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Abstract. The objective of the present study was to build 
and validate a radio‑clinical model integrating radiological 
features and clinical characteristics based on information 
available before surgery for prediction of microvascular inva‑
sion (MI) in gastric cancer. The retrospective study included 
a cohort of 534 patients (n=374 for the training set and n=160 
for the test set) who were diagnosed with gastric cancer. All 
patients underwent contrast‑enhanced computed tomography 
within one month before surgery. The focal area was mapped 
by ITK‑SNAP. Radiomics features were extracted from portal 
venous phase CT images. Principal component analysis was 
used to reduce dimensionality, maximum relevance minimum 
redundancy, and least absolute shrinkage and selection oper‑
ator to screen features most associated with MI. The radiomics 
signature was subsequently computed based on the coefficient 
weight assigned to it. The independent risk factors for MI of 
gastric cancer were determined using univariate analysis and 
multivariate logistic regression analysis. Univariate logistic 
regression analysis was used to assess the association between 
clinical characteristics and MI status. A radio‑clinical model 
was constructed by employing multi‑variable logistic regres‑
sion analysis, incorporating radiomic features with clinical 
characteristics. Receiver operating characteristic (ROC) curve 

analysis, decision curve analysis (DCA) and calibration curves 
were employed for the analysis and evaluation of the model's 
performance. The radiomics signature model had moderate 
recognition ability, with an area under ROC curve (AUC) of 
0.77 for the training set and 0.73 for the test set. The radio‑clin‑
ical model, consisting of rad‑score and clinical features, could 
well discriminate the training set and test set (AUC=0.88 and 
0.80, respectively). The calibration curves and DCA further 
validated the favorable fit and clinical applicability of the 
radio‑clinical model. In conclusion, the radio‑clinical model 
combining the radiomics signature and clinical characteristics 
may be used to individually predict MI in gastric cancer to aid 
in the development of a clinical treatment strategy.

Introduction

Gastric cancer is currently one of the three deadliest types 
of cancer in China (1). The accurate identification of tumor 
aggressiveness and cancer staging are of great significance 
to achieve appropriate and timely treatment, especially in the 
preoperative stage, and are also crucial for the development of 
treatment strategies, diagnosis and prognosis. Microvascular 
invasion (MI) is closely related to lymph node metastasis and 
postoperative recurrence of cancer (2,3). The presence of MI is 
a frequently observed pathological feature in cancer specimens 
and is widely recognized as a significant prognostic factor for 
various types of malignancies (4‑6). It has been previously 
shown that MI is associated with poor prognosis of gastric 
cancer  (7). Therefore, understanding the preoperative MI 
status of patients has clinical significance for individualized 
treatment selection and prognosis prediction. Unlike conven‑
tional macrovascular invasion, MI in gastric cancer is difficult 
to detect by conventional imaging and can only be detected 
by postoperative histopathological examination; therefore, 
preoperative prediction of MI is challenging.

Although traditional imaging methods are indispensable, 
they do have limitations. Machine learning models can be 
trained on large datasets to identify subtle abnormalities in 
images that may not be discernible to the naked eye, thereby 
providing valuable second opinions and robust evidence for 
individualized diagnosis and treatment planning (8). With the 
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introduction of precision medicine, especially the concept 
of radiomics, the combination of quantitative image analysis 
and machine‑learning methods can be used to extract massive 
quantitative features from medical images. This facilitates 
the quantitative analysis of tumors and, further, reveals their 
heterogeneity, thereby enabling more precise prognosis assess‑
ment. It has been identified that the combination of radiomic 
features and clinical features can answer patients' medical 
questions in an improved way. Yardımcı et al (9) found that 
computed tomography (CT)‑based machine learning has the 
potential to predict lympho‑vascular and perineural invasion 
in tubular gastric cancer.

A comprehensive model can accurately quantify prognosis 
at the individual level by combining radiomic features and 
clinical characteristics, along with other factors. Compared 
with traditional TNM staging, nomograms established by 
more clinical characteristics are more effective in predicting 
the survival of patients with gastric cancer  (10,11). For 
instance, Wang et al (11) found that the nomogram established 
by combining clinical characteristics has a higher value in the 
preoperative evaluation of the overall survival (OS) of patients 
with gastric cancer than conventional TNM staging.

Further investigation is warranted to explore the potential 
of radiomics in predicting the MI status and associated prog‑
nosis of gastric cancer. Therefore, in the present study it was 
aimed to assess the feasibility of establishing a radio‑clinical 
model by integrating radiomic features and clinical risk 
factors for accurate prediction of MI in patients diagnosed 
with gastric cancer.

Materials and methods

Patients. The review committee of Zhejiang Cancer Hospital 
(Hangzhou, China) approved (approval no. IRB‑2022‑69) the 
retrospective design of the present study, thereby waiving the 
requirement for informed consent. A total of 534 patients 
with a histopathological diagnosis of gastric cancer (including 
adenocarcinoma and signet ring cell carcinoma) who had 
undergone radical gastrectomy between April 2008 and 
October 2012 were identified from the institutional database.

Screening of patients according to the inclusion and exclu‑
sion criteria yielded 264 patients who were positive for MI 
and 270 who were negative for MI. All patients underwent 
enhanced abdominal CT scan within one month before opera‑
tion. Inclusion criteria were as follows: i) patients with gastric 
cancer confirmed by postoperative pathology; ii) abdominal 
enhanced CT examination was performed within 1 month 
before the operation; and iii)  all surgical specimens were 
examined for MI status. Exclusion criteria were as follows: 
i) incomplete clinical or pathological data; ii) received other 
treatment before surgery; iii) and poor‑quality CT image and 
difficult‑to‑identify lesions. The cases were randomly divided 
into a training set (n=374) and a test set (n=160) at a ratio of 
7:3. The clinical data of the patients were recorded, including 
age, sex, tumor location, TNM stage and AJCC stage. The 
patients were restaged based on the diagnostic criteria outlined 
in the 8th edition of the American Joint Committee on Cancer 
Staging Manual. The location of gastric cancer was divided 
into the cardia, gastric body, gastric antrum and all according 
to pathology.

CT image acquisition. The patients had all undergone 
enhanced abdominal scanning using multi‑slice spiral CT, 
machine model: GE Optima  680 CT (GE HealthCare), 
Siemens Somatom definition AS 64, (Siemens Healthineers). 
The thickness of the reconstructed layer was 5‑7 mm. The 
contrast medium was administered intravenously at a dose of 
1.5 ml/kg through the antecubital vein. Contrast‑enhanced CT 
scans were conducted at 30‑35 and 50‑60 sec after contrast 
medium injection, respectively.

Histopathology. All patients had received surgical treat‑
ment within one month after undergoing contrast‑enhanced 
abdominal CT examination. All surgical specimens had been 
examined to detect the presence of MI. MI was visible only 
under light microscopy.

Tumor segmentation. The CT images of patients with gastric 
cancer were obtained from image storage and communication 
systems. Digital imaging and communications in medicine 
format portal phase images were used to delineate the 
lesions. Region of interest were delineated using ITK‑SNAP 
(version 3.8.0, http://www.itksnap.org). In total, two radiologists 
with over 5 years of experience in diagnosing gastric diseases 
meticulously examined each patient's horizontal CT image and 
accurately delineated the tumor area layer by layer (Fig. 1). 

Figure 1. An example of segmentation lesion area in gastric cancer. 
(A) Localized thick wall of gastric cancer with enhancement is observed 
on the portal venous phase computed tomography image. (B)  Manual 
segmentation on the same axial slice is depicted with red label.
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Observer 1 delineated the lesions of all patients with gastric 
cancer, and Observer 2 checked the accuracy of tumor delinea‑
tion. If lesion segmentation was inconsistent between the two 
radiologists, a consensus was reached after consultation.

Radiomics feature extraction and selection. In the present 
study, PyRadiomics (version 3.0.1) was used, an open‑source 
library, to extract features. After extracting radiomic features 
based on the original image dataset, feature data of samples in 
the original feature set were first analyzed using the principal 
component analysis (PCA) method to ensure that they were 
uncorrelated. Then, the maximum relevance minimum redun‑
dancy (mRMR) and least absolute shrinkage and selection 
operator (LASSO) methods were used to select the radiomics 
features. The radiomic score (rad‑score) for each patient was 
subsequently computed through a linear combination of the 
selected features, with their respective coefficients in the 
prediction model being applied as weights.

Construction of a predictive model. First, clinical features were 
selected by univariate analysis. Multivariate logistic regression 

analysis, combined with rad‑score and clinical risk factors 
were used to construct a comprehensive prediction model. 
For easy application, the model was transformed as a visual 

Figure 2. Kaplan‑Meier survival analysis of overall survival for all the 
patients according to microvascular invasion status. P‑values were calculated 
by log‑rank test.

Table I. Clinical and radiological characteristics of patients in training and test sets.

	 Training set	 Test set
	 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑	 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
Characteristic	 MI‑ (198)	 MI+ (176)	 P‑value	 MI‑ (72)	 MI+ (88)	 P‑value

Age, years			   0.614			   0.319
  mean (SD)	 59.4 (9.7)	 58.9 (11.1)		  58 (10.9)	 59.7 (10.7)	
Sex			   0.514			   0.067
  Male	 145 (73.2)	 135 (76.7)		  49 (68.1)	 72 (81.8)	
  Female	 53 (26.8)	 41 (23.3)		  23 (31.9)	 16 (18.2)	
Location			   0.063			   0.306
  Cardia	 47 (23.7)	 57 (32.4)		  18 (25.0)	 21 (23.9)	
  Body	 32 (16.2)	 24 (13.6)		  10 (13.9)	 9 (10.2)	
  Antrum	 116 (58.6)	 87 (49.4)		  44 (61.1)	 54 (61.4)	
  All	 3 (1.5)	 8 (4.5)		  0 (0.0)	 4 (4.5)	
T stage			   <0.001			   0.001
  T1	 74 (37.4)	 8 (4.5)		  23 (31.9)	 7 (8.0)	
  T2	 24 (12.1)	 23 (13.1)		  6 (8.3)	 9 (10.2)	
  T3	 5 (2.5)	 3 (1.7)		  2 (2.8)	 2 (2.3)	
  T4	 95 (48.0)	 142 (80.7)		  41 (56.9)	 70 (79.5)	
  N stage			   <0.001			   <0.001
  N0	 112 (56.6)	 15 (8.5)		  38 (52.8)	 15 (17.0)	
  N1	 39 (19.7)	 20 (11.4)		  11 (15.3)	 10 (11.4)	
  N2	 31 (15.7)	 45 (25.6)		  13 (18.1)	 22 (25.0)	
  N3	 16 (8.1)	 96 (54.5)		  10 (13.9)	 41 (46.6)	
AJCC stage			   <0.001			   <0.001
  I	 83 (41.9)	 6 (3.4)		  26 (36.1)	 10 (11.4)	
  II	 47 (23.7)	 23 (13.1)		  13 (18.1)	 10 (11.4)	
  III	 68 (34.3)	 147 (83.5)		  33 (45.8)	 68 (77.3)	
Rad‑sore			   <0.001			   <0.001
median (IQR)	 ‑0.5 (‑0.9, 0.0)	 0.3 (‑0.2, 0.8)		  ‑0.6 (‑1.0, ‑0.2)	 0.1 (‑0.4, 0.5)	

MI, microvascular invasion; AJCC, American Joint Committee on Cancer; IQR, interquartile range.
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nomogram based on multivariable logistic regression analysis 
in the training set. Thereafter, the prediction performance of 
the nomogram was evaluated in the validation set.

Performance of the radiomics nomogram. Receiver operating 
characteristic (ROC) curve and calibration curve were used 
to evaluate the predictive efficacy and clinical practical effi‑
cacy of the nomogram. Decision curve analysis (DCA) was 
further employed to evaluate the clinical application value of 
the model by calculating the net benefits at different threshold 

probabilities (12). The performance of the model was evaluated 
by calculating metrics such as the area under the ROC curve 
(AUC), accuracy, sensitivity, specificity, positive predictive 
value and negative predictive value.

Statistical analysis. The statistical analysis was conducted 
using the R software (version  3.4.1; http://www.Rproject.
org) and SPSS statistical software (version 26.0; IBM Corp.). 
The LASSO logistic regression model was employed, and 
the penalty parameter tuning was performed through 10‑fold 

Figure 3. Feature selection with the LASSO logistic regression model and the least absolute shrinkage. (A) The selection of the tuning parameter (λ) in the 
LASSO model employed a 10‑fold cross‑validation approach based on minimum criteria. The AUC curve was plotted against the log (λ); (B) The LASSO 
coefficient profiles depict the coefficients of each feature, with each colored line representing a specific feature. A vertical dotted line is drawn at the selected 
λ value, indicating where non‑zero coefficients were obtained for 9 features. (C) The rad‑score of class 0 and class 1 were compared in the training group and 
the test group, respectively; ‘0’ for no microvascular invasion, ‘1’ for microvascular invasion.
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cross‑validation based on minimum criteria. The Wilcoxon 
rank‑sum test was employed to compare the radscores of 
class  0 and class  1 in both the training and test groups, 
respectively. Subsequently, Box‑plot were generated using the 
‘ggplot’ package. Continuous variables were represented using 
mean values and standard deviations, while categorical vari‑
ables were presented as counts (n) and percentages (%). The 
independent sample t‑test was employed to compare normally 
distributed continuous data and Mann‑Whitney U tests were 
used for non‑normally distributed data. The Chi‑square test 
and Fisher's exact test were utilized to evaluate the distribution 
of categorical data across groups. Univariate logistic regres‑
sion analysis was used to evaluate the differences in clinical 
factors between different groups. The prediction model was 
constructed by employing multi‑variable logistic regression 
analysis, incorporating rad‑score and clinical characteristics. 
LASSO logistic regression analysis was conducted using the 
‘glmnet’ package. Multivariate logistic regression analysis and 
calibration plots were performed utilizing the ‘rms’ package. 
ROC curves were generated with the ‘pROC’ package. The 
‘rmda’ package was used to perform the DCA. A range of 
sensitivity and specificity values were obtained by generating 
the ROC curve and calculating Youden's index (Youden's 
index=sensitivity + specificity‑1), where the highest value of 
Youden's index was identified as the optimal cut‑off point. 
The survival probabilities were assessed using Kaplan‑Meier 
survival analysis and the log‑rank test. P‑values were calcu‑
lated by log‑rank test. P<0.05 was considered to indicate a 
statistically significant difference.

Results

Clinical characteristics. Among 534 patients with gastric 
cancer, 264 patients had MI and 270 patients did not have 
MI. The patients were randomly allocated into a training set 
(n=374) and a test set (n=160) at a ratio of 7:3. In the training 
and test sets, significantly higher rad‑scores were found in the 
MI group than in the group that was negative for MI (P<0.01). 
Further details are shown in Table I (including sex and age 
distribution). OS data were also collected from patients and 

analyzed to compare the difference in survival time between 
the MI positive group and the negative group. (Fig. 2).

Radiomics features screening and radiomics signature 
construction. The radiomic features were received from 
the original CT images of each individual with gastric 
cancer, resulting in a total of 1,834 features (including shape 
features, first‑order statistics features, texture‑based features, 
higher‑order features and features based on model trans‑
formation). The feature data of focus were first analyzed by 
PCA for dimensionality reduction; then, mRMR and LASSO 
algorithms were employed to identify the optimal subset of 
features for constructing the radiomics model. A 10‑fold 
cross‑validated LASSO logistic regression analysis with a 
first‑rank λ was utilized to select the most relevant radiomic 
features exhibiting non‑zero coefficients (Fig.  3). Finally, 
9 radiomic features were selected to establish the radiomics 
signature; after weighing the selected features, their coeffi‑
cients were added to calculate the rad‑score, and the rad‑score 
of class 0 and class 1 were compared between the training 
group and the test group, respectively (Fig. 3).

Development of an individualized radiomics nomogram. The 
clinical variables included sex, age, T stage, N stage, AJCC 
stage and tumor location. The multivariate logistic regression 
analysis was conducted based on the results of the univariate 
analysis, and the odds ratio and 95% confidence interval were 
subsequently calculated. The predictive model was constructed 
by integrating multivariate analysis with rad‑score and 
T and N staging, which was further visualized as a radiomic 
nomogram (Fig. 4). The nomo‑score was calculated as follows:

Nomoscore = (Intercept) * –2.043 + T*0.119 + N * 1.097 + 
Radscore * 0.982

Performance of the clinical‑radiomics model. The perfor‑
mance results of the three prediction models in the training 
and test sets are listed in Table II. Radiomics prediction model 
shows only general prediction ability, as revealed in Fig. 5. The 
AUC values for the training and test sets were 0.77 and 0.73, 

Figure 4. The computed tomography‑based radiomics nomogram. The radiomics nomogram was built in the training cohort, with the radiomics signature, 
T stage and N stage.

https://www.spandidos-publications.com/10.3892/mco.2024.2794
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respectively. The clinical‑radiomics prediction model was 
constructed by combining clinical factors and rad‑score and 
had better predictive ability for MI status than the two predic‑
tion models alone. The AUCs of the training and test sets were 
0.88 and 0.80, respectively (Fig. 5). Both calibration curve 
and DCA indicated that radiomics nomogram has favorable 
calibration degree and clinical application value (Fig. 5).

Discussion

The treatment of gastric cancer has entered the era of multidis‑
ciplinary collaborative comprehensive treatment centered on 
surgery, and the prognostic differences for the same treatment 
among patients at the same stage persist due to the inherent 
heterogeneity of tumors (13,14). Therefore, accurate deter‑
mination of the risk factors for postoperative recurrence and 
metastasis of gastric cancer can provide more suitable treat‑
ment methods and preventive measures for patients. MI is an 
important step in tumor diffusion and metastasis (15,16), and 
MI status is an important independent predictor of clinical 
factors affecting patients (17,18).

Medical images are morphological representations of 
tumor tissues and cells that can reflect tumor heterogeneity (19). 
Images contain considerable information about tumor biolog‑
ical behavior, and radiomics can extract high‑dimensional 
information. The combined analysis of high‑dimensional 
information obtained from images and clinical markers as 
a stratification tool holds the most potential in assessing a 
patient's risk; numerous previous studies have also confirmed 
this view (20). In the present study, the radiomics features of 
patients were combined with valuable clinical factors to build 
a model to predict the MI status of patients with gastric cancer 
to facilitate the formulation of more suitable individualized 
treatment plans. The utilization of a user‑friendly nomo‑
gram incorporating radiomics features and T and N stage 
demonstrate excellent performance in both cohorts. In 2020, 
Chen et al (21) performed a similar study, but the performance 
of our model was improved compared with that of Chen's. In 
the aforementioned study, the AUC of the Clinical‑Radscore 
model integrating clinical features and Radscore is 0.856. 
There may be two reasons to explain this. First, 1,834 features 

were extracted from the segmentation of the image, while 
only 180 features were extracted in Chen et al's (21) study. 
Higher‑order features may contain more valuable informa‑
tion. During feature screening, a more advantageous method 
was applied. High‑dimensional features often contain a large 
amount of irrelevant and redundant information, which can 
easily lead to overfitting of artificial intelligence (AI) models, 
that is, poor performance of models on unseen data. In the 
present study, PCA was performed on the original feature data 
to ensure they were uncorrelated. Then, the improved super‑
vised locality preserving projections (SLPP) were used to map 
the data after PCA while preserving the manifold structure of 
the feature data, making it easier to distinguish. Finally, the 
dimensionality of the feature space was reduced according 
to the cumulative contribution of PCA and the eigenvalue of 
SLPP. The experimental results showed that the PCA could 
effectively reduce the redundancy of feature data and improve 
the classification accuracy. After the dimensionality reduction, 
the mRMR and LASSO were used to select the features. In 
medical image‑based AI research, LASSO and mRMR are 
the most commonly used feature filtering algorithms (22,23). 

First, mRMR eliminates redundant and irrelevant features, 
retaining a subset of 30 features. Subsequently, the optimized 
feature subset is selected using LASSO to construct the final 
model. The LASSO algorithm offers two key advantages: 
First, it avoids overfitting by selecting features based on their 
univariate association with the outcome; second, it enables 
the combination of a chosen set of features into a label. In the 
present study, 9 radiomics features associated with MI were 
specifically selected to construct radiomics signature to unveil 
tumor biological attributes that may not be apparent in conven‑
tional CT images. Subsequently, the rad‑score is calculated 
by integrating these 9 features weighted by their coefficients. 
Following this approach, it was aimed to develop a radiomics 
model for predicting MI in patients with gastric cancer. Our 
radiomics model demonstrated mediocre discrimination 
performance with an AUC of 0.77 for the training set and 0.73 
for the test set.

Furthermore, although radiomics can answer some of the 
questions that traditional imaging interpretation cannot, it 
cannot answer all questions related to clinical decision making. 

Table II. Predictive performance of the three models.

	 AUC (95% CI)	 Accuracy	 Sensitivity	 Specificity	 PPV	 NPV

Radiomics						    
  Training set	 0.77 (0.72‑0.82)	 0.709	 0.665	 0.747	 0.701	 0.715
  Test set	 0.73 (0.65‑0.81)	 0.675	 0.580	 0.792	 0.773	 0.606
Clinics						    
  Training set	 0.85 (0.81‑0.89)	 0.786	 0.795	 0.778	 0.761	 0.811
  Test set	 0.75 (0.68‑0.83)	 0.706	 0.716	 0.694	 0.741	 0.667
Nomogram						    
  Training set	 0.88 (0.85‑0.92)	 0.807	 0.807	 0.808	 0.789	 0.825
  Test set	 0.80 (0.73‑0.86)	 0.731	 0.792	 0.675	 0.693	 0.778

AUC, area under the curve; CI, confidence interval; PPV, Positive predictive value; NPV, negative predictive value.
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The importance of clinical features should not be overlooked in 
medical problems. Therefore, radiomics was not selected as the 
only predictor in the present study: Radiomics features were 
combined with clinically independent risk factors. A previous 

studies have verified that T stage and lymph node metastasis are 
independent risk factors for MI (21), and the univariate analysis 
in the present study reached the same conclusion. However, the 
two groups did not show any statistically significant differences 

Figure 5. Performance of the radiomics model, clinical model and radio‑clinical model. (Α) The ROC curves of the three models (radiomics model, clinics 
model and radio‑clinical model) in the training and test sets. (B) Calibration curves of the nomogram in the training set and test set, suggesting that the predic‑
tion model is acceptable. (C) Decision curve analysis (DCA) for the radio‑clinical model and clinical model. The DCA indicated that more net benefits within 
the most threshold probabilities were achieved using the radio‑clinical model.
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in terms of sex, age, or location in univariate analysis. After 
multivariable analysis, T and N stage were finally included 
in the nomogram. The combined model achieved an AUC 
of 0.88 in the training set and 0.80 in the test set, indicating 
that the clinical‑radiomic model exhibited superior predictive 
performance compared with either model alone. To mitigate 
the bias resulting from radiologists' erroneous assessments 
of T and N staging, pathological T stage and N stage were 
employed for model establishment. In future applications, 
T stage and N stage judged by CT images may be used instead 
of postoperative pathological stage, which will be more condu‑
cive to the widespread application of the model. The advantage 
of the present study lies in the inclusion of easily obtainable 
T and N stage and rad‑score in the predictive model, rendering 
the developed nomogram a reliable and non‑invasive tool for 
preoperative prediction of MI in gastric cancer.

The present study has certain limitations. First, the patient 
data were retrospectively collected with certain selection 
biases, highlighting the need for future planned prospective 
studies. Second, the lack of external validation data necessi‑
tates the collection of more multicenter data in future studies 
to enhance the model's reliability. Finally, numerous previous 
studies have constructed nomograms to predict clinical events 
in gastric cancer, and these prediction models can be integrated 
in the future to provide a more comprehensive and reliable 
basis for clinicians to formulate individual treatment plans.

In conclusion, the present study demonstrated that the 
radio‑clinical model based on the radiomics signature and 
T, N stage may be used as a credible and non‑invasive modality 
to predict MI in gastric cancer. This model provided a reliable 
basis for doctors to choose suitable treatment programs for 
patients and improve the survival status and prognosis.
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