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Exposome‑wide ranking 
of modifiable risk factors 
for cardiometabolic disease traits
Alaitz Poveda1, Hugo Pomares‑Millan1,9, Yan Chen1,2,3,9, Azra Kurbasic1, Chirag J. Patel4, 
Frida Renström1,5,6, Göran Hallmans5, Ingegerd Johansson7 & Paul W. Franks1,5,8*

The present study assessed the temporal associations of ~ 300 lifestyle exposures with nine 
cardiometabolic traits  to identify exposures/exposure groups that might inform lifestyle interventions 
for the reduction of cardiometabolic disease risk. The analyses were undertaken in a longitudinal 
sample comprising > 31,000 adults living in northern Sweden. Linear mixed models were used to 
assess the average associations of lifestyle exposures and linear regression models were used to 
test associations with 10-year change in the cardiometabolic traits. ‘Physical activity’ and ‘General 
Health’ were the exposure categories containing the highest number of ‘tentative signals’ in analyses 
assessing the average association of lifestyle variables, while ‘Tobacco use’ was the top category 
for the 10-year change association analyses. Eleven modifiable variables showed a consistent 
average association among the majority of cardiometabolic traits. These variables belonged to 
the domains: (i) Smoking, (ii) Beverage (filtered coffee), (iii) physical activity, (iv) alcohol intake, 
and (v) specific variables related to  Nordic lifestyle (hunting/fishing during leisure time and boiled 
coffee consumption). We used an agnostic, data-driven approach to assess a wide range of established 
and novel risk factors for cardiometabolic disease. Our findings highlight key variables, along with 
their respective effect estimates, that might be prioritised for subsequent prediction models and 
lifestyle interventions.

The majority of non-communicable diseases are caused by the complex interplay of genetic and environmental 
factors. In the last decades, major progress has been made in discovering genetic loci predisposing to these 
diseases, facilitated by genome-wide association studies (GWAS). These studies allow high-throughput and 
systematic screening of millions of variants against quantitative traits or hard disease endpoints. Unlike popula-
tion genetics, there are no standard environment ‘chips’ that capture multiple environment exposures simultane-
ously. Therefore, environmental epidemiology typically involves approaches where hypothesized associations 
between specific environmental exposures and disease traits are separately tested. These studies are limited by 
the expectations and knowledge about the hypothesized relationships they seek to test, which may cause bias 
and inhibit discovery1.

Environment-wide association studies (EWAS) represent an approach through which multiple environmental 
factors can be systematically screened for their associations with disease traits in a manner that is to a large degree 
agnostic to prior knowledge about disease associations; in this sense, the EWAS approach is similar to GWAS. 
EWAS was first described in the published literature in a 2010 paper reporting associations analyses between 
metabolites and type 2 diabetes2. Later, EWAS was used to identify nutrients, environmental contaminants, 
and prescribed drugs3–9 associated with disease and disease complications. Almost all published EWAS have 
used cross-sectional epidemiological data to assess exposures at a fixed time point without consideration of the 
impact of exposures throughout an individual’s lifetime. Longitudinal data analyses may help us understand the 
associations among exposures and changes in cardiometabolic traits over time.
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The present study sought to assess the temporal relationships of more than 300 lifestyle exposures (e.g. food 
items, sleep habits, physical activity, psychosocial factors) with nine cardiometabolic traits (i.e. BMI, blood lipids, 
blood glucose, and blood pressure) and use these results to identify target lifestyle exposures/exposure groups 
that could inform lifestyle interventions focused on controlling cardiometabolic diseases.

Methods
Participants.  The analyses reported here were undertaken using data from the Västerbotten Health Survey 
(Västerbottens hälsoundersökning; VHU)10. VHU is a prospective, population-based cohort study originally 
designed as a long-term project intended for health promotion among the general population in Västerbotten 
county (approx. 254,000 inhabitants), northern Sweden. Since 1985, adults residing in Västerbotten have been 
invited to undergo a clinical examination and complete lifestyle questionnaires during the years of their 30th, 
40th, 50th, and 60th birthdays.

A sub-cohort of VHU (n = 88,614) was used in the present analyses. Participants with non-Swedish origin 
(n = 14,629) were excluded from the analyses as the different cultural and lifestyle habits and disease predis-
position of non-Swedish participants may cause confounding by population stratification in EWAS analyses. 
Participants with diagnosed diabetes and cardiovascular diseases (n = 3025) were also excluded to minimize bias 
attributable to diagnostic labelling and medications. The final dataset comprised 31,362 participants including 
67,738 health examinations performed between 1990 and 2013. Written informed consent was obtained from all 
living participants as part of the VHU. The study was approved by the Regional Ethical Review Board in Umeå, 
and all research was conducted in accordance to this ethical approval and with the Declaration of Helsinki and 
other relevant guidelines and regulations.

Clinical measurements.  Nine cardiometabolic traits were analysed in the study: body mass index (BMI), 
systolic and diastolic blood pressures (SBP and DBP, respectively), fasting and 2 h glucose, total cholesterol, tri-
glycerides, HDL cholesterol and LDL cholesterol. Clinical measures in VHU are described in detail elsewhere10. 
In brief, participants’ weight (in kg) and height (in cm) were measured using calibrated scale and stadiometer, 
with participants wearing light clothing and no shoes. BMI was calculated as body weight in kilograms divided 
by height in meters squared. SBP and DBP were measured once, after 5-min rest, with the participant in a 
recumbent position using either manual or automated sphygmomanometers. Capillary blood was drawn after 
overnight fasting and a second blood sample was drawn two hours after the administration of a 75-g oral glucose 
load. Blood glucose, total cholesterol and triacylglycerol levels were then measured using a Reflotron bench-top 
analyser (Roche Diagnostics Scandinavia AB). HDL cholesterol was measured in a subgroup of participants and 
LDL cholesterol was estimated using the Friedewald formula11. The measurement for lipids and blood pressure 
changed in September 2009. From this date onwards, blood pressure was measured twice in a sitting position 
and averaged, and total cholesterol and triglyceride levels were analysed using clinical chemical analysis in the 
laboratory. Thus, validated conversion equations were used to align the lipid and blood pressure measurements 
taken before and after September 200912. For participants on lipid and/or blood pressure lowering medications, 
lipid and/or blood pressure levels were corrected by adding published constants (+ 0.208 mmol/l for triglycer-
ides, + 1.347 mmol/l for total cholesterol, − 0.060 mmol/l for HDL cholesterol, + 1.290 mmol/l for LDL choles-
terol, + 15 mmHg for SBP and + 10 mmHg for DBP)13,14. Values of cardiometabolic traits located outside the 
normal range suggested by VHU data managers (see Supplementary Material) were considered outliers and 
excluded.

Lifestyle assessments.  Participants were asked to complete a self-administered questionnaire during each 
visit that included questions about socio-economic factors, physical/mental health, quality of life, social network 
and support, working conditions, and alcohol/tobacco consumption. Physical activity was assessed through a 
modified version of the International Physical Activity Questionnaire15,16. A validated semi-quantitative food 
frequency questionnaire (FFQ) designed to capture habitual diet over the last year was used to capture informa-
tion on various dietary factors17. Up to the mid-1990s, the FFQ consisted of 84 different foods items/groups, 
but it was reduced to 66 items in 1996 by combining similar line items and by removing items that provided 
minimal unique information. For the current analysis, matching food items from different FFQ versions were 
combined in new variables and all analyses including dietary variables were adjusted for FFQ version. In the 
FFQ, participants indicated how often they consumed foods and beverages on a nine-point frequency scale. 
Information on average portion size of meat and fish, vegetables, potatoes, rice and pasta was also gathered. 
Nutrient and energy content were calculated based on the Swedish Food Composition Database18 based on meal 
frequency and portion size. Food intake level (FIL) was calculated as total energy intake divided by estimated 
basal metabolic rate. Participants with more than 10% FFQ data missing, one or more portion indication miss-
ing, or a seemingly implausible total energy intake (the top 2.5% and bottom 5% of FIL in the original VHU 
dataset) were excluded from the analyses. Implausible values for other lifestyle variables (see Supplementary 
Material) were also removed from the analyses. Lifestyle variables were grouped in 10 different categories to 
facilitate understanding of the results: (i) alcohol consumption, (ii) non-alcoholic beverage consumption, (iii) 
food, (iv) nutrients; (v) general health, (vi) physical activity and fitness, (vii) psychosocial, (viii) sleep, (ix) social 
conditions, (x) tobacco use.

Statistical analysis.  The flowchart of the study is shown in Fig. 1. Lifestyle variables were treated either as 
continuous or as categorical variables; thus, ordinal variables were treated as continuous variables. For categori-
cal variables with more than two levels dummy variables were created and dichotomized. All numeric lifestyle 
variables were inverse normalized in order to address skewness and scaled for comparability. Similarly, for cat-
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egorical variables, levels were harmonized from low to high, using the lowest one as reference. Thirty-eight cat-
egorical variables that had 90% of the observations belonging to one category were excluded from the analyses. 
In total, the analyses included 242 numeric and 45 categorical lifestyle variables. Dietary variables were regressed 
on total energy intake and their residuals along with total energy intake were included in the analyses of these 
variables to account for potential confounding by total energy intake19. Models with glycaemic or lipid traits as 
the dependent variables were additionally adjusted for fasting status. All models (except models having BMI as 
outcome) were adjusted for BMI.

Average lifestyle associations.  Linear mixed models were used to estimate an average linear effect of the lifestyle 
exposures on the cardiometabolic traits. The models were adjusted for age, age2, sex, educational level, follow-up 
time, FFQ version (where appropriate), total energy intake (TEI; where appropriate), BMI (where appropriate) 
and fasting status (where appropriate).

where γij represents a cardiometabolic trait value at visit i for participant j, β00 is the fixed intercept, μ0j represents 
different random intercepts for each participant, the rest of the β estimates are the estimated fixed effect size 
parameters for each corresponding variable, and ε represents error.

Long‑term lifestyle associations.  Linear regression models were used to test if the lifestyle variables were associ-
ated with 10-year changes in the cardiometabolic traits:

where γF represents the value of the cardiometabolic trait at follow-up and γB the value at baseline, α is the inter-
cept, βi represent the estimated effect size parameter for each corresponding variable. AgeB, FFQ versionB, TEIB, 
fasting statusB and lifestyle variableB are the age, FFQ version, TEI, fasting status and lifestyle variable values at 
baseline; fasting statusF is the fasting status value at follow up; meanBMI is the average BMI of the baseline and 
follow-up BMI values, and ε represents error.

Tentative signals.  The Benjamini and Hochberg20 False Discovery Rate (FDR) was used to correct for multiple 
testing. Associations of lifestyle variables were considered “tentative signals” if they achieved significance at 
PFDR < 0.05 after multiple testing correction. Overall estimates were used in the description of the results and 
effect estimates are reported in Supplementary material.

(1)

γij = (β00 + µ0j) + β10ageij + β20age
2
ij + β30sexij + β40follow

− up timeij + β50FFQ versionij + β60TEIij + β70BMIij

+ β80fasting statusij + β90lifestyle variableij + εij

(2)
γF = α + β1ageB + β2age

2
B + β3sex

+ β4follow up time
+
β6γB+β7FFQ versionB + β8TEIB + β9meanBMI

+ β10fasting statusB + β11fasting statusF + β12lifestyle variableB + ε

Figure 1.   Flow chart of the method followed in the study.
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Correlation patterns.  Correlations between ‘tentative signals’ on the linear mixed and/or longitudinal linear 
regression analyses were calculated and visualized using a heatmap. A hierarchical clustering algorithm was used 
to arrange lifestyle variables, so that the pair of variables with higher correlations appear closer in the heatmap.

Prioritization of modifiable lifestyle variables.  Tentative signals for each of the cardiometabolic traits were gath-
ered and prioritized to identify target lifestyle exposures and exposure groups in which lifestyle interventions 
aiming at controlling cardiometabolic diseases may focus. First, variance explained for each lifestyle variable 
(and covariates) was estimated and variables were rank-ordered within each lifestyle category for each of the 
nine outcome traits. In the linear mixed models, marginal (fixed terms) variance explained was used. The top-
ranked variables (five per category per trait) were identified, and the topranked variables represented in the 
majority of the cardiometabolic traits (at least five traits) were prioritized. Target groups were evaluated using 
a hierarchical clustering algorithm based on correlations between the prioritized variables and visualized in a 
heatmap. Non-modifiable variables were excluded from the prioritization and clustering step as these variables 
could not be affected by a lifestyle intervention.

Statistical analyses and data visualization were performed using R software versions 3.5.2 and 3.6.121 (see 
Supplementary Material for the specific packages used for analyses).

Results
Descriptive characteristics of the study population are summarized in Tables 1, S1 and S2. Mean age of partici-
pants was 47.7 years and 50.6% were women.

Average lifestyle associations.  164 out of 286 lifestyle variables were considered tentative signals for 
BMI (S3), 37 for SBP (S4), 30 for DBP (S5), 84 for total cholesterol (S6), 96 for triglycerides (S7), 46 for HDL 
cholesterol (S8), 20 for LDL cholesterol (S9), 44 for fasting glucose (S10) and 43 for 2 h glucose (S11). ‘Physical 
activity’ and ‘General health’ were the top categories for BMI (Fig. 2) and ‘General health’ for blood pressure 
traits (Fig. 3). Regarding lipids, ‘Beverage’, ‘Nutrients’ and ‘ Physical activity’ were the categories with the highest 
number of ‘tentative signals’ for total and LDL cholesterol (Figs. 4A and D), while ‘Physical activity’, ‘Tobacco 
use’ and ‘General health’ were the top categories for triglycerides (Fig. 4B), and ‘Alcohol’ for HDL cholesterol 
(Fig. 4C). For glucose traits, ‘Physical activity’, ‘General health’ and ‘Tobacco use’ were the top categories (Fig. 5).

Long‑term lifestyle associations.  After multiple testing correction, 35 lifestyle variables showed a tenta-
tive association with 10-year change in BMI (S12), 3 with change in SBP and DBP (S13-S14), 15 with change in 
total cholesterol (S15), 10 in triglycerides (S16), none in HDL and LDL cholesterol (S17-S18), 5 in fasting glucose 
(S19) and 8 in 2 h glucose (S20). The majority of the ‘tentative signals’ were in the ‘Tobacco use’ category for 
BMI, lipids and fasting glucose, while for blood pressure traits the top category was ‘General health’ and for 2 h 
glucose, ‘Physical activity’, ‘Food’, and ‘General health’ were the top categories. There were no material changes in 
key outcome variables during the 9-year follow-up period (see Supplementary Material).

Correlation patterns.  Patterns of correlations were identified among lifestyle variables showing tentative 
association with any of the cardiometabolic traits based on the correlation heatmap (Fig. 6). Variables related to 
meat and fish consumption, sodium, calcium, vitamin B12, and total and animal based protein intake appeared 
in close proximity showing correlations around 0.5. Variables describing fat consumption and fatty acid intakes 
were grouped together showing a high positive correlation. Variables assessing vegetable, fibre and fruit intake, 
plant lignans, whole grain intake, and carbohydrates intake also appear near each other in the heatmap showing 

Table 1.   Summary of participant characteristics. BMI Body mass index, HDL-C High-density lipoprotein 
cholesterol, LDL-C Low-density lipoprotein cholesterol, SBP Systolic blood pressure, DBP Diastolic blood 
pressure, SD Standard deviation.

Variable Number of observations mean SD

Age (years) 67,738 47.72 8.92

Height (cm) 67,476 172.04 9.21

BMI (kg/m2) 67,413 25.73 3.99

Waist circumference (cm) 28,621 92.27 12.13

Total cholesterol (mmol/L) 67,181 5.51 1.09

HDL-C (mmol/L) 27,803 1.40 0.47

LDL-C (mmol/L) 27,649 3.86 1.03

Triglycerides (mmol/L) 58,905 1.40 0.78

Fasting glucose (mmol/L) 67,339 5.39 0.75

2-h glucose (mmol/L) 64,951 6.57 1.50

SBP (mmHg) 67,193 126.42 17.54

DBP (mmHg) 67,160 78.83 11.29
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high positive correlations between them and negative correlations with fat related variables. Variables in ‘Psy-
chosocial’ category and ‘General health’ variables were grouped together.

Prioritization of modifiable lifestyle variables.  Average lifestyle associations.  Thirteen variables 
were prioritized among all the ‘tentative signals’ as they showed the most consistent associations across all the 
cardiometabolic traits (top-ranked in at least 5 out of 9 cardiometabolic traits) (S21). Two of these variables 
(‘Informed of having a high blood pressure’ and ‘Overall state of health during the last year’) were considered 
non-modifiable and excluded (S26 for modifiable and non-modifiable variables). The eleven remaining variables 
were included in a hierarchical clustering algorithm which identified four main targets suitable for interventions 
(Fig. 7). The first group included tobacco use/smoking related variables and were in general positively associ-
ated with BMI, fasting glucose, total cholesterol and triglycerides and negatively with blood pressure traits, HDL 
cholesterol and 2 h glucose (S21). The second included ‘Brewed (filtered) coffee’, which was negatively associated 
with BMI, blood pressure traits, triglycerides and 2 h glucose. The third group included physical activity related 
variables (e.g. ‘Exercise during the last three months’). The fourth included the variable ‘alcohol intake (g/day)’. 
These variables were in general negatively associated with all cardiometabolic traits except with HDL-C with 
which they showed a positive association. The fifth group was a composite of lifestyle variables which could be 
linked to the Swedish lifestyle (especially northern Swedish lifestyle), ‘Frequency of hunting or fishing during 
leisure time’ and ‘Boiled coffee’ (S26). These two variables did not show a clear common pattern of associations 
with cardiometabolic traits.

In general, BMI showed more shared tentative signals with 2 h glucose and HDL-cholesterol than with the 
rest of cardiometabolic traits and triglycerides, BMI and 2 h glucose were the cardiometabolic traits sharing the 
highest number of tentative signals with the rest of cardiometabolic traits (S22).

Figure 2.   Manhattan plot representing the distribution of P values of the association of lifestyle variables 
and BMI by lifestyle category. Tentative signals are coloured, and number labelled in the figure and the top 10 
variables are spelled out. See S25 for references to the labels.

Figure 3.   Manhattan plot representing the distribution of P values of the association of lifestyle variables 
and blood pressure traits by lifestyle category. (A) Systolic blood pressure and (B) Diastolic blood pressure. 
‘Tentative signals’ are coloured, and number labelled in the figure and the top 10 variables are spelled out. See 
S25 for references to the labels.
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Long‑term lifestyle associations.  None of the ‘tentative signals’ showed a consistent association with the major-
ity of cardiometabolic traits (5 out 9 traits) (S23). However, four variables in the ‘Tobacco use’ category showed 
a consistent positive association with 10-year changes in at least three cardiometabolic traits (BMI, total choles-
terol, triglycerides and/or fasting glucose).

Among all the cardiometabolic traits BMI and lipid traits shared the highest number of tentative signals (S24).

Discussion
Although EWAS analyses have been reported previously, this is the first study to integrate repeated exposures 
and outcome assessments, which allows inferences about long-term exposure to these risk factors to be made. 
Here, we systematically and agnostically assessed average (across the study’s follow-up time) and ~ 10-year asso-
ciations between 286 lifestyle variables and 9 cardiometabolic traits. In analyses assessing average association of 
lifestyle variables, ‘Physical activity’ and ‘General Health’ were the categories containing the highest number of 
tentative signals and 11 modifiable variables were prioritized for lifestyle interventions focused on controlling 
cardiometabolic diseases. A cluster analyses grouped these 11 variables into five main target groups: (i) Smok-
ing, (ii) Beverage (filtered coffee), (iii) physical activity, (iv) alcohol intake, and (v) specific variables related to 
Swedish lifestyle (hunting/fishing during leisure time and boiled coffee).

Figure 4.   Manhattan plot representing the distribution of P values of the association of lifestyle variables and 
lipid traits by lifestyle category. (A) Total cholesterol, (B) Triglycerides, (C) HDL cholesterol and (D) LDL 
cholesterol. Tentative signals are coloured, and number labelled in the figure and the top 10 variables are spelled 
out. See S25 for references to the labels.

Figure 5.   Manhattan plot representing the distribution of P values of the association of lifestyle variables and 
glucose traits by lifestyle category. (A) Fasting glucose and (B) 2 h glucose. Tentative signals are coloured, and 
number labelled in the figure and the top 10 variables are spelled out. See S25 for references to the labels.
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For 10-year associations, ‘Tobacco use’ was the category including the highest number of tentative signals for 
the majority of the cardiometabolic traits. No modifiable lifestyle variable was consistently associated with the 
majority of cardiometabolic traits but four variables in the ‘Tobacco use’ category were consistently associated 
with at least three of the analysed cardiometabolic traits (BMI, total cholesterol, triglycerides and/or fasting 
glucose).

Smoking and physical activity correspond to two of the most well-known modifiable risk factors for cardio-
metabolic diseases. According to a study analysing the burden of disease caused by physical inactivity, worldwide, 
6% of the burden of coronary heart disease and 7% of type 2 diabetes was caused by physical inactivity22. On the 
other hand, smoking alters lipid metabolism and glucose homeostasis through the increase in lipolysis, insulin 
resistance and tissue lipotoxicity23,24 and smoking cessation restores, at least in part, these metabolic alterations. 
However, in our study the association of smoking with cardiometabolic traits was not only restricted to the 
average effect across the studied period but we also found a remarkable association of variables included in the 
‘Tobacco use’ category and cardiometabolic traits in the 10 years of follow-up.

Among the prioritized dietary variables, boiled (unfiltered) coffee but not brewed (filtered) coffee was found 
positively associated with lipid traits, specifically with total cholesterol, triglycerides, and LDL cholesterol. 

Figure 6.   Heat map showing all the correlations for tentative signals. Pairs of factors where correlations could 
not be computed are shown in white. Figures were plotted using ‘ggplot2’, ‘ggrepel’, ‘gridExtra’, ‘RColorBrewer’ 
and ‘gplots’ packages in R software versions 3.5.2 and 3.6.121.
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Previous studies have also identified associations between unfiltered coffee and dose-dependent increase of 
plasma concentrations of total and LDL cholesterol25,26. The effects of coffee in the lipid profile are probably 
caused by two diterpenes (i.e. kahweol and cafestol), which sometimes get trapped in the filter used to make 
coffee which can explain the differential effects of filtered and unfiltered coffee26. On the other hand, brewed 
(filtered) coffee was found negatively associated with BMI, blood pressure, triglycerides, and 2 h glucose in the 
present study which is in agreement with previous studies showing an inverse association between habitual coffee 
intake and risk of several cardiometabolic diseases27,28.

Plant lignans (biphenolic compounds found in tea, coffee, whole-grain products, berries, vegetables, fruit, nuts 
and seeds) were among the top tentative signals for fasting and 2 h glucose, showing a negative association with 
both traits. Previous studies have suggested that lignans and their metabolites may protect against cardiovascular 
disease and metabolic syndrome by reducing lipid concentrations, lowering blood pressure, and decreasing oxi-
dative stress and inflammation29. A study conducted in Finland found that men with high serum concentrations 
of enterolactone (a lignan produced by the intestinal microflora) had a lower risk of acute coronary events than 
men with lower concentrations30.

Figure 7.   Heat map showing clusters of correlations between top-ranked modifiable lifestyle variables. Figures 
were plotted using ‘ggplot2’, ‘ggrepel’, ‘gridExtra’, ‘RColorBrewer’ and ‘gplots’ packages in R software versions 
3.5.2 and 3.6.121.
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An interesting observation emerging from our analysis is that several variables that are featured in public 
health recommendations were not broadly associated with the cardiometabolic traits studied here. Recommended 
dietary patterns emphasize the importance of limiting the consumption of sugar-rich products, particularly 
sweet drinks31. However, variables related to sweets and sweet drink consumption (e.g. “Sodas, soft drinks, juice” 
and “Sweets”) were not identified as tentative signals for any of the cardiometabolic traits. Salt content is also 
usually limited in diets recommended to lower risk of cardiometabolic diseases but “Sodium intake” was not 
consistently associated with cardiometabolic traits, being identified as a tentative signal only for BMI, total and 
HDL cholesterol. In the same way, fish and shellfish are frequently recommended in healthy dietary patterns but 
“Lean fish” and “Shellfish” variables were not tentative signals for any cardiometabolic traits, and “Fatty fish” was 
associated with lipid traits except for LDL cholesterol.

There are also limitations to the present study. EWAS and GWAS are not entirely analogous. However, both 
are experiment-wide association studies that adopt a so called ‘agnostic’ approach to consider a multitude of 
exposure-outcome relationships in parallel. This is hence a ‘data-driven’ approach that contrasts traditional 
association studies, where specific hypotheses are formulated and only those relationships consistent with the 
hypothesis are tested. The present sample is limited to a Swedish population between 30–70 years and thus 
caution should be used when extrapolating the findings to other countries and age groups, especially since 
lifestyle variables affecting cardiometabolic traits in Swedish population might differ from other populations. 
Dietary variables were characterized using an FFQ, which suffer from systematic and random measurement 
errors. However, to minimize this source of error the FFQ used in this study was validated against repeated 
24 h recalls17. VHU cohort is exceptionally well-powered for analyses of the nature performed here and there 
were, consequently, a large number of associations that passed conventional statistical thresholds. Most of these 
statistically robust associations emerged due to the complex correlation structure (Fig. 6) found within the set 
of exposure variables. The EWAS analyses undertaken here, like those reported elsewhere, involve parallel tests 
of association with cardiometabolic traits for an array of variables, in this case modifiable lifestyle exposures. As 
with all observational analyses in free-living populations, including EWAS, there is a risk that the relationships 
observed are prone to confounding and reverse-causality. To mitigate these risks, we adjusted the regression 
models for putative confounding variables and assessed the key findings in both average and long-term models. 
Even with these attempts, it is important to highlight that one or more of the findings are false-positive owing to 
residual confounding. To assess this thoroughly requires appropriately designed experimental studies. Our find-
ings highlight key variables, along with their respective effect estimates, that might be prioritised for subsequent 
prediction models and lifestyle interventions. However, it is important to keep in mind that epidemiological 
associations of this nature may not be causal. Thus, intervention studies are needed to test the causal nature of 
these associations.

In conclusion, using an EWAS approach in a large prospective Swedish cohort a large number of associations 
between lifestyle exposures and cardiometabolic traits were identified. Eleven modifiable exposures were consist-
ently top-ranked among the majority of cardiometabolic traits and were identified as target lifestyle exposures 
that could inform lifestyle interventions aiming at controlling cardiometabolic diseases. These variables belonged 
to four target groups: (i) Smoking, (ii) Beverage (specifically brewed (filtered) coffee) and (iii) Leisure time physi-
cal activity and (iv) a group of lifestyles more specific to the Swedish lifestyle.
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