
The Network Architecture of the Saccharomyces
cerevisiae Genome
Stephen A. Hoang*, Stefan Bekiranov*

Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia, United States of America

Abstract

We propose a network-based approach for surmising the spatial organization of genomes from high-throughput interaction
data. Our strategy is based on methods for inferring architectural features of networks. Specifically, we employ a community
detection algorithm to partition networks of genomic interactions. These community partitions represent an intuitive
interpretation of genomic organization from interaction data. Furthermore, they are able to recapitulate known aspects of
the spatial organization of the Saccharomyces cerevisiae genome, such as the rosette conformation of the genome, the
clustering of centromeres, as well as tRNAs, and telomeres. We also demonstrate that simple architectural features of
genomic interaction networks, such as cliques, can give meaningful insight into the functional role of the spatial
organization of the genome. We show that there is a correlation between inter-chromosomal clique size and replication
timing, as well as cohesin enrichment. Together, our network-based approach represents an effective and intuitive
framework for interpreting high-throughput genomic interaction data. Importantly, there is a great potential for this
strategy, given the rich literature and extensive set of existing tools in the field of network analysis.
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Introduction

The non-random spatial organization of chromosomes in the

eukaryotic nucleus is strongly associated with various types of

genomic regulation. Spatial compartmentalization has been

shown, in many organisms, to correspond to transcriptional

regulation, DNA replication, and chromatin states [1–4]. Thus,

techniques to understand the structure-function relationships in

the genome will be critical to advance our understanding of

genomic regulation.

Chromosome conformation capture (3C) technology has

enabled the identification of long-range interactions between

genomic loci [5]. High-throughput methods, such as Hi-C and

ChIA-PET, have built on the 3C framework, and are capable of

comprehensively mapping spatial interactions throughout the

genome [1,6]. These techniques have enabled investigation of

the spatial organization of whole genomes. Data generated by

these technologies can be challenging to analyze due to their high

complexity, and low signal-to-noise ratios [7]. However, several

groups have used these data to characterize genomic folding

principles, interactions between regulatory elements, and func-

tional territories composed of distant genomic regions [1,8–10]. A

variety of strategies have been employed to analyze these data,

including polymer-based physical models, molecular dynamic

simulations, hidden Markov models, and three-dimensional

reconstructions [8,11–13]. Each approach has limitations, and

new approaches will be required to explore the full richness of

these datasets (see [14] for a Review).

Genomic interaction data is essentially composed of pairwise

relationships between genomic regions. Since networks abstractly

represent pairwise relationships between objects, this type of data

has an inherent network structure. Thus, networks can be used to

generate highly intuitive representations of this type of data.

Networks are also a convenient and highly flexible framework for

storing, analyzing, and integrating interaction data. Furthermore,

information of biological interest that is contained in interaction

data, such as compartmental characteristics, can be extracted by

analyzing the architectural properties of an interaction network.

As is necessary to analyze genome-scale datasets, efficient

algorithms have been developed to identify some of these network

properties in very large networks [15,16].

Here we demonstrate how intuitive, biologically meaningful

analyses of large genomic interaction datasets can be achieved

purely through network abstractions. Although some groups have

begun to employ networks for analyzing gene-gene and other types

of interactions from Hi-C data [17], and transcription factor-

biased ChIA-PET data [18], to our knowledge no network-based

methods have been applied to unbiased maps of physical

interactions throughout the genome.

In this study, we generate and analyze network models

constructed from an unbiased genome-wide chromatin-chromatin

interaction dataset generated in Saccharomyces cerevisiae by Duan et

al. [13]. We investigate two structural properties of these networks,

namely, communities and cliques. Briefly, communities are sets of

densely connected nodes within a network, and cliques are sets of

fully connected (all to all) nodes in a network. We focus on these

structural network properties, because they directly correspond to
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spatial grouping in a genomic interaction network. We investigate

how these network features correspond to regulatory properties of

the genome, such as replication timing, and protein binding. We

also explore the use of community detection techniques in

analyzing the structure of the genome at different levels of spatial

resolution. This analysis revealed a hierarchical interaction

structure of the genome, whereby features such as replication

timing and protein binding are non-randomly ordered. The

analyses presented here represent a general framework and proof-

of-principle for using networks to infer genomic organization from

unbiased chromatin-chromatin interaction data.

Methods

Data sources and processing
The chromosome interaction data was generated by Duan et al.

[13]. The data used to build the networks presented here are from

the HindIII fragment interactions that were also confirmed by

EcoRI interactions. False discovery rate (FDR) significance

calculations for these interactions were also taken from Duan et

al. Only interactions that achieved the stated FDR thresholds were

included in the networks. In addition, only HindIII fragments that

met the mappability criteria set out by Duan et al. were included

in the networks.

Replication timing data was obtained from McCune et al.,

Supplemental data 1 [19]. In these data, replication timing is

represented as a percentage of a pooled sample of S phase cells for

which a locus has replicated. Thus, higher percentages represent

earlier replication. The replication percentages for each HindIII

fragment were calculated as the mean of the replication

percentage that overlapped the given fragment.

ChIP-seq data for cohesin (Smc1, Scc1) and cohesin loader

(Scc2, Scc4) subunits were obtained from Hu et al. [20]. Raw

sequence reads for both ChIP and whole cell extract fractions were

mapped to the UCSC sacCer3 genome assembly using Bowtie 2

with default settings [21]. The number of mapped reads

overlapping each HindIII fragment was calculated and assigned

to the fragment. The enrichment levels presented in this work were

calculated as the log2 ratio of ChIP vs. control for each HindIII

fragment.

Processed gene expression for ORFs were obtained from

Nagalakshmi et al. [22]. Binding sites for 200 different transcrip-

tional regulators in yeast came from Venters et al. [23]. From this

data, probe sets that passed 5% FDR significance cutoff were

considered binding sites. Only the binding site data at 25C was

used in this study. HindIII fragments that intersected (any fraction)

one or more binding sites of a given factor were labeled as

containing the factor.

Gene annotations were obtained from the ‘‘SGD Genes’’ track

of the UCSC Genome Browser database (downloaded February

19, 2013). Centromere, telomere, and tRNA annotations were

obtained from the ‘‘SGD Other’’ track of the UCSC Genome

Browser database (downloaded February 19, 2013) [24]. Genes

were assigned to fragments that contained the given gene’s

transcription start site. Like the binding sites of transcriptional

regulators, fragments were labeled as containing or not containing

centromeres, telomeres or tRNAs, based on a non-zero overlap

criteria. All feature intersections were calculated using BEDtools

[25].

All coordinate-based datasets that did not correspond to the

sacCer3 assembly of the Saccharomyces cerevisiae genome were lifted

over to sacCer3 using the UCSC Genome Browser liftOver tool

[24].

Network construction and clique/community detection
The networks were built using the NetworkX Python module

[26], where mappable HindIII fragments were represented as

nodes, and interactions meeting the FDR threshold were included

as edges with weight = 1. The networks presented here represent

the largest connected component of the networks induced by the

interaction data. All network visualizations were created with the

Gephi software [27].

Clique detection was performed using the find_cliques function

in NetworkX. Each node was assigned a maximum clique size,

which is the size of the largest clique to which the node belongs.

An in-house implementation of the Louvain algorithm was used to

perform community detection [15]. Briefly, the Louvain algorithm

initially assigns each node to a distinct community and proceeds by

hierarchically merging communities, with the goal of optimizing

an objective function known as modularity (defined in the Results/

Discussion). Thus, the solution discovered by the Louvain

algorithm has intermediate levels, corresponding to hierarchical

levels of community organization. The communities detected at

each level of the solution are numbered sequentially from zero,

though the numbering is arbitrary. We found that the algorithm

often tends to create a small number of very small communities

(relative to the size of the communities that make up the vast

majority of the networks) at the edges of the networks. These are

often chains of nodes connected by single edges, which are not

robust communities. Therefore, we chose to filter communities

that contained ,10 nodes. The subcommunities were detected by

applying a second round of community detection to the

subnetwork that represents each community detected in the total

network.

Enrichment analyses
Enrichments for protein binding sites and genomic features

(centromeres, telomeres, tRNAs) were calculated using the two-

tailed Fisher’s exact test. The categories for the contingency table

used to calculate the result of the test were, fragments that contain

a given feature, and fragments that belong to a given community.

Thus, the test calculates the probability that fragment feature

assignment and fragment community assignment are independent.

In the case of the transcriptional regulators, the FDR was

calculated by applying the Benjamini-Hochberg procedure [28] to

the set of 200 factors for each community.

Results/Discussion

Inter-chromosomal cliques replicate early, and are
enriched for cohesin

We created network models of genomic interactions, where

nodes represent genomic loci, and edges represent statistically

significant interactions between loci (,1% false discovery rate

(FDR), unless otherwise stated). Several groups have noted the

highly stochastic nature of these interactions in vivo [29,30]. Only a

relatively small fraction of a population of cells exhibit a given

interaction in an experiment [14,31,32]. For this reason, we

employ methods of network analysis that are robust to the addition

of ‘‘noisy’’ edges. One such procedure for detecting regions of

strong interaction is clique detection. Cliques are sets of nodes that

show complete interaction (all connected to all). Because of their

specific topology, large cliques are unlikely to form at random in

relatively sparse networks. Therefore, genomic regions that are

members of large cliques likely represent sets of regions that

exhibit relatively robust and stable interactions.

The known functions of cohesin make it an excellent candidate

for a mediator of stable inter-chromosomal interactions. In

Network Analysis of the Yeast Genome
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budding yeast, cohesin has a well established role in mediating

inter-chromosomal cohesion between newly replicated sister

chromatids [33,34]. There is also evidence that mutations in

cohesin pathway proteins can lead to disruption in chromatin

condensation and organization [35]. In mammalian cells, cohesin

has been shown to be necessary to establish and maintain

functional spatial chromatin interactions that influence transcrip-

tional regulation [36–38]. Although sister chromatid cohesion is

well known, other types of cohesin-mediated inter-chromosomal

interactions are not well studied in budding yeast. Therefore, we

chose to investigate cohesin enrichment at inter-chromosomal

cliques to (1) look for evidence that cohesin is involved in

establishing stable inter-chromosomal interactions, and (2) to

evaluate the biological relevance of cliques.

In the inter-chromosomal network, we calculated the maximum

clique size for each genomic fragment, which is the size of the

largest clique of which a given fragment is a member (Table S1).

At each of these fragments we also assessed the enrichment levels

of the cohesin subunits Scc1 and Smc3, as well as the cohesin

loader subunits Scc2 and Scc4. Since cohesin proteins mediate

inter-chromosomal interactions, we expected to see high levels of

these factors in large cliques. Indeed, there is a clear trend of

increasing levels of both cohesin and its loader with increasing

inter-chromosomal clique size (Figures 1 and S1). Spearman’s rank

correlation coefficient (SCC) between mean enrichment and clique

size is 0.97 and 0.98, respectively for the cohesin subunits Scc1 and

Smc3. The corresponding correlations for the cohesin loader

subunits are 0.82 for Scc2, and 0.89 for Scc4. By definition, every

fragment in an inter-chromosomal clique represents a different

chromosome. This suggests that in addition to its role in sister

chromatid cohesion, cohesin may be directly involved in

maintaining spatial interactions where many chromosomes come

together in a single region in space. Interestingly, we find little

variation across maximum intra-chromosomal clique sizes in the

enrichment of the cohesin and cohesin loader subunits (Figures S2

and S3). This result suggests that cohesin has a less prominent role

in directly mediating intra-chromosomal interactions.

Cohesin has also been shown to be recruited to sites of active

replication in budding yeast [39]. Moreover, in mammalian

systems it has been shown that the level of chromosomal

interaction correlates strongly with replication timing [3]. It has

also been postulated that cohesin mediates chromosomal confor-

mations that are favorable for efficient replication [40]. Since we

see both high cohesin enrichment and a high degree of inter-

chromosomal interactions in large cliques, we expected to see a

strong relationship between inter-chromosomal clique size and

replication timing. Indeed, that is what we observed (Figure 2,

n.b., higher% replication indicates earlier replication, see [19] for

details). However, like cohesin enrichment, we observed indepen-

dence between intra-chromosomal clique size and replication

timing (Figure S4). We also observed independence between both

inter- and intra-chromosomal clique sizes and gene expression

(Figure S5). This indicates that chromatin-chromatin interactions

at this level of resolution are more strongly associated with

regulation of replication than transcription. It is still quite possible,

and indeed likely, that chromatin-chromatin interactions at other

levels of resolution may be associated with transcriptional

regulation. Together, these findings suggest that a major role of

stable interactions involving many different chromosomes is to

ensure early replication of these regions of the genome. This type

of interaction can be expected to occur in centromeric regions in

budding yeast, due to the known rosette organization of the

genome, where chromosome arms extend from a centromeric

cluster near one spindle pole [13,41,42]. Moreover, centromeric

regions are well established as regions of early replication in

budding yeast [43,44]. Though these relationships have been

established, to our knowledge, a direct relationship between

number of inter-chromosomal interactions and replication timing

has not been shown. This finding, however, does not necessarily

indicate direct mechanistic dependence between inter-chromo-

somal interactions and early replication. Indeed, it has recently

been shown that at early pericentromeric origins, Cdc7-Dbf4

(DDK) recruits replication initiators Sld3 and Sld7. Separately,

DDK also recruits the cohesin loaders Scc2 and Scc4 to

centromeres during G1 [45]. Thus, the association between early

replication and inter-chromosomal interactions may be due to the

downstream effects of these two activities of DDK.

The clear trends between inter-chromosomal clique size,

cohesin enrichment, and replication timing demonstrate that

biologically relevant information can be gleaned from the

structural properties of genomic interaction networks. Relatively

complex information about the interaction behavior of a genomic

region can be obtained through simple characterizations of an

interaction network. Since clique size is a relatively simple aspect

of the inter-chromosomal network architecture, these findings

demonstrate the potential for more sophisticated network analyses.

Community detection
Communities are groups of densely connected nodes in a

network. In a genomic interaction network, communities represent

dense clusters of interacting genomic loci, e.g., chromosome

territories. Therefore, the community structure of the genomic

interaction network is of great interest, since it reflects how the

genome is spatially compartmentalized. The budding yeast

genome has been shown to have some degree of compartmental-

ization, including the clustering of the rDNA locus on chromo-

some XII [46], and the clustering of tRNAs [47,48]. By

comparison, metazoan genomes show a very high degree of

spatial compartmentalization, including the formation of topolog-

ically associating domains (the so-called TADs), and transcription

factories [2,8,11]. The degree to which transcription factory

structures form in yeast genomes is unclear [49,50]. In principle,

community detection methods can be used to identify these types

of structures.

Detecting communities involves partitioning the network so that

nodes within communities are densely connected, and nodes

between communities are sparsely connected. A commonly used

metric for the quality of a partition is its modularity given by [51]

Q~
1

2m

X
ij

Aij{
kikj

2m

� �
d ci,cj

� �

where Aij is the adjacency matrix of the network (i.e., 1 when nodes

i and j are connected, and 0 otherwise), m is the sum of the edge

weights in the network, ki is the sum of the edge weights attached

to node i, ci is the community to which node i belongs, and d is the

Kronecker delta. Many community detection procedures take the

approach of attempting to maximize modularity. Though there is

no single rigorous definition of a network community, modularity

optimization is widely used to define the community partition of a

network. However, optimizing modularity has been shown to be

an NP-complete problem, and is thus computationally intractable

[52]. Therefore, all of the modularity-based algorithms to detect

communities are heuristic methods that approximate modularity

maximization. Furthermore, there is a resolution limit associated

with modularity, where communities below a certain size cannot

be detected. This minimum community size is a function of the
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total number of edges in the network, and the ratio of outgoing

edges to internal edges in the community being detected [53].

Intuitively, as the size of a network increases, so does the size of the

smallest detectable community within that network. However,

methods have been developed that mitigate this limitation [15,54].

To detect communities in our genomic interaction network, we

implemented the so-called Louvain algorithm [15]. This method

initially assigns each node to a distinct community and hierarchi-

cally merges communities, with the goal of maximizing modular-

ity. We selected this method of community detection for several

reasons. First, the method has been shown to produce partitions

with better global modularity than many other competing

algorithms. Second, in terms of speed, the algorithm performs

well on very large networks, having been successfully applied to

networks with billions of nodes and hundreds of millions of edges.

Third, the resolution limit does not strictly apply to this method.

Finally, due to the hierarchical nature of the solution, intermediate

steps toward the global solution could potentially give insight into

the hierarchical community structure of a network.

Community detection is robust to interaction noise
One concern relevant to community detection in interaction

networks is the influence of the significance threshold selected for

the inclusion of edges in the network. The selected threshold has a

strong influence on the number of edges included in the network,

and since the modularity resolution limit is a function of the total

number of edges in the network, the inclusion of ‘‘noisy’’ edges in

the network increases the minimum detectable community size

[53]. However, a coarse-grained community structure of the

network should be robust to noise. To confirm this, we generated

pairs of networks, one with an edge FDR threshold of 1% and the

Figure 1. Cohesin enrichment vs. inter-chromosomal maximal clique size. Enrichment of cohesin subunits (A) Smc3 and (B) Scc1 with
respect to maximal fragment clique size. The maximal clique size for a fragment is the size of the largest clique to which a genomic fragment belongs.
Each member of an inter-chromosomal clique represents a fragment from a different chromosome. Thus, cohesin enrichment increases with number
of interacting chromosomes.
doi:10.1371/journal.pone.0081972.g001
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other with an FDR threshold of 0.01%. It is worth noting that the

latter is a subnetwork of the former. We then calculated the

community membership recapitulation as the fraction of genomic

regions within a given community in the smaller network that are

found within a single community in the larger network. We

followed this procedure for one pair of networks made with inter-

chromosomal interactions only, and another pair made with the

union of inter-chromosomal and intra-chromosomal interactions

(i.e., a complete interaction network). For clarity, the inter-

chromosomal interaction network with edge FDR threshold of 1%

is identical to the inter-chromosomal network used in the clique

analysis.

The inter-chromosomal-only networks had 31,832 and 13,537

edges at the 1% and 0.01% FDR thresholds, respectively. The

mean community recapitulation rate for these networks was 84%

across the communities in the smaller network. The complete

interaction networks had 59,132 and 31,426 edges at the 1% and

0.01% FDR thresholds, respectively. This pair yielded a mean

community recapitulation of 93%. These calculations suggest that,

at a coarse-grained scale, community detection is highly robust to

the selection of significance thresholds for network edges. The

subsequent analyses are done on networks with a 1% FDR edge

threshold. We selected this less stringent threshold in order to

incorporate larger portions of the genome.

Inter-chromosomal network has three major
compartments

The inter-chromosomal network contains 2955 nodes and

31,832 edges. The partition solution to this network has three

hierarchical levels (see Methods and [15] for a detailed explana-

tion of hierarchical structure of the solution): level 0, level 1 and

level 2 (Table S2). Level 2 is the highest level of the partition

hierarchy, and corresponds to the global maximum modularity

found by the algorithm. At this level, the inter-chromosomal

network partitions into 13 communities, three of which pass our

size filter (see Methods). These communities represent 98.7% of

the nodes in the network. Community 0 contains 61.9% of the

nodes in the network, community 6 contains 23.1%, and

community 1 contains 13.7%. These three major communities

roughly correspond to distance from centromeric regions

(Figure 3A). Community 1 corresponds to centromere-proximal

regions; community 6 tends to flank community 1 regions; and

community 0 tends to comprise large portions of the chromosome

arms, relatively far from the centromeres.

We looked at enrichment of several chromosomal features and

transcriptional regulators in each of the three high-level commu-

nities. Community 1 contains all of the centromeres, so not

surprisingly it has a highly significant enrichment for centromeres

(p = 9.36e-14). It also has a significant enrichment for tRNAs

(p = 0.008), which is consistent with the observation of a

centromere-proximal spatial cluster of tRNAs [13]. Community

1 is also the only community of the three that that has a significant

enrichment for any of the 200 transcriptional regulators that we

tested. Moreover, out of the 200 proteins, Irr1, a cohesin subunit,

is the only one that is significantly enriched (FDR = 4.21e-10). This

highly significant localization of cohesin in the centromeric

community, and the enrichment of cohesin at large inter-

chromosomal cliques, suggest that cohesin may play a role in

maintaining the rosette configuration of the genome by creating

inter-chromosomal links between different chromosomes in the

centromeric community.

The centromere-distal communities had less dramatic enrich-

ments. Community 0 does not contain enrichments for the

chromosomal features, or any of the transcriptional regulators we

assessed. This is not surprising, considering this community

accounts for over half of the genome, and is the most sparsely

connected of the three. Although, community 0 tends to be more

centromere-distal than community 6, community 6 contains a

significant enrichment for telomeres (p = 0.0088). This suggests

possible looping associations between telomeres and telomere-

distal regions of chromosomes. The size of communities 0 and 6

contribute to their non-specificity; that is, they are low-resolution

communities. Therefore, we sought to explore the hierarchical

community structure of the genome.

Communities at each successive hierarchical level of the

detection algorithm represent aggregations of communities in the

preceding level. Therefore, the intermediate partitions of the inter-

chromosomal network, should give information about the

hierarchical structure of the network. However, the partition

levels of this network give little indication of hierarchical structure.

At level 1, there are three communities nearly identical to the three

communities in level 2 (Figure S6A). In order of size, they

represent 61.9%, 22.7%, and 13.7% of the total number of nodes

in the network. Therefore, most of the communities that were

merged from level 1 to level 2 were below the size filter (see

Methods). At level 0, we further detect one small community, 16,

which contains 1.3% of the total nodes in the network (Figure

S6B). Interestingly, this community is strongly enriched for

fragments that overlap telomeric regions (p = 6.3e-9). This is

consistent with other studies that have shown the strong inter-

chromosomal association of telomeres [13,55,56]. Overall, the lack

of separation of the major communities at lower levels in the

hierarchy suggests that there is little hierarchical structure in this

network. Indeed, a qualitative inspection of a force-directed layout

of this network supports this conclusion (Figure 3B).

Subcommunities of the inter-chromosomal network are
modular

One possibility for the lack of evidence for hierarchical structure

in the inter-chromosomal network is that the intermediate

solutions to the detection algorithm do not have the ability to

resolve subcommunities. Moreover, force-directed layouts of the

large network may not impose a geometry that allows visual

discernment of community structure, especially for subtle com-

Figure 2. Replication timing vs. inter-chromosomal maximal
clique size. Higher% replication indicates earlier replication. Larger
inter-chromosomal clique size clearly trends with earlier replication.
Sites where many chromosomes make stable contacts tend to replicate
early.
doi:10.1371/journal.pone.0081972.g002
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munities. To further investigate the possibility of hierarchical

structure in the inter-chromosomal network, we performed

community detection on the three subnetworks that represent

each of the three major communities in the inter-chromosomal

network. We treated each of these subnetworks as independent

networks. In this section, we will only refer to the communities

generated by the final partition of these subnetworks. Also, these

communities-within-communities will henceforth be referred to as

‘‘subcommunities’’. To assess the presence of hierarchical com-

munity structure in this data, we looked for evidence of modular

structure in the subnetworks, and biological meaning in the

subcommunities.

Since partitions of random networks can have highly variable

modularity, a modularity value on its own does not have a

meaning [57]. Therefore, to assess the degree of modularity of

each of the three communities we compared their modularity to

random networks of equal size (edge number) and order (node

number). We partitioned, and calculated the modularity of 10,000

random networks for each of the three subnetworks. We compared

the modularity of the non-random community partitions to the

empirical random modularity distributions using a standard score

(Figure 4). All three subnetworks had modularity greater than their

10,000 matched random networks. Thus, these three communities

have some degree of non-random subcommunity structure with

p,0.0001.

Figure 3. Community partition of the inter-chromosomal network. Partition showing the final solution of the community detection
algorithm on the inter-chromosomal network. (A) Scaled chromosomes which are centered on centromeres show somewhat symmetrical community
assignment about the centromere. (B) A force-directed network representation of the community partition shows the layered interaction structure of
the genome. Together, these figures show the rosette configuration of the genome, where centromeres cluster, and chromosome arms extend in one
direction away from the centromeres. Interaction domains are roughly stratified by the distance from the centromeres.
doi:10.1371/journal.pone.0081972.g003

Figure 4. Modularity of the inter-chromosomal communities.
The modularity over random of the subnetworks induced by each of
the three major inter-chromosomal communities. The red point
represents the modularity of the partition of the subnetwork. The
black points represent the modularity of the partitions of 10,000
random subnetworks of equal size and order. The standard score of
each red point relative to the black points are given. All three
communities show non-random modularity.
doi:10.1371/journal.pone.0081972.g004

Network Analysis of the Yeast Genome
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The subnetwork induced by community 1 (the centromeric

community) of the inter-chromosomal network had the greatest

degree of modularity over random (Figure 4, Z = 16.46). Thus, of

the three subnetworks, the centromeric network shows the

strongest evidence for hierarchical organization. The community

assignments for this subnetwork represent large, linearly contig-

uous segments of chromosomes (Figure 5A, Table S3). This is

remarkable because information about the linear orientation of

fragments in the inter-chromosomal network is encoded through

inter-chromosomal interactions. Thus, linearly contiguous sub-

community assignments are made purely through similarities in

inter-chromosomal interactions. Linearly continuous community

assignments are an indicator of a high degree of community

structure within community 1. Unlike community 1 as a whole,

none of the subcommunities within this subnetwork showed

significant enrichment for binding sites of the 200 transcriptional

regulators (data not shown). However, the subcommunities

distinguish themselves with respect to replication timing and

cohesin enrichment levels. Strikingly, ordering the subcommuni-

ties by median replication timing or by median cohesin

enrichment produces the same result (Figures 5B and 5C).

Together with our findings from the clique analysis, these findings

further support our observation that replication timing and

cohesin enrichment are closely associated with network structure,

and thus are associated with the spatial organization of the

genome.

Community 6 of the inter-chromosomal network showed the

second largest modularity over random (Z = 7.63). Like the

partition of community 1, we see large contiguous chromosomal

segments assigned to a single subcommunity (Figure S7A, Table

S4). However, there are also many subcommunities that are highly

fragmented and interleaved, potentially indicating a low degree of

hierarchical structure. This qualitative assessment is consistent

with this community’s modularity over random, relative to that of

community 1. Community 6 tends to flank centromere-proximal

regions (community 1), but is also enriched for telomeric regions.

Consistently, we find that subcommunity 2 is significantly enriched

for telomeres (p = 5.6e-5). Along with the highly significant

grouping of telomeres in the level 0 partition of the whole inter-

chromosomal network, this demonstrates that inter-chromosomal

interactions between telomeres form highly distinct clusters in this

dataset.

Inter-chromosomal community 0 shows the weakest modularity

over random (Z = 5.9). Accordingly, it has very few large

contiguous subcommunities (Figure S7B, Table S5). The only

chromosomal feature enrichment that we observed was a

significant enrichment for tRNAs in subcommunity 25

(p = 0.0033). Consistent with others [13], we find two regions of

significant tRNA clustering, one at centromeric community in the

Figure 5. Partition of the inter-chromosomal centromeric community. The subnetwork induced by community 1 of the final inter-
chromosomal partition was repartitioned. (A) The community assignments show long linear stretches that belong to a single community, which
demonstrates that linear orientation information is encoded in inter-chromosomal contact information. This subnetwork partitions into communities
that can be distinguished by (B) replication timing, and (C) cohesin enrichment.
doi:10.1371/journal.pone.0081972.g005
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full inter-chromosomal network, and here in subcommunity 25.

Based on the findings of [13], this grouping of tRNAs is

presumably proximal to the nucleolus. Intriguingly, of all of the

communities in this subnetwork, this is the only subcommunity

that shows enrichment at a 1% FDR threshold for any

transcriptional regulator of the 200 tested. Even more striking,

this community is enriched for 24 of the 200 transcription factors

and chromatin remodelers (Table S6), with Gcr1—a transcription

factor that activates genes involved in glycolysis as well as

ribosomal protein genes—showing the highest enrichment (1.6

fold over expected random overlap; 0.02% FDR). Together, these

finding suggest biological meaning to the partition of subcommu-

nity 25. However, overall inter-chromosomal community 0 has

subtle community structure.

The complete network highlights high-level organization
Next, we partitioned the network containing both intra- and

inter-chromosomal edges (which will be referred to as the

‘‘complete network’’) into communities. The interpretation of this

network has a major caveat associated with it. The FDRs of intra-

chromosomal and inter-chromosomal links were calculated using

different assumptions and probability models (see [13] for details).

Therefore, the ‘‘actual’’ significance of an edge is likely different

for an intra-chromosomal and inter-chromosomal edge at the

same FDR value. A network incorporating both types of edges will

thus be distorted, having an imbalance of one type of edge over the

other. Nevertheless, this network can give some insights into the

organizational principles of the genome

The solution to the complete network partition has two

hierarchical levels: level 0 (Figure S8, Table S7), and level 1

(Figure 6, Table S7). Like the inter-chromosomal network, the

differences between the levels are largely restricted to relatively

small communities. At level 1, the partition shows the tendency for

centromeric regions across all chromosomes to colocalize into a

single community. Outside of this centromeric community, many

chromosomes or chromosome arms tend to form isolated

communities. Notably, chromosome VIII and chromosome XII

have different community associations for each chromosomal arm.

The segregated interactions of the arms of chromosome XII has

been previously observed, where the rDNA locus acts as an

interaction boundary for the up- and downstream regions of the

chromosome [13]. In a force-directed representation of this

network, community 0 which represents the region downstream

of the rDNA locus on chromosome XII appears to be one of the

most isolated regions in the genome (Figure 6B).

As a thought experiment, beginning with an inter-chromosomal

network and continuously adding intra-chromosomal edges,

individual chromosomes would become increasingly isolated into

independent communities. Consequently, it comes as no surprise

that many communities are dedicated to large portions of

individual chromosomes. Thus, communities that span different

chromosomes in this partition may represent robust inter-

chromosomal interactions. Other than community 5, which

contains the centromeric regions, community 9 shows the highest

degree of cross-chromosomal membership. Large portions of

chromosomes III, V, and VIII belong to community 9, as well as

small portions of many other chromosomes, suggesting a relatively

high degree of inter-chromosomal interaction in these genomic

regions.

Conclusions and further considerations
Here we present a novel approach for detecting spatial

groupings from unbiased chromatin-chromatin interaction data.

Using this approach we are able to show biologically meaningful

spatial associations between genomic elements. We demonstrate

that network-based analysis methods can be used to recapitulate

well-studied aspects of genomic organization. Improvements in the

resolution of chromosome conformation capture assays, as well as

optimization of network analysis techniques may be used to

uncover novel higher-order chromatin structures.

Much of what is presented here is a proof-of-principle, where we

have simplified the procedure for constructing the networks. There

are many different approaches to network construction. For

example, one could apply a method for weighting the edges in the

network to improve community detection sensitivity. One such

weighting method described by Khadivi et al. involves applying

weights that accentuate community structure, and expands the

bounds on modularity resolution [54]. This method weights edges

based on the network topology alone. Edges could also be

weighted by the significance of the measured interaction between

genomic regions. Alternatively, edges could be weighted by the

contact frequency between regions, which would eliminate the

need for setting significance thresholds for interactions. This is

desirable because, in principle, all interaction data could be used

to build the network, and no assumptions would have to be made

to construct a probability model of the interaction frequencies.

While weighting network edges may give different insights into

genomic organization, there is no correct way to weight edges.

Each possible weighting scheme provides an alternative projection

of the data, and thus will yield different insights. Investigating

strategies for weighting networks will be valuable for future

network-based analyses of chromatin-chromatin interaction data.

There are also a variety of approaches to community detection.

Communities, like ‘‘clusters’’ in cluster analysis, do not have a

unique definition, though all definitions indicate that communities

are densely connected sets of nodes. Accordingly, there are several

approaches to identifying communities in a network. In this work,

we utilize an approach that attempts to optimize the ‘‘modularity’’

of the network under investigation. Modularity is influenced by,

among other things, the size of the entire network. Other methods

of community detection, such as the ‘‘clique percolation’’ method,

rely on grouping well-defined local structures to detect commu-

nities, and are not influenced by network size per se. Thus, different

methods of community detection applied to chromatin-chromatin

interaction networks may provide different insights into genomic

organization. However, many community detection methods are

computationally intensive, prohibiting their use in analyzing

genome-scale networks.

In addition to exploring variations on network construction and

analysis, an obvious next step is to apply these methods to the

genomes of multi-cellular organisms, which have a higher degree

of organizational complexity. Unlike the yeast genome, many of

these genomes have fractal globule conformations [1,58], and have

specific domains of association [2,8]. These structures naturally

form interaction communities, making community detection

algorithms a potentially powerful tool for studying the spatial

organization of these genomes.

Structural analysis of networks is an active field of research (See

[59] for a review). Much of the interest and development in this

field is driven by the accessibility of large datasets, which can be

coerced into network structures. Genomic interaction datasets are

an excellent example of such data, though network analysis has not

been broadly applied to them. There are abundant existing and

forthcoming network analysis methods which may be able give

deep insight into genomic organization. For example, measures of

node and edge centrality could easily be applied to this data;

however, the biological meanings of such measures are somewhat

less intuitive than the identification of interaction clusters
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presented in this work. The development of genome-wide

interaction assays, coupled with the active network analysis field,

presents an enormous opportunity for synergy between data

acquisition technology and analysis methodology in understanding

the functional organization of genomes.

Supporting Information

Figure S1 Cohesin loader enrichment vs. inter-chromo-
somal maximal clique size. Enrichment of cohesin loader

subunits (A) Scc2 and (B) Scc4 with respect to maximal fragment

clique size. Like cohesin itself, cohesin loader enrichment increases

with number of interacting chromosomes.

(TIF)

Figure S2 Cohesin enrichment vs. intra-chromosomal
maximal clique size. Enrichment of cohesin subunits (A) Smc3

and (B) Scc1 with respect to maximal fragment clique size in the

intra-chromosomal network. This plot includes intra-chromosom-

al cliques across all chromosomes. Unlike the inter-chromosomal

cliques, cohesin enrichment and intra-chromosomal clique size are

independent.

(TIF)

Figure S3 Cohesin loader enrichment vs. intra-chromo-
somal maximal clique size. Enrichment of cohesin loader

subunits (A) Scc2 and (B) Scc4 with respect to maximal fragment

clique size in the intra-chromosomal network. Like cohesin itself,

cohesin loader enrichment and intra-chromosomal clique size are

independent.

(TIF)

Figure S4 Replication timing vs. intra-chromosomal
maximal clique size. Unlike inter-chromosomal cliques,

intra-chromosomal clique size and replication timing are inde-

pendent.

(TIF)

Figure S5 Expression vs. inter- and intra-chromosomal
maximal clique size. Gene expression level is independent of

the (A) inter-chromosomal and (B) intra-chromosomal clique size

of its genomic locus.

(TIF)

Figure S6 Intermediate solutions to community detec-
tion in the inter-chromosomal network. Scaled chromo-

somes, centered on centromeres. (A) The level 1 partition of the

inter-chromosomal network is similar to the level 2 partition

(Figure 3A), which is the final partition. (B) At the level 0 partition,

Figure 6. Partition of the complete network. Final solution to the community partition of the network containing inter- and intra-chromosomal
interactions. (A) Scaled chromosomes centered on the centromeres, shows unification of all chromosomes at the centromeres into a single
community. Outside of the centromeric community, most chromosomes broadly belong to a single community. Chromosome XII shows split
assignment relative to the rDNA locus (unassigned). (B) A force-directed layout of the complete network shows that each side of chromosome XII is
isolated from the other, and they are pushed to the edges of the network.
doi:10.1371/journal.pone.0081972.g006
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community 16 emerges, which contains several telomeric

fragments. Most of the community merges from level 0 to 2

involve small communities. Together, the intermediate solutions

give relatively little insight into hierarchical community structure.

(TIF)

Figure S7 Partitions of inter-chromosomal community
6 and 0. (A) The partition of the subnetwork induced by

community 6 shows several large continuous community assign-

ments, indicating some modular community structure. (B) The

partition of the community 0 subnetwork is highly fragmented,

indicating very little modular community structure.

(TIF)

Figure S8 Level 0 partition of the complete network. The

level 0 partition of the network containing both inter- and intra-

chromosomal interactions shows very similar community structure

to the level 1 (and final) partition. This indicates that there is little

hierarchical community structure information in the intermediate

solution to the final partition.

(TIF)

Table S1 Inter-chromosomal network maximum clique
size. Table of genomic fragments and the size of the largest inter-

chromosomal clique to which each fragment belongs.

(XLSX)

Table S2 Inter-chromosomal network community as-
signments. Table of genomic fragments and the community

numbers to which they belong. Community numbers are given for

each level of the partition.

(XLSX)

Table S3 Inter-chromosomal community 1, subcommu-
nity assignments. Table of genomic fragments in inter-

chromosomal community 1, and the subcommunity numbers to

which they belong. Subcommunity numbers are given for each

level of the partition.

(XLSX)

Table S4 Inter-chromosomal community 6, subcommu-
nity assignments. Table of genomic fragments in inter-

chromosomal community 6, and the subcommunity numbers to

which they belong. Subcommunity numbers are given for each

level of the partition.

(XLSX)

Table S5 Inter-chromosomal community 0, subcommu-
nity assignments. Table of genomic fragments in inter-

chromosomal community 0, and the subcommunity number to

which they belong. Subcommunity numbers are given for each

level of the partition.

(XLSX)

Table S6 Inter-chromosomal community 0, subcommu-
nity 25 TF enrichments. Transcription factors enriched in

inter-chromosomal community, subcommunity 25 (FDR ,1%).

(XLSX)

Table S7 Complete network community assignments.
Table of genomic fragments and the community numbers to

which they belong. Community numbers are given for each level

of the partition.

(XLSX)
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