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ABSTRACT: Mesoporous silica nanoparticles (MSNPs) are promising
nanomedicine vehicles due to their biocompatibility and ability to carry large
cargoes. It is critical in nanomedicine development to be able to map their
uptake in cells, including distinguishing surface associated MSNPs from those
that are embedded or internalized into cells. Conventional nanoscale imaging
techniques, such as electron and fluorescence microscopies, however,
generally require the use of stains and labels to image both the biological
material and the nanomedicines, which can interfere with the biological
processes at play. We demonstrate an alternative imaging technique for
investigating the interactions between cells and nanostructures, scattering-
type scanning near-field optical microscopy (s-SNOM). s-SNOM combines
the chemical sensitivity of infrared spectroscopy with the nanoscale spatial resolving power of scanning probe microscopy. We use
the technique to chemically map the uptake of MSNPs in whole human glioblastoma cells and show that the simultaneously
acquired topographical information can provide the embedding status of the MSNPs. We focus our imaging efforts on the
lamellipodia and filopodia structures at the peripheries of the cells due to their significance in cancer invasiveness.
KEYWORDS: Infrared imaging, subdiffraction, spectroscopy, s-SNOM, nanoparticles, nanomedicine

■ INTRODUCTION
Scattering-type scanning near-field optical microscopy (s-
SNOM) uses a sharp conducting probe that is illuminated
by a light source and brought close enough to a sample to
probe its optical near-field. The tip (usually part of an atomic
force microscope (AFM)) oscillates vertically, and by analyzing
the light that is backscattered from the region where it interacts
with the sample, the optical properties of a small sample patch
can be measured.
In the commonly employed pseudoheterodyne detection

regime,1 the amplitude and phase of the backscattered light
from the sample are independently measured, and, in the case
of weak harmonic oscillators such as the vibrational modes
probed here, relate to the real and imaginary parts of the
dielectric function of the sample, respectively.2 The imaginary
part of the dielectric function exhibits peaks centered around
the resonant frequencies of vibrational modes of the chemical
groups in the sample. Thus, the phase measurement is
proportional to the far-field absorption coefficient of the
sample at the wavelength of the illumination.3

With a suitable choice of light source, or sources, s-SNOM
enables near-field imaging4 at multiple wavelengths, allowing
one to generate nanometre scale chemical maps of samples.5,6

We use quantum cascade lasers (QCLs), which are tunable

throughout the mid-infrared, and are commonly employed in
s-SNOM.7

The high spatial frequency sample information is contained
in the optical near-field, which decays exponentially in
magnitude with distance from the sample surface. Bringing a
probe close to the sample surface results in the near-field
manifesting in the backscattered light from the probe. The
extent to which the near-field modifies the backscattered light
varies nonlinearly with the height of the probe above the
sample. Thus, when the probe is oscillated above the sample,
the backscattered light contains frequency components at the
harmonics of the oscillation frequency. By analyzing the
backscattered light at these harmonics, the near-field
component of the backscattered light, and thus the high
spatial frequency information, is recovered. The nonlinearity in
the backscattered light is related to the radius of curvature of
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the tip of the probe.8 Ultimately, therefore, the spatial
resolution of s-SNOM is determined by the tip radius (5−50
nm), not the illumination wavelength, and beats the normal
diffraction limit by several decades.9,10

Imaging of cancer cells is key for understanding processes,
such as cell migration and invasiveness. Examples include
migration inhibition with the application of flavonoids,11 and
cell−cell transfer of organelles through tunnelling nanotubes.12
These processes are determined by nanoscale peripheral cell
structures such as lamellipodia and filopodia;11 these are the
protrusions involved in cell motility and migration, both of
which play critical roles in cancer progression and metastasis.13

Infrared spectra acquired from cells represent a unique
biochemical fingerprint, providing information about the
biomolecules they contain, such as those that comprise the
cell’s organelles. Previously we have shown that s-SNOM can
be used for nanoscale chemical imaging of subcellular
organelles and internalized gold nanoparticles within ultrathin
(70−200 nm) sections of primary neurons14 and multiple
myeloma cells.15

These studies combined the nanoscale resolution of s-
SNOM (down to 5 nm16) with the chemical sensitivity of IR
spectroscopy. We are able to map biochemical fingerprints
from intracellular structures and assorted biomolecules as well
as nanoparticles that are currently being developed as imaging
probes or nanomedicines.
Raman spectroscopy is also used to probe biochemical

fingerprints and has been used to diagnose cancer using
biomarkers.17−20 However, the technique suffers from a low
scattering cross section which can make it difficult to image
and generate chemical maps of unlabeled samples when
compared with s-SNOM.21 Nonetheless, s-SNOM and tip-
enhanced Raman spectroscopy (TERS) are complementary
techniques and can both be employed as part of multimodal
imaging setups.22

Imaging of whole cancer cells represents an exciting yet
largely unexplored area for s-SNOM. Examples include
imaging amyloid β-sheets on the surface of neurons without
requiring immunolabeling,23 as well as imaging the surface of
red blood cells.24 The s-SNOM signal originates from sample
depths that are roughly commensurate with the lateral
resolution, so images of whole cells have a dominant
contribution from the ∼10 nm cell membrane and generally
only offer information on the surface features. However, it is
possible to identify a contribution to the s-SNOM signal from
components below the surface in both plane25,26 and spherical
(nanoparticle)27 geometries.
Here we take a step toward chemically imaging internal

structures by first imaging the internal volume of cells.28 We
image through the depth of a glioblastoma multiforme (GBM)
cell line, U-87 MG. These are significantly larger (∼50−100
μm) than the multiple myeloma cells and hippocampal
neurons (∼10 μm) investigated in our previous work.14,15 As
demonstration, we study the internalization of mesoporous
silica nanoparticles (MSNPs), and we show that constituents
of whole cells can be imaged using s-SNOM.
The MSNP example was chosen because their high

biocompatibility, degradability, and ease of functionalization
and surface modification for specific cell targeting29 gives them
a range of applications in nanomedicine. Compared to dense
silica nanoparticles,30,31 MSNPs offer nanometer size porosity
and large pore volume (0.48−1.21 cm3/g) and surface area

(700−1000 m2/g, ca. x30), giving them a correspondingly high
drug-loading capacity.32

We first present s-SNOM and AFM imaging of the periphery
of a U-87 MG cell, studying the three-dimensional cell surface
morphology, including lamellipodia and filopodia. Subse-
quently we use the IR chemical signature of MSNPs to map
their distribution in a U-87 MG cell and to determine their
locations by combining the chemical and topographical
mappings.

■ RESULTS AND DISCUSSION

Mesoporous Silica Nanoparticles (MSNPs)
The protocol used to synthesize the MSNPs is described in our
previous work (Pinna et al.).33 The properties of the particles
synthesized here are described in Table 1. The primary

diameter distribution of the MSNPs measured by TEM is
shown in Supplementary Figure SI1. The high PDI of the
particles (0.62) indicates a tendency of the particles to
agglomerate in water. FTIR analysis showed a well-defined
absorption peak for MSNPs at ∼1100 cm−1 with a relatively
low absorption at 1300−1700 cm−1 (Figure 1c). Accordingly,
s-SNOM imaging of MSNPs yielded high contrast at 1100
cm−1, with absorption arising from Si−O−Si asymmetric
stretching vibrations.34,35 At 1300 cm−1 There is almost no
contrast between the MSNPs and the mica substrate due to the
absence of strong vibrational modes at this wavelength (Figure
1d, e).
Imaging Whole U-87 Malignant Glioma Cells with s-SNOM
Figure 2a shows the topography of the periphery of a U-87
MG cell and reveals a thin (∼100 nm thick), sheet-like region,
which is identified as the lamellipodium.36 There are also
finger-like structures that originate inside the lamellipodium
and protrude outward from it, which are identified as
filopodia.37 Figure 2c is an image of the same cell region
obtained with the 20x optical microscope built into the s-
SNOM system and cropped to show only the region of
interest. For reference, the whole image (which shows the
whole cell) can be seen in Supplementary Figure SI2.
Figure 2b is an s-SNOM image of the same region of the cell

acquired at a 1667 cm−1 wavelength that corresponds to
absorption of the amide moieties in proteins. The filopodia
appeared darker than the rest of the cell, most likely because
they contain actin filaments that are bundled together by actin-
bundling proteins.38

It is important to note, however, that the increased s-SNOM
signal could also be related to the topography since a change in
sample thickness can affect the s-SNOM signal. Indeed, when
the phase, ϕ3, is plot against the cell height, Z, for each pixel
(Figure 2d), the two are strongly correlated. Thus, the s-
SNOM image in Figure 2b is dependent on the cell
topography and not just the chemistry.

Table 1. Properties of the MSNPs

Hydrodynamic diameter (nm) from DLS (in
water, pH 6.4)

90.72 ± 11.91 nm, PDI
0.62

Primary diameter (from TEM) for n = 50 particles d = 80 ± 11 nm
Zeta potential (meV) −31.39 ± 0.42 mV
Surface area (m2/g) 724.88 ± 18.05 m2/g
Pore volume (cm3/g) 1.05 ± 0.01 cm3/g
Pore diameter (nm) 2.83 ± 0.07 nm
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We tested whether s-SNOM could detect MSNPs in air-
dried U-87 human glioma cell preparations. As expected, s-
SNOM phase images of U-87 allowed visualization of
lamellipodia and filopodia at the nanoscale (Figure 3a,
enlarged in Figure 3c), with cellular topography, e.g. the
heights of the filopodia being provided by AFM. Tuning to

1100 cm−1, the MSNPs were clearly seen, interacting with the
cell or bound to the substrate, while they were absent in the
1300 cm−1 images (Figure 3c, insets i−iv).
On their own, the AFM topography images could be used to

identify the MSNPs bound to the substrate (Figure 3b, 3c (i)
but not all of those interacting with the cell membrane (Figure

Figure 1. s-SNOM imaging of mesoporous silica nanoparticles (MSNPs). (a, b) TEM images of MSNPs. (c) FTIR absorption spectra of MSNPs
(blue curve) and untreated U-87 MG cells (red curve). (d, e) s-SNOM images of MSNPs on a mica substrate acquired at 1100 and 1300 cm−1,
respectively. Scale bars 100 nm.

Figure 2. s-SNOM imaging of U-87 MG cells. (a) AFM topography of a region at the periphery of a U-87 MG cell. (b) s-SNOM image of the same
region acquired at an imaging wavelength of 1667 cm−1. (c) Corresponding region imaged with the built-in microscope in the s-SNOM system
(cropped from the full image shown in Supplementary Figure SI2). (d) Correlation between the s-SNOM phase and the sample height was
obtained using the values at each pixel in the images. The cell and the substrate were split into groups by masking images. Fp, filopodia; Lp,
lamellipodium. Scale bars 2 μm (a, b), 5 μm (c).
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3c, ii, (iii). Reliably detecting the MSNPs associated with or
embedded into cell membranes (Figure 3c ii-iv) was only
possible using the chemical sensitivity of s-SNOM.
Importantly, however, AFM images provide topographical

mapping of the MSNP − cell interaction to supplement the
chemical identification of MSNPs. Figure 4a−d shows high
resolution s-SNOM and AFM images of MSNPs interacting
with the U-87 MG cell shown in Figure 3. Line profiles of the
s-SNOM phase and AFM topography across three MSNPs are
shown in Figure 4e (i−iii) together with circles of d ∼ 80 nm
(representing the MSNPs) as visual aids. The topography
profile shown in Figure 4e, i follows a curvature that is
consistent with the MSNP diameter, and its protrusion from
the cell surface is only approximately 40 nm, which suggests

that the MSNP is only halfway (that is, partially) embedded
into the cell. We note that the size of the MSNP estimated
from the s-SNOM phase profile appears larger than 80 nm.
This is consistent with the apparent size of MSNPs in Figure
3d. We expect that the surface of the MSNPs being exposed
leads to a topographical effect on the s-SNOM signal.39

By contrast, the topography profiles in Figure 4e, ii and iii do
not follow the curvature of the MSNPs. This might suggest
that the MSNPs are fully embedded and internalized into the
cell (that is, they are covered by the cell membrane). Thus, the
complementary chemical and topographical mapping seem-
ingly offers a means of distinguishing partially embedded
MSNPs from those that are internalized, which is of huge
importance for evaluating the efficacy of nanomedicines.

Figure 3. s-SNOM imaging of mesoporous silica nanoparticles (MSNPs) in U-87 MG cells. (a, b) s-SNOM (a, 1100 cm−1) and AFM (b) images of
an MSNP-treated air-dried U-87 MG cell. (c) Insets (i−iv), MSNP interaction with lamellopodia and filopodia, enlarged from (a), acquired at 1100
or 1300 cm−1, and AFM images of the same regions.
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We note that the MSNPs were mapped without
modification and without using stains and/or labels. The
stains needed for fluorescence microscopy could potentially
disrupt cellular function and biochemistry in a way that could
alter the interaction between the MSNPs and cells, and the
fluorescence images would contain no information about the
embedding status.

■ CONCLUSION
We have performed a preliminary study to demonstrate the
potential of s-SNOM as a tool for imaging interactions of
nanostructures through the depth of whole cells. We find that
this approach allows us to visualize the spatial distribution of
MSNPs both within and on the surface of GBM cells and
eliminates the requirement of labeling either the particles or
the cells.
The U-87 MG cells were imaged whole using a simple

sample preparation technique, allowing the morphology of
lamellipodia and filopodia to be seen, and the destinations of
the MSNP within and bound to the cell to be found. This
topographic information about the distribution of nano-
particles within cells is challenging to obtain by using other
nanoscale 3D imaging techniques such as electron tomog-
raphy.
Due to their attractive properties such as biocompatibility,

high surface area for drug loading and biodegradability,
MSNPs are being designed for several biomedical applications
such as drug delivery vehicles to treat glioblastoma.40 The
advantages offered by s-SNOM could be beneficial for future
understanding of the cell-based mechanisms by which MSNPs
are internalized by cells, degrade/interact with subcellular
organelles, and release their drug cargoes.
Here we have focused our efforts on imaging the ∼100 nm

thick peripheries of U-87 MG cells, given their biological
relevance for studying cancer invasiveness. The maximum
depth at which MSNPs can be imaged inside cells remains to
be determined. It has been shown that materials can be

identified by their absorption signatures >100 nm below a
sample surface.28 It can therefore be expected that the MSNPs
can be detected at this depth, especially given the large mid-IR
contrast that is available between the MSNPs and the cell
material. To formally test how deep inside cells s-SNOM can
be used to detect MSNPs, it might in future be used in
conjunction with a nanoscale 3D imaging technique such as a
focused ion beam/scanning electron microscope (FIB/SEM)
slice and view method (e.g., described in Guehrs et al.41).
Alternatively, if the MSNPs are fluorescently labeled, 3D super-
resolution microscopy might be used.
Future research may involve integrating these techniques

with complementary methods such as mechanical AFM
measurements of the stiffness of the cancer cells compared
to healthy cells as another diagnostic marker.42 This could be
experimentally realized with the current s-SNOM setup by
exchanging the s-SNOM probe for an AFM probe optimized
for measuring cell stiffness.
s-SNOM might also be combined with fluorescence

microscopy to provide rapid whole-cell imaging in addition
to the nanoscale imaging demonstrated here. Correlative s-
SNOM and confocal laser scanning microscopy has already
been demonstrated,43 as well as the imaging of fluorophore-
coated nanoparticles,44 which would be required for the
confocal imaging. A valuable piece of future work would be to
image fluorescently labeled MSNPs using s-SNOM so that s-
SNOM images can be correlated with CLSM images.
Other bio applications in which chemical mapping of cells in

3D could reveal structures of interest include the imaging of
amyloid beta sheets in primary neurons or the distribution
specific IR sensitive drugs within intracellular organelles. To
our knowledge, this is the first time that s-SNOM has been
used for this purpose, and given the relative ease of sample
preparation, we believe it could find a future role for the study
of the efficacy of a wide range of therapeutic nanostructures.

Figure 4. Correlating phase and topography profiles of mesoporous silica nanoparticles (MSNPs) in U-87 MG cells. (a−d) s-SNOM (a, c; 1100
cm−1) and AFM (b, d) images of an MSNP-treated air-dried U-87 MG cell. (e) s-SNOM phase and topography profiles of three MSNPs
interacting with the U-87 MG cell. MSNPs (spheres of d ∼ 80 nm) are shown for reference. Scale bars 200 nm.
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■ MATERIALS AND METHODS

Mesoporous Silica Nanoparticle (MSNP) Synthesis
MSNP synthesis was performed using a modified sol−gel
Stöber method.45 Briefly, a solution of a precursor (“sol”) is
transformed through hydrolysis and condensation reaction into
a gel, from which the solid part is isolated through
centrifugation. The MSNPs are made mesoporous (pore
diameters between 2 and 50 nm) by letting the nanoparticle
structures grow around near-spherical surfactant aggregates
(micelles) which are later removed, leaving voids (pores).46

The process for producing MSNPs was as follows (adapted
from Pinna et al.33). The surfactant-based template for
producing pores was prepared by adding 1 g of cetyltrimethy-
lammonium bromide (CTAB) to 500 mL of distilled water.
The pore template, contained in a flask, was immersed in
paraffin oil at 70 °C and stirred at 600 rpm using a magnetic
hot plate stirrer, followed by the addition of 3 mL of 2 M
sodium hydroxide (NaOH) catalyst. A 5 mL portion of the
silica-based precursor, tetraethyl orthosilicate (TEOS), was
added to the pore template solution, followed by 5 mL of ethyl
acetate (EtOAc). The solution was aged at 70 °C for 1 h with
stirring (600 rpm) and 3 h without stirring to allow formation
of nanoparticles. The solution was then centrifuged, and the
pellet (of the nanoparticles) was washed three times in ethanol
by centrifugation at 7830 rpm for 40 min (for each wash).
Nanoparticles were isolated by drying the solution overnight at
60 °C. The CTAB surfactant was eliminated by thermal
treatment at 550 °C-3 °C/min for 6 h, leaving voids (pores) in
the nanoparticles.
The morphology and primary diameter distribution of the

MSNPs were measured using TEM and ImageJ. The
hydrodynamic diameter distribution of the MSNPs in water
was measured using DLS for n = 3 repeats.
To confirm the size and morphology of MSNPs, the samples

were imaged on 400 mesh copper grids coated with carbon
film using bright-field TEM on the 200 kV 2100Plus. Different
areas of the grid were analyzed by using ImageJ and the
diameter of 50 nanoparticles from each sample were measured
to calculate the mean size. The size distribution and zeta
potential of the MSNPs were investigated using dynamic light
scattering (DLS) and a ZetaSizer Nano ZS Malvern Instru-
ment.
Cetyltrimethylammonium bromide (CTAB ≥ 98%, Sigma-

Aldrich), sodium hydroxide (NaOH 2 M, Merck KGaA),
tetraethyl orthosilicate (TEOS 99%, ABCR GmbH), and ethyl
acetate (EtOAc 99.5%) were supplied by Acros Organics,
ethanol (EtOH 99.9%) was supplied by VWR chemicals, and
distilled water was used, as received, without any further
purification.
U-87 MG Preparation and Treatment with MSNPs
U-87 MG human GBM cells, certified by the European
Collection of Authenticated Cell Cultures, were supplied by
Sigma-Aldrich. The cells were shipped on dry ice and stored at
−140 °C in a nitrogen vapor freezer upon receipt. The frozen
stocks were rapidly thawed using a temperature-controlled
water bath set to 37 °C, and the cells were added to
prewarmed complete culture medium Dulbecco’s modified
Eagle Medium (DMEM) supplemented with 10% Fetal Bovine
Serum (FBS) and 1% penicillin/streptomycin) in a 15 mL
falcon tube.
DMEM (+1 g/L D-glucose, L-glutamine, and pyruvate)

(DMEM), FBS, and penicillin/streptomycin were supplied by

Gibco. The cells were pelleted by centrifugation at 130g for 7
min, excess medium was removed to ensure removal of
dimethyl sulfoxide (DMSO) in the cryopreservation medium,
and the cells were resuspended in a final volume of 10 mL
complete culture medium.
The cells were then plated in tissue-culture-treated filter cap

T75 flasks (Nunclon Delta). The cells were subcultured in a
1:4−1:5 ratio every 3−5 days, washing with DPBS and then
using 0.25% Trypsin-EDTA to detach the cells from the plate.
Dulbecco’s phosphate-buffered saline (pH 7.0−7.3) (no
calcium, no magnesium) was supplied by Gibco and the
Trypsin Ethylenediaminetetraacetic acid (EDTA) was supplied
by Sigma-Aldrich.
An aliquot of the low passage cells was retained and

cryopreserved at 1−3 × 106 cells/mL in DMEM supplemented
to final concentrations of 10% FBS and 5% DMSO by freezing
slowly to −80 °C in a Nalgene Mr Frosty freezing container
before transferring the cells to −140 °C for long-term storage.
DMSO was supplied by Sigma-Aldrich.
Before freezing, healthy cells were quantified using 0.4%

Trypan blue staining using a hemocytometer. The cells were
discarded after 20 passages and replaced with cells from
cryopreserved stocks. The received cells were certified free of
mycoplasma, and the cells were routinely checked for fungal
and bacterial contamination.
Samples were prepared by growing cells directly on 5 × 5

mm poly-L-lysine coated boron-doped ultraflat silicon wafer
chips (NanoAndMore), prepared by incubating the UV-
sterilized wafers in 0.01% poly-L-lysine solution (Sigma-
Aldrich, UK) before allowing the wafers to air-dry under a
laminar flow biosafety hood. The wafers were placed in 12-well
microplates prior to cell seeding. Cells were incubated with 50
μg/mL of MSNPs for 24 h. In our previous work we
confirmed, by acquiring TEM images of cell sections through
the cells (shown in Supplementary Figure SI3), that MSNPs
are internalized by a different cancerous cell line (MCF-7) at
the same 24 h time point used here.47 Following cell growth
and treatment, the samples were rinsed in 0.1 M HEPES pH
7.2 and cells were fixed with 2.5% glutaraldehyde and 2.5%
paraformaldehyde in 0.1 M HEPES for 30 min at room
temperature. Fixatives were removed and cells were rinsed
three times in 0.1 M (4-(2-hydroxyethyl)-1-piperazineethane-
sulfonic acid) (HEPES) buffer. Cells were dehydrated in a
series of graded ethanol (EtOH) (12.5%, 25%, 50% and 70%
for 5 min each, 95% and 100% for 2 × 5 min each). Cells were
further dehydrated in hexamethyldisilazane (HMDS)
(HMDS:EtOH 1:1 for 10 min, HMDS 2 × 10 min). HMDS
was removed and cells were left to air-dry in a desiccator at
room temperature.
s-SNOM Imaging of MSNP-Treated U-87 MG Cells

s-SNOM imaging was performed using a tapping amplitude of
∼50 nm. The cell height is typically much greater than the ∼3
μm travel range of the piezoelectric sample stage on the s-
SNOM system, and therefore, it was not possible to capture a
whole cell in one image. Imaging was instead focused on the
lamellipodia and filopodia at the peripheries of the cells. These
regions were chosen since, as discussed, they are the focus of
many research questions related to cell movement, cancer
migration and cell−cell transfer.11,12,48
No unexpected or unusually high safety hazards were

encountered in any of the experimental methods used.
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