSA). The risk of AMR and allograft loss in sensitized patients is increased
due to preformed DSA detected at time of transplant or the reactivation of HLA memory
after transplantation, causing acute and chronic AMR. Alternatively, de novo DSA that
develops post-transplant due to inadequate immunosuppression and again may lead to
acute and chronic AMR or even allograft loss. Circulating antibody, the final product of the
humoral immune response, has been the primary target of desensitization and AMR
treatment. However, in many cases these protocols fail to achieve efficient removal of all
DSA and long-term outcomes of patients with persistent DSA are far worse when
compared to non-sensitized patients. We believe that targeting multiple components of
humoral immunity will lead to improved outcomes for such patients. In this review, we will
briefly discuss conventional desensitization methods targeting antibody or B cell removal
and then present a mechanistically designed desensitization regimen targeting plasma
cells and the humoral response.
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INTRODUCTION

Desensitization treatment within the field of transplantation refers to the process of antibody
removal (1), specifically preformed donor-specific HLA antibody (DSA). DSA as a barrier to
successful transplantation was first described in early reports of kidney hyperacute rejection in the
context of positive complement dependent cytotoxicity (CDC) by Ramon & Terasaki et al. (1),
Improvements in histocompatibility testing have removed the risk of hyperacute rejection across all
organs, yet acute and chronic AMR remain a major contributor to poor transplant outcomes (2, 3).

The Current Status of HLA Sensitization
For many patients awaiting transplantation, blood transfusion, prior transplantation, and
pregnancy are the sources of sensitization (4, 5). There is evidence that the primary source of
HLA sensitization is important. Transplantation appears consistently as the strongest sensitizing
event inducing both class I and II HLA antibody (6, 7); however, there is some evidence that post-
transplant, those with pregnancy induced HLA-antibody respond more rapidly (5). Waiting times
org June 2021 | Volume 12 | Article 6947631
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for highly sensitized patients, calculated Panel Reactive Antibody
(cPRA)> 80% (8) are longer, leading to increased morbidity and
mortality. Compared to patients with absent or low cPRA, the
highly sensitized candidates could expect to wait twice as long for
a compatible transplant in both the USA (9) & UK (10). In
Europe, the acceptable mismatch program has long been
advocated to reduce waiting times for highly sensitized patients
(11). Recently, in the USA the new kidney allocation scheme
(KAS) (12), was specifically designed to improve the
transplantation rates for sensitized patients by providing more
allocation points and mandating regional and national sharing
for those with the highest CPRA. Early KAS reports suggest that
this has largely been successful (13, 14).

For sensitized patients with an incompatible living kidney
donor, to whom they have DSA, the decision is whether to use a
kidney paired donation (KPD) program to obtain a compatible
match, await a compatible deceased donor offer, or proceed with
a HLA-incompatible, positive cross match transplant (HLA-i)
which requires desensitization prior to transplantation.
Simulation of how KPD programs might run were initially
optimistic (15), but over time many struggle with a pool
enriched with highly sensitized patients unless specific
matching interventions are made (16), or a combination of
both desensitization and KPD is utilised (17).

The Current Standing of Desensitization
In the USA, multicenter data demonstrates a clear survival
benefit (18) in proceeding with an HLAi; however, in the UK
the picture is more nuanced with no survival benefit
demonstrated, although for the patients awaiting a compatible
transplant, around 40% remain untransplanted at 5 years post-
listing (19). Desensitization then remains a guaranteed route for
a highly sensitized recipient to obtain transplant, albeit with
greater immunological risk. To date, desensitization therapies
have largely relied upon physical methods of antibody removal in
the form of repeated plasmapheresis, in conjunction with
additional agents. In this review, we will outline the currently
used regimen for desensitization, as well as describing new
potential approaches.
THE CURRENT DESENSITIZATION
TREATMENT STRATEGY

In highly sensitized patients removal of circulating anti-HLA
antibody or lowering cPRA is an important and fundamental
strategy for expanding donor options and successfully
transplanting across DSA barriers. However, durable inhibition
of HLA antibody production is the “holy grail” for successful
kidney transplantation (KT) in sensitized patients.

Plasmapheresis or Immunoadsorption
Plasmapheresis (PP) has been used for several decades as a
method for lowering circulating antibody in various immune
diseases (20, 21). Plasmapheresis physically removes large
molecular weight substances from the plasma, including
Frontiers in Immunology | www.frontiersin.org 2
antibodies, complement components immune complexes and
coagulation factors (22). Using the double filtration
plasmapheresis (DFPP) system, a cascade of filtration traps
larger molecules, and thus allow lower molecular weight
components to pass back to the patient (23).Together with
IVIg, it has been used to effect successful transplantation for
positive crossmatch patients, and for many units, is the mainstay
of desensitization prior to transplantation (24–26). In Europe
and Australia immunoadsorption (IA) using staphylococcal
protein A column has been applied in eliminating antibodies
(27–29). The kinetics of antibody removal by PP are predictable
within limited periods compared with other treatment modalities
since plasma proteins are reliably removed (30). Therefore, PP or
IA can be used as an effective treatment modality in the setting of
planned transplantation across a positive HLA cross-match in
living donor KT. PP or IA has a limitation of antibody rebound
after the completion of treatment sessions.

Intravenous Immunoglobulin
IVIG has been widely used in inflammatory and autoimmune
conditions (31). IVIG also has a role in AMR treatment in kidney
transplantation (32). Although widely used as part of
desensitization regimens for many decades, the precise
mechanism of action is unknown as a result of its broad
spectrum of effects. Many potential mechanisms of action of
IVIG in transplantation have been proposed. The main
mechanisms are considered to be neutralization of circulating
anti-HLA antibodies with anti-idiotypic antibodies (31), the
inhibition of complement activation (33, 34), and binding to
Fc receptors on immune cells (35, 36). It is also postulated that
IvIg following plasmapheresis prevents rebound of DSA, by
providing an abundant quantity of circulating IgG (37, 38).
IVIG has been used in various doses according to protocol
from 100mg/kg to 2.0g/kg in desensitization prior to living
donor KT or for deceased donor KT of patients with high PRA.

Although various combinations of IVIG or PP with rituximab
have been proposed, two protocols have been widely accepted
and used (39).

PP With Low-Dose IVIG vs. High-Dose
IVIG Alone
Using PP with low-dose IVIG, many centers report transplant
outcomes with acute AMR rates of 12-43% when used in
combination with various induction agents, anti-thymocyte
globulin, anti-IL-2Rc antibody or OTK3 (40–43). The NIH
IGO2 study, a controlled clinical, multi-center, double blinded
trial of IVIG (2g/kg, monthly 4 times) versus placebo in
sensitized patients, HLA antibody levels were reduced further,
and the transplantation rate was higher in the IVIG group than
in the placebo group (44). Glotz et al. reported results of high-
dose IVIG desensitization with anti-thymocyte globulin
induction in cross-match positive patients (45). Jordan et al.
reported successful transplantation outcomes with two doses of
2mg/kg IVIG on day 0 and day 30 with rituximab in 20 patients
(46). In this study, 16 patients among 20 could receive KT within
6 months. In their subsequent series, they used high-dose IVIG
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2g/kg, 3 times on day 1, day 30 and at the time of transplantation
with rituximab (47). Among 76 patients with PRA ≥30%, 31
patients received living donor KT, and 45 patients received
deceased donor KT with reduced waiting time of 4.2 ±
4.5 months.

Anti-CD20 Antibody (Rituximab)
Rituximab is an anti-CD20 monoclonal antibody that binds to
CD20 expressed on immature and mature B-lymphocytes,
inducing apoptosis via antibody-dependent cytotoxicity,
complement-dependent cytotoxicity or direct apoptosis.
Originally, anti-CD 20 antibody was used to treat B-cell
lymphoma. In transplantation, rituximab was introduced to
deplete B cells with the goal of reducing donor-specific
antibody (DSA) production (48). Rituximab has been used as
an additional therapy as part of desensitization treatments, in
conjunction with plasmapheresis & IvIg (46, 49). The half-life of
rituximab in patients with end-stage renal disease is known to be
9-14 days (50). Rituximab administration can maintain durable
B-cell depletion for at least six months, but rituximab does not
bind to plasma cells as they do not express CD20 (51).

Unmet Need For Sensitized Patients
Because no randomized controlled clinical trial has compared the
twomain protocols described above, and the study populations and
the criteria for transplantation vary, it is difficult to evaluate which
protocol is best. Desensitization protocols using high-dose IVIG or
low-dose IVIG + PP with rituximab have relative advantages and
disadvantages. A PP-based protocol with low-dose IVIG, within
limited periods, is more effective and predictable for lowering
antibody levels. On the other hand, in spite of possible non-
response, high-dose IVIG has the advantage in patients with high
PRAonthewaiting list ofbeing less invasive given theunpredictable
time to transplantation. However, both current desensitization
protocols have limitations. Regardless of whether high-dose IVIG
or low-dose IVIG with PP were used, acute AMR rate as well as
acute cellular rejection rates were higher in desensitized patients
than in non-sensitized patients (52). In a study that included
surveillance biopsy of desensitized KT recipients, the subclinical
AMR rate was 31% at 3 months post-transplantation, and patients
with subclinical AMR at 3months post-transplantation had higher
C4d, ptc and arteriosclerosis scores post-transplantation at 1 year
than the patients without subclinical AMR at 3 months post-
transplantation (53). Transplant glomerulopathy was reported at
a rate of 44% at a mean of 18 months post-transplantation (54).
After desensitization, long-term outcomes of KT seems to be worse
than for unsensitized patients (42).
SENSITIZATION IN THORACIC ORGAN
TRANSPLANT RECIPIENTS: SIMILARITIES
AND DIFFERENCES

Thoracic transplantation shares similar immunologic challenges
as HLA sensitization in kidney recipients. However, no
alternative organ replacement modalities support life in end-
stage lung disease as dialysis in end-stage renal disease. While left
Frontiers in Immunology | www.frontiersin.org 3
ventricular assist devices (LVAD) have emerged as a viable
alternative to heart transplant, it is not without significant risks
and complications that limit access to therapy. As such, thoracic
transplantation faces a greater urgency and waitlist mortality,
and desensitization regimens must take into account these
temporal challenges of sensitized patients. 1 in 7 adult heart
transplant candidates are sensitized, a number that has doubled
in the past two decades (55). A rising incidence is anticipated due
to the expanding use of LVADs as a bridge to transplantation,
advanced congenital heart disease surgery leading to more
patients surviving to require transplant, and, to a smaller
extent, an increase in re-transplantation (55). On the contrary,
the true burden of sensitization in lung transplantation is
unknown. National and international registries lack robust
DSA or PRA/cPRA data for lung transplants. In the ISHLT
registry, women, who are known to have greater sensitization
secondary to pregnancy, comprise 60% of the waitlist but receive
only 43% of the transplants, with a median time to
transplantation of 233 days compared to 86 for men (56). To
better understand and quantify this issue, comprehensive cPRA
reporting in lung transplantation registries is required. Many
lung transplant programs currently practice avoidance of DSA at
the time of organ allocation, significantly limiting sensitized
candidates’ access to transplant (57).

A common sequela of AMR in heart transplantation is
cardiac allograft vasculopathy (CAV), and in lungs, chronic
lung allograft dysfunction (CLAD), both of which result in
significant mortality and morbidity within 5 years of
transplantation (57–63). The primary goals of desensitization
in thoracic transplantation are to increase access to
transplantation through expansion of the donor organ pool
and to prevent AMR and its subsequent morbidity and
mortality. No approach has demonstrated significant and
sustainable reductions in HLA antibody prior to transplant,
and patients with elevated PRA continue to be at higher risk
for rejection and reduced survival (64).

Shifting Toward Sensitization
As mentioned, use of mechanical support as bridge to
transplantation has been steadily increasing, reaching 50% of
patients on the waiting list for heart transplant in 2013.
Particular attention to the immunologic challenges associated
with LVADs to target interventions is necessary. While many
studies suggest that LVAD-associated allosensitization limits
sensitized candidates’ access to transplant, they fail to show
that it leads to rejection or increased mortality after receiving a
transplant (65). Notably, most of the evidence implicating such
findings has been gathered from studies that examined pulsatile-
flow LVADs and pre-dates the use of current generation
continuous-flow LVAD (65–67). In a more recent study by Ko
et al, 23% of patients became newly sensitized after continuous-
flow LVAD implant (68). Compared with patients without new
sensitization or those already sensitized at baseline, these patients
had an increased risk of ACR and AMR, but comparable survival
5 years post-transplant, consistent with an earlier study (69).
This suggests that even if the alloantibody levels were decreased
before transplant by conventional methods, such as IVIg and
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plasmapheresis, maintenance immunosuppression targeting
memory B cells and plasma cells is critical to prevent rebound
DSA. In addition, the patients who were newly sensitized after
LVAD implant and did not reach transplantation had a higher
level of allosensitization (27.9% vs. 10.2%) and a high mortality
of 39.5% during follow-up. This is consistent with a study by
Alba et al. that also found an association between high PRA and
lower transplant probability that likely drives the high mortality
observed (70). A key concern with LVAD is the requirement of
blood transfusions that result in the generation of new anti-HLA
antibodies; however, our understanding of the mechanism by
which patients on LVAD support develop allosensitization is
largely unchanged since 1999 (71). It is also known that platelets
and fibrinogen can adhere to the surface of LVAD coated with
polyurethane membrane and form a fibrin matrix which traps
other cells (72). The trapped cells could provide subsequent
excessive activation signals via cytokines and costimulation to T
cells. During this aberrant state of T cell activation, LVAD
patients are believed to develop B cell hyper-reactivity with
subsequent allosensitization. By way of a CD95-dependent
pathway, these activated T cells then undergo apoptosis (73).

Current Desensitization Strategy in
Thoracic Organ Transplantation
Despite these challenges, efforts to desensitize patients on the
waitlist have generated limited success. The current research is
centered around renal transplant experience with application in
thoracic transplantation limited by several factors. In both heart
and lung transplantation, there are requirements for donor-
recipient s ize matching and transplant urgency is
comparatively greater. Consequently, patients do not survive to
begin clinical trials and the unpredictable nature of donor
availability significantly limits the use of desensitization
treatments prior to transplantation as prolonged period of
treatment may confer more risks than benefits. Progress has
been made from using IVIg and PP alone to using a variety of
targeted therapies, although evidence in thoracic transplantation
remains scarce. No large cohort desensitization strategy has been
described in thoracic transplantation.
NEW PHARMACOLOGIC STRATEGIES
FOR DESENSITIZATION

Targeting Antibodies
IgG Endopeptidases
More recently, attempts have been made to fundamentally alter
the structure of preformed antibody, using IgG endopeptidase
(IdeS) which is a bacterial enzyme produced by S. pyogenes that
cleaves all four human IgG subclasses into F(ab) & F (c)
fragments, thus inhibiting both complement-dependent
cytotoxicity and antibody-dependent cytotoxicity (74). IdeS has
additional effects by cleaving the IgG present in the B-cell
receptor complex (BCR), thus switching off B-cell memory as a
downstream effect (75). Jordan et al. recently completed a trial of
IdeS in 25 highly sensitized patients prior to HLA-incompatible
Frontiers in Immunology | www.frontiersin.org 4
kidney transplantation (76). All patients had near-complete or
complete reductions of anti-HLA antibodies and donor-specific
antibodies at 24 hours post-transplant, which allowed successful
transplantation in 24/25 (96%). However, in 1-2 weeks the levels
of these antibodies rebounded. Ultimately, one patient had graft
loss from hyperacute rejection, while 10/25 (40%) had evidence
of antibody-mediated rejection in the early post-transplant
period. These findings suggest that IdeS has strong, albeit
transient, ability to reduce DSA that may make this therapy
useful in combination with strategies that allow for longer-term
control of DSA rebound.

Anti-FcRn Approach
Brambell et al. identified FcRn, a neonatal IgG receptor that is
closely related to the MHC Class I receptor, which is involved in
a variety of critical biological and immunological functions, most
notably regulating serum IgG levels and the recycling and
transcytosis process that results in an increased half-life of IgG
and albumin in human serum (77–80). Strategies that block the
IgG-FcRn interaction are hypothesized to promote IgG
degradation and decrease pathogenic autoantibodies and
alloantibodies (81, 82). IVIG was one of the first therapies to
decrease anti-HLA antibodies and treat antibody-mediated
autoimmune diseases through blocking the IgG-FcRn pathway,
leading to saturation of FcRn receptors and degradation of IgG
molecules (78, 83, 84). Since then, multiple therapies targeting
FcRn or the IgG-FcRn interaction have been developed as
treatment for autoimmune and infectious diseases, with
promising benefits as therapeutic agents in reducing AMR in
transplantation. Several monoclonal antibodies against FcRn
such as M281, SYNT001, Rozanolixizumab, RVT-1401, and
ABY-039 are in various clinical development stages. M281, a
deglycosylated IgG anti-FcRn mAb, was well tolerated and
achieved reduction of serum IgG levels of 80% from baseline
in a phase I clinical trial (85). Rozanolixizumab (UCB7665) is a
high affinity anti-human neonatal FcRn mAb that reduced
plasma IgG concentrations in cynomologus monkeys by up to
85% (86). This led to a Phase I clinical trial of Rozanolixizumab
in healthy human subjects that demonstrated therapeutic
potential with sustained dose-dependent reductions in serum
IgG concentrations when administered IV or SC (87). Phase II
clinical trials of Rozanolixizumab were recently completed in
patients with immune thrombocytopenia (NCT02718716) and
myasthenia gravis (NCT03052751) (86). Seijsing et al. found that
an engineered alternative scaffold protein [affibody molecule
(ZFcRn)] effectively blocked the IgG-FcRn interaction when
repeated injections of ZFcRn and ZFcRn fused to an albumin
binding domain (ABD) in mouse models led to a 40%
reduction of IgG in serum (88). ABY-039 is a molecule similar
to ZFcRn -ABD undergoing phase I trial (NCT03502954).
Additional studies in animal models that inhibit IgG-FcRn
binding include an anti-FcRn directed mAb, 1G3, that
accelerated endogenous serum IgG clearance and reduced the
severity of myasthenia gravis in rat models (89). Abdegs, an
engineered antibody that inhibited FcRn recycling and enhanced
IgG degradation, was efficacious in a murine model of arthritis
(90). Synthetic FcRn-binding peptides (FcBP), small molecule
June 2021 | Volume 12 | Article 694763
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FcRn antagonists, and other molecules that interact with the Fc
binding site may also block IgG-FcRn interactions (78). Our
group also tested anti-rhesus FcRn mAb in a skin-sensitized
NHP model with kidney transplantation (manuscript in
submission). Treatment with aFcRn prior to transplantation
significantly reduced the levels of total and donor-specific
alloantibody. However, in the context of renal transplantation,
anti-FcRn treatment did not block the synthesis of DSA, such
that transient reduction in DSA was followed by robust DSA
increase and antibody-mediated rejection (manuscript in
submission). The anti-FcRn approach demonstrated promising
applications in lowering alloantibody levels in transplantation;
however potential limitations and complexity of using the agent
require further investigation in transplantation.

Targeting Plasma Cells
Following the discovery that alloantibody secreting cells
predominantly exist as long-lived plasma cells (LLPC) in the
bone marrow compartment, along with the identification of
these cells as being CD138+CD20 (91), bortezomib was used to
lower alloantibody (92). Bortezomib, a proteasome inhibitor (PI)
which depletes non-malignant plasma cells, was proposed to
reduce anti-donor HLA antibody. While some groups have
demonstrated efficacy of bortezemib to desensitize transplant
recipients, the drug was used in combination with conventional
therapies (93). Now several biologics targeting plasma cells are
available and are being considered.

Targeting Plasma cells with Proteasome Inhibition
Bortezomib (Velcade®) is a 1st generation, reversible inhibitor of
the 26S proteasomal subunit. This drug is a potent inhibitor of
plasma cells, which rely on rapid protein turnover to continually
secrete antibodies, and succumb to oxidative stress and apoptosis
when cellular recycling mechanisms are rendered nonfunctional.
For this reason, bortezomib is approved for usage in multiple
myeloma, a malignancy of plasma cells (94). Everly et al. first
described its use as effective treatment of AMR and ACR as well
as reduction in DSA in kidney transplant recipients (95), and
Mulder et al. showed that proteosome inhibitors bortezomib,
carfilzomib, oprozomib (ONX 0912), and immunoproteasome
inhibitor ONX 0914 (previously PR-957) reduced B-cell
proliferation, immunoglobulin production, and induced
apoptosis of activated B-cells (96). Following some success for
usage in refractory antibody-mediated rejection after kidney
transplantation (97, 98), several groups have used bortezomib
in the context of desensitization. Woodle et al. in the first trial
with bortezomib variably combined with plasmapheresis and
rituximab showed modest success with a reduction in the
immunodominant DSA of 38/44 (86%) highly sensitized
patients, successful transplantation of 19/44 (43.2%), and 17/19
(89.5%) of grafts functional at a median follow-up of 436 days
(92). Jeong et al. used a combination of high dose IVIG,
rituximab, and bortezomib and demonstrated a small
reduction in the MFI value of class I PRA, and an increased
rate of deceased donor kidney transplantation (8/19 or 42.1% of
desensitized patients vs. 4/17 or 23.5% of controls, p = 0.004)
with no graft loss in the desensitized group at a median follow-up
Frontiers in Immunology | www.frontiersin.org 5
of 23 months (93). The interpretation of these early favorable
outcomes was limited by the small, non-randomized nature of
the studies, and the confounding nature of its combination with
conventional desensitization methods. Studies using bortezomib
as monotherapy for desensitization have shown less promising
results with poor reduction of anti-HLA antibodies and
significant toxicity with longer courses of the drug (99, 100)
that have caused enthusiasm for its use in new desensitization
regimens to wane.

Carfilzomib (Kyprolis®) is a 2nd generation, irreversible
inhibitor of the 20S proteasomal subunit. Studies in patients
with multiple myeloma suggest that this drug may be more
efficacious and better tolerated than its predecessor bortezomib
(101). A current clinical trial of carfilzomib for desensitization is
underway (NCT02442648). Most recently, carfilzomib was
studied as desensitization monotherapy yielding 72.8% median
reduction in HLA antibodies and a 69.2% reduction in bone
marrow plasma cells with acceptable drug safety and toxicity
(102). Another second generation PI, ixazomib, warrants further
testing. Ixazomib is an oral-form peptide boronic acid
proteasome inhibitor distinct from bortezomib and recently
had a successful phase III trial (TOURMALINE-MM1) in
multiple myeloma (103–106). Other PI’s including marizomib,
delanzomib, and oprozomib are being studied as anti-cancer and
autoimmune therapies. PI’s have notably been studied most
recently as desensitization therapy and additional studies in
utilizing PI as maintenance immunosuppressive treatment
are needed.

Immunoproteasome Inhibitors
Conventional PIs are broad spectrum PIs with various dose-
dependent adverse effects. An attractive alternative would be to
solely target the proteasome of immune cells. Hematopoietic
origin cells display proteasomes with distinct catalytic subunits
and the complex is referred to as the immunoproteasome (107).
Interestingly, immunoproteasome is also expressed in
nonhematopoietic cells exposed to pro-inflammatory mediators
such as IFN-g and TNF-a (108). Therefore, inhibition of the
immunoproteasome allows for both the targeting of immune-
specific cells but also cells actively involved in the inflammatory
response. In kidney transplantation, it was found that patients
with chronic AMR have up-regulated immunoproteasome
activity (109). Newly developed immunoproteasome inhibitors
(IPI) could selectively inhibit proteasomes of cells involved in
graft rejection after transplantation, such as B and T lymphocytes
and APC’s, and regulate pro-inflammatory cytokines and the
differentiation of helper T cells (110, 111). But similar to
conventional PIs, PC population would be more sensitive on
IPIs. Current work in animal models has found that IPI is
superior to PI in suppressing the cellular and humoral immune
response, preventing chronic AMR, and prolonging survival
(110–112). ONX-0914, formerly known as PR-957, is an
LMP7-selective immunoproteasome inhibitor that is
undergoing clinical studies in the treatment of autoimmune
diseases and has potential applications in transplantation (110,
111). ONX-0194 and bortezomib combined suppressed DSA
production, B cells and plasma cells after kidney transplant,
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inhibited IgG, complement, and proinflammatory cytokines
IFN-y and IL-17, and reduced chronic allograft nephropathy.
In mismatched mouse cardiac transplantation, IPI treatment
with a noncovalent LMP-7 inhibitor, DPLG3, combined with
CTLA4-Ig led to decreased effector T cells and T cell exhaustion
(113). Other IPI’s such as Ipsi-001 and PR-924 are currently
under investigation as potential anti-cancer agents. IPI is
particularly attractive due to its specificity on immune cells
which shows larger safety margin compared to conventional
immunoproteasome inhibitors (114, 115). This may allow the
continuous (or long-term) treatment of IPI after transplantation
in sensitized recipients.

Outside of multiple myeloma therapies, there is still a range of
opportunities to target alloantibody reduction. Building on the
success of PIs, there has been focus on inhibiting protein
degradation via inhibition of initial ubiquitin binding rather
than the downstream proteasome complex (116). Another
promising avenue is modulating the endoplasmic reticulum
(ER). Inositol-requiring enzyme 1 (IRE1) inhibitors are
currently under development and may be available in the near
future (117, 118).

Monoclonal Antibodies for Targeting Plasma Cells
Inhibiting proteasome activity with PI should affect more than
plasma cell population since all eukaryotic cells utilize
proteasome to maintain their homeostasis. Even IPI should
have broad impact on immune cells. Therefore, monoclonal
antibody targeting of plasma cell population is very attractive.

CD38 is expressed at high levels by B lineage progenitors in
bone marrow, B-lymphocytes in germinal centers, and
terminally differentiated plasma cells (119, 120). Conversely,
mature naive and memory B cells express low levels of the
molecule (121, 122). Plasma cells (PC) actively producing allo-
antibodies should express high levels of CD38, thus resulting in a
reasonable target for PC depletion in desensitization therapy
(123) or deletion of plasma cells during active AMR (124).
Daratumumab is a human IgGk monoclonal antibody that
targets CD38 and induces apoptosis of PC (122, 125) via Fcg
receptor-mediated cross-linking (126) and macrophage-
mediated phagocytosis (127). In addition to depleting CD38+

cells, daratumumab also promotes expansion of memory and
naïve T-cells (122), and is approved as monotherapy in patients
with multiple myeloma (MM) (122, 125, 128, 129). Isatuximab, is
an anti-CD38 mAb also used in the treatment of MM. It induces
apoptosis of CD38+ cells through Fc-dependent and Fc-
independent mechanisms (130), depletes B-lymphocyte
precursors (131), and depletes NK cells through direct
activation and crosslinking of CD38 and CD16 on NK cells
(130). Elotuzumab is an IgG1 mAb that targets signaling
lymphocytic activation molecule F7 (SLAMF7), also known as
CD319, which is highly expressed on MM, NK and other
immune cells (132). Elotuzumab was found to activate NK
cells and induce apoptosis of SLAMF7+ cells via both CD16-
dependent and CD16-independent mechanisms (132, 133).

There are only anecdotal cases evaluating monoclonal
antibodies targeting PC in organ transplantation to prevent or
treat antibody-mediated rejection. Daratumumab showed
Frontiers in Immunology | www.frontiersin.org 6
effective desensitization and reversed acute/chronic antibody-
mediated rejection (134, 135). In our sensitized NHP model, we
reported the effectiveness of daratumumab in combination with
an anti-CXCR4 antagonist, plerixafor which mobilizes PC from
bone marrow to peripheral blood (135). However, we also
reported a possible off-target effect of daratumumab which
result in depletion of other CD38 expressing regulatory cells
including Treg, Breg, MDSC etc. This feature makes
daratumumab attractive for multiple myeloma (122), but could
trigger alloimmune responses in transplantation patients.
Daratumumab and eculizumab combined therapy reduced
dnDSAs, improved heart and kidney graft function, and
resulted in undetectable circulating PCs. However, class II DSA
returned after discontinuing daratumumab therapy (135). The
second patient was a highly sensitized recipient who received
daratumumab desensitization therapy prior to heart
transplantation. After eight weeks, there was found to be
reduction in cPRA (98% vs 62%) and class 1 anti-HLA
antibodies (35 vs 14) (135). Currently, there is a phase 1
clinical trial to evaluate daratumumab in decreasing circulating
antibodies in sensitized recipients awaiting heart transplantation
(ClinicalTrials.gov, NCT04088903). There is also a clinical trial
to evaluate the safety and efficacy of isatuximab as desensitization
therapy in patients awaiting kidney transplantation
(ClinicalTrials.gov, NCT04294459). If applied to transplant,
these therapies from myeloma field need be carefully evaluated
on their off-target effect in a transplantation setting.

Costimulation Blockade
Rebound of DSA after short-term PI has been reported (136–
138). This repletion of PC and DSA would be partially due to an
intra-marrow PC repopulation which might be related to PC
populations resistant to PI treatment. In the meantime, PC
population can expand outside of bone marrow. We observed
that the depletion of PC with bortezomib initiated germinal
center activation (138). This is probably due to the tightly
intertwined network among humoral components. PC may
provide a negative feedback loop to Tfh cells (or GC response)
since these cell populations compete for similar cytokines/
survival factors. Therefore, once one population, in this case
PC, disappear then the other cell population (Tfh) is promoted
(138). For this reason, targeting T cell help for B cell activation
could be a potential strategy for desensitization, especially since
the impact of costimulation blockade on humoral responses has
been shown in multiple studies (139–141). We and others have
reviewed this topic (142–145). It is notable that targeting PC
together with costimulation signals successfully prevented the
rapid rebound of DSA seen with PI monotherapy (146–149).
This suggests that targeting a single humoral component might
not be effective in controlling preformed or on-going allo-
humoral responses.

Targeting Mediators/Survival Factor
Interleukin-6 Receptor Inhibition
Interleukin-6 (IL-6) is a pleiotropic cytokine produced by many
different cell lineages. The membrane-bound IL-6 receptor (IL-
6R) is expressed only on hepatocytes and some immune cells
June 2021 | Volume 12 | Article 694763
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(150), but a soluble IL-6R also exists that can bind IL-6 and
together this complex can signal through the transmembrane
cytokine receptor gp130 (trans-signaling) expressed on nearly all
cell types (151). IL-6 is critical for many inflammatory pathways
and has a key role in the induction of follicular helper T cells,
which direct naïve B cells in the germinal center to differentiate
to memory B cells and high-affinity, IgG-secreting plasma cells
(152). Accordingly, dysregulated production of IL-6 has been
associated with chronic diseases such as diabetes, systemic lupus
erythematosus, rheumatoid arthritis, cancer, end-stage renal
Frontiers in Immunology | www.frontiersin.org 7
disease, crescentic glomerulonephritis, and graft versus host
disease (153–158). IL-6 has also been associated with deviation
of T cells towards a Th17 phenotype, reduction of the proportion
of Treg cells, and potentiation of allograft rejection in kidney
transplantation (159).

Tocilizumab (Actemra®) is a humanized monoclonal
antibody with activity against both the membrane and soluble
forms of IL-6R approved to treat moderate to severe rheumatoid
arthritis, systemic juvenile idiopathic arthritis, polyarticular
juvenile idiopathic arthritis, and Castleman’s disease (151).
FIGURE 1 | Multiple components of humoral immunity in organ transplantation.
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Pharmacologic inhibition of IL-6 signaling is attractive in the
context of desensitization strategies, as animal models have
shown that this therapy reduces alloantibody responses by
inhibition of bone marrow plasma cells and induction of Treg
cells (160). Vo et al. recently examined the efficacy of high dose
IVIG + tocilizumab in 10 highly sensitized patients who were
poorly responsive to high dose IVIG + rituximab (161). This
regimen was associated with reduced donor specific antibody
number and strength, decreased wait list time, and increased rate
of transplantation. No transplanted patients had evidence of
Frontiers in Immunology | www.frontiersin.org 8
antibody-mediated rejection on protocol biopsies. Larger,
randomized control trials will be helpful in determining the
ultimate value of this treatment given these promising
preliminary results.

Anti-BAFF Agents
B cell activating factor (BAFF) is a homotrimer and member of
the tumor necrosis factor (TNF) family that is found on the cell
surface as a transmembrane protein or released in soluble form
after cleavage (162). BAFF is secreted by multiple cell types,
TABLE 1 | Broad Overview of Possible Therapeutics for New Desensitization Regimens.

Drug Target Development Reference

B Cells
Ofatumumab Anti-CD20 FDA approval for CLL (166, 167)
Ocrelizumab Anti-CD20 FDA approval for primary progressive multiple sclerosis (168)
Ocaratuzumab Anti-CD20 Clinical trials (169, 170)
Obinutuzumab Anti-CD20 FDA approved for CLL (171)
Blisibimod Anti-BAFF Clinical trials (165)
Tabalumab Anti-BAFF Clinical trials (172–175)
Atacicpet Anti-APRIL & Anti-BAFF Clinical trials (176)
BR3-Fc Anti-BAFF Clinical trials (177, 178)
Belimumab Anti-BAFF FDA approval for SLE (179)
hAPRIL.03A & hAPRIL.01A Anti-APRIL Pre-clinical (180)
Epratuzumab Anti-CD22 Clinical trials (181, 182)
Lucatumumab Anti-CD40 Clinical trials (172, 183)
Dacetuzumab Anti-CD40 Clinical trials (172, 184)
Galiximab anti-CD80 Clinical trials (185, 186)
Plasma Cells
Indatuximab ravtansine anti-CD138 Clinical trials (172, 187)
Isatuximab Anti- CD38 Clinical trials (172, 188, 189)
Moxetumomab anti-CD22 immunotoxin Clinical trials (190)
Siltuximab IL-6 inhibitors FDA approval for multicentric Castleman’s disease (172, 191, 192)
Daratumumab Anti-CD38 FDA approval for multiple myeloma (172, 191)
MOR202 Anti-CD38 Clinical trials (172, 191)
Elotuzumab Anti-CS1 FDA approval for multiple myeloma (193)
Milatuzumab Anti-CD74 Clinical trials (172)
T Follicular Cells
Pembrolizumab PD-1 inhibitor FDA approval for unresectable or metastatic solid tumor (191, 194)
Nivolumab PD-1 inhibitor FDA approval for inoperable or metastatic melanoma (172, 191, 195–198)
Pidilizumab PD-1 and DLL1 Inhibitor Clinical trials (191)
BGB-A317 PD-1 inhibitor Clinical trials (199)
Durvalumab PD-L1 FDA approval for locally advanced or metastatic urothelial carcinoma (200–202)
Ubiquitin-Proteasome Inhibitors
IPP-201101 Spliceosomal peptide Clinical trials (203, 204)
Marizomib Proteasome inhibitor Clinical trials (203, 205–209)
Delanzomib Proteasome Inhibitor Clinical trials (203, 210)
Oprozomib Proteasome Inhibitor Clinical trials (203)
IPSI-001 Immunoproteasome Pre-clinical (115, 203, 211)
ONX-0914 Immunoproteasome Pre-clinical (203, 212)
PR-924 Immunoproteasome Pre-clinical (203, 213)
RO5045337 Ubiquitin E3 ligase Clinical trials (203)
RO5503781 Ubiquitin E3 ligase Clinical trials (203)
LCL161 Ubiquitin E3 ligase Clinical trials (203, 214)
AEG 35156 Ubiquitin E3 ligase Clinical trials (203, 215, 216)
Lenalidomide Ubiquitin E3 ligase FDA approval for multiple myeloma and myelodysplastic syndromes (203)
Pomalidomide Ubiquitin E3 ligase FDA approval for relapsed and refractory multiple myeloma (203)
Ubistatins 19S proteasome Pre-clinical (203, 217)
b-AP15 19S *DUBs Pre-clinical (203)
P5091 DUBs Pre-clinical (203)
P22077 DUBs Pre-clinical (203)
WP-1130 DUBs Pre-clinical (203)
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binds to three separate receptors, and is critical for the
maturation of B cells (163). BAFF also acts as a potent B cell
activator and is important in B cell proliferation and
differentiation. Therefore, blocking this molecule may be
essential when targeting allo-B cell response. A monoclonal
antibody against BAFF, belimumab (Benlysta®), was the first
targeted biologic approved for the treatment of systemic lupus
erythematosus (164). Belimumab monotherapy was tested for
desensitization in kidney transplantation (NCT01025193), but
this trial was closed early due to a reported lack of efficacy.
Blisibimod is a second anti-Baff agent developed for SLE. It is a
fusion protein consisting of four BAFF binding domains. This
anti-BAFF agent completed Phase II testing and currently being
tested in a Phase 3 trial, CHABLIS-SC1 [(165), NCT01162681].
While considerable progress has been made in the field of
desensitization, many potential and untested therapies remain.
Other anti-BAFF agents including tabalumab, atacicept, and
blisibimod have not been evaluated for desensitization in
human trials.
A MULTI-MODAL APPROACH TO
DESENSITIZATION

The concept of desensitization has been expanded from only
targeting alloantibody (IVIG/IA/plasmapheresis) to instead
targeting the upstream sources of antibody such as B cells
(Rituximab) and PC (proteasome inhibitor). The conventional
desensitization concept, removal of preformed antibody, may
prevent hyperacute rejection or acute AMR but without long-
lasting impact on humoral alloimmunity. While many
desensitization therapies have been tried alone or in
combination in animal models and human trials, none yet
have solved the barriers to transplantation faced by highly
sensitized patients with high titer HLA antibodies. The answer
to desensitization may lie in novel therapies not yet tested or
Frontiers in Immunology | www.frontiersin.org 9
those outside the field of transplantation. Therefore, upcoming
therapies targeting plasma cells are potentially very attractive.
However, considering the previous sensitization events to HLA,
allograft could trigger the memory response in sensitized
patients. For this reason, targeting each component of humoral
response such as alloantibody, B cells, or PC, would tentatively
reduce the steady state level of DSA, this would not promote
long-term control of humoral response after transplantation.
Due to its compensatory mechanism, it would more logical that
we develop strategies to desensitizing patients that target
multiple steps of DSA production. Fortunately, there are many
agents targeting each step of the humoral response as shown in
Figure 1 and Table 1. Unfortunately, there will also be too many
potential combinations of biologics to permit exhaustive
evaluation of each possible combination. Therefore, rational
approaches merit testing in a preclinical model before being
translated into the clinic.
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