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Abstract
Alive anisakids cause acute gastrointestinal diseases, and dead 
worms contained in food can provoke sensibilization and allergic 
reactions in humans. Detected in the purchased minced salmon 
Oncorhynchus nerka nematodes were identified as Anisakis 
simplex sensu stricto (Anisakidae). We found that recently published 
phylogenetic trees (reconstructed using different ribosomal and 
mitochondrial genetic markers) showed independent clusterization 
of species recognized in the A. simplex sensu lato species 
complex. This prompted us to undertake this full-fledged molecular 
genetics study of anisakids from Kamchatka with phylogenetic 
reconstructions (NJ/ML) and calculated ranges of interspecific and 
intergeneric p-distances using ITS1-5.8S-ITS2 sequences. We 
confirmed that molecular markers based on the ITS region of rDNA 
were able to recognize ‘pure’ specimens belonging to the cryptic 
species. We offer new insights into the systematics of anisakids. The 
genus Anisakis sensu stricto should include Anisakis simplex sensu 
stricto, Anisakis pegreffii, Anisakis berlandi, Anisakis ziphidarum, and 
Anisakis nascettii. Presumably, two genera should be restored in the 
structure of the subfamily Anisakinae: Skrjabinisakis for the species 
Anisakis paggiae, Anisakis brevispiculata, and Anisakis physeteris; 
and Peritrachelius for the species Anisakis typica. In addition, 
we provide the short annotated list of some genera of the family 
Anisakidae, including their diagnoses.
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Commercial fish species Oncorhynchus keta (Walbaum, 
1792), O. nerka (Walbaum, 1792), O. tshawytscha 
(Walbaum, 1792), O. kisutch (Walbaum, 1792), Gadus 
morhua (Linnaeus, 1758), Clupea harengus (Linnaeus, 
1758), Merluccius merluccius (Linnaeus, 1758), anchovy 
(Engraulis sp.), sardine (Sardina sp.), Scomber sp. 
from the Atlantic and Pacific Oceans are potentially 
susceptible to infection by third-stage larvae (L3) of 
anisakids. Thus, up to 98% of the scomber and 94% 
of the cod (G. morhua) in the Asian food markets 
were infected (Setyobudi et al., 2011); almost 34% of 

fish (mackerel, hake, scomber) from the Atlantic and 
Mediterranean Sea are reservoir hosts for Anisakis spp. 
(Debenedetti et al., 2019). In the north of Primorsky 
Region (Russia) infection intensity by Anisakis spp. 
of chum salmon (O. keta) and herring (C. pallasii 
Valenciennes, 1847) is very high (95%) (Kravtsova et al.,  
2004; Rybnikova et al., 2009). Along with fish, the larvae 
of anisakids commonly parasitize the edible parts of 
squids. Larval stages of three species of the genus 
Anisakis (Dujardin, 1845): A. simplex (Rudolphi, 1809), 
A. pegreffii (Campana-Rouget and Biocca, 1955), and 
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A. physeteris (Baylis, 1923) are the causative agents 
of human gastrointestinal anisakidosis (Karmanova, 
2007). The whole anisakids and decomposed worms 
in thermally processed food can provoke severe allergic 
reactions range from hives and angioneurotic edema 
to anaphylactic shock (Audicana et al., 2002; Hoshino 
and Narita, 2011). Anisakidosis is a common disease in 
Holland, Germany, France, Italy, Spain, Greece, USA, 
countries of the Pacific coast of Latin America, China, 
Japan, Thailand, in the Russian Far East; Japan has the 
highest incidence (up to 1,000 cases per year) (Baird  
et al., 2014; Nieuwenhuizen and Lopata, 2014; Pravettoni 
et al., 2012; Yera et al., 2018). In Russia, the problem 
of anisakidosis remains insufficiently studied. There 
are several studies of the extensiveness and intensity 
of fish invasion (Pacific herring, chum salmon, pink 
salmon, cod, flounder, greenling, mackerel, hake, saury, 
sea bass, smelts) and the assessment of the viability 
of nematode larvae (Besprozvannykh et al., 2003; 
Kravtsova et al., 2004; Rybnikova et al., 2009; Vyalova, 
2002). Four cases of A. simplex larvae were described 
in the human stomach (Kravtsova et al., 2004; Solovieva 
and Taran, 2000).

In current taxonomy there is a complex of species 
A. simplex sensu lato (Mattiucci et al., 1997; Nascetti  
et al., 1983, 1986) which is made up of the three sibling 
species: A. simplex sensu stricto, A. pegreffii, and 
A. berlandi (Mattiucci et al., 2014). But, according to 
the available literature data a clear division of species 
(A. simplex, A. pegreffii, and A. berlandi) has been 
repeatedly demonstrated on phylogenetic trees recon
structed using nuclear ITS rDNA (Pekmezci et al., 
2014; Tunya et al., 2020) and mitochondrial cox2 gene 
(Anshary et al., 2014; Barcala et al., 2018; Mattiucci  
et al., 2009; Setyobudi et al., 2011; Valentini et al., 2006) 
DNA markers, and finally complete mitochondrial ge
nomes (Yamada et al., 2017). Also A. typica (Diesing, 
1860) is suspicious with its uncertain position on 
different phylogenetic reconstructions (Iñiguez et al., 
2009; Sardella and Luque, 2016). Obviously, all this 
indicating the necessity of the generic revision. In our 
opinion, forming a species complex A. simplex sensu 
lato can lead to the loss of some critical information 
about the individual characteristics of the biology 
of parasites, and opportunities to influence the 
changes taking place in their ethology, pathogenesis, 
evolution, and divergence. A solid and clear taxonomic 
framework is necessary for examine the basic biology 
of the parasites, and establish the control system in 
epidemiology and medicine. Thus, the scope of this 
study was to accurately identify species of nematodes 
found in minced salmon O. nerka using the molecular 
genetics methods and reconstruct phylogenetic 
relationships within the family Anisakidae which was 

originally described by Skrjabin and Karokhin (1945) 
and Skrjabin and Mozgovoy (1973). In the present 
manuscript, according to Jägerskiöld (1894) we restore 
the validity of the genus Peritrachelius (Diesing, 1851) 
and according to Mozgovoy (1951) upgrade subgenus 
Skrjabinisakis to genus.

Materials and methods

Parasite material

Minced sockeye salmon (frozen) from the Kamchatka 
Peninsula in the amount of 1 kg was bought at the 
Vladivostok’s fish market. The organoleptic properties 
of the product were compromised: among the muscle 
fibers, inclusions of intestines and membranes were 
identified during the visual examination of the minced 
fish. Using a binocular microscope (Micromed MC2 
Zoom 1CR) 12 worms (third-stage larvae of nema
todes) were extracted and washed in distilled water, 
then fixed in 70% ethanol. The size of worms ranged 
from 5 to 15 mm.

PCR amplification

The total DNA was extracted using a QIAamp DNA 
Mini Kit (QIAGEN, Germany). The ITS1-5,8S-ITS2 
region of rDNA was amplified using the classical 
polymerase chain reaction (PCR) method with specific 
primers 5′-CCGGGCAAAAGTCGTAACAA-3′ (AscITF) 
and 5′-ATATGCTTAAATTCAGCGGGT-3′ (R) (Naoki  
et al., 2010) and DreamTaq Green Master Mix (Thermo 
Scientific, Lithuania). Cycling conditions consist of a 
preliminary denaturation at 94°C for 2 min, followed 
by 30 cycles of denaturation at 94°C for 2 min, 
annealing at 49°C for 30 sec, elongation at 72°C for 
1.5 min, and a final product extension at 72°C for 
5 min. The amplification products were visualized on 
1.5% agarose gel by ethidium bromide. Amplicons 
purification was conducted using exonuclease 
and alkaline phosphotase 1:3 (ExoSap-IT, Thermo 
Scientific). The PCR products were sequenced by 
the Sanger method using BigDye Terminator Cycle 
Sequencing Kit, and specific primers the same as 
for PCR. After the BigDye Terminator sequencing 
reaction products were cleaned to remove excess 
unlabeled dideoxynucleotides using 0.125 М EDTA, 
CH3COONa, and 96% C2H5OH. The nucleotide se
quences were analyzed on an automatic ABI PRIZM 
3130 gene analyzer (the center for collective use of 
FSC EATB FEB RAS). Assembly and alignment of 
the ITS1-5.8S-ITS rDNA sequences with similar 
nematode sequences from Genbank (Table 1) 
were performed in programs FinchTV (Geospiza 
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Table 1. Sequences of the ITS1-5.8S-ITS2 
rDNA region from GenBank used in this 
study.

Accession 
number

Species
Geographical 

region

EU718471 Anisakis simplex Morocco

JQ934875 Croatia

KJ011481 South Korea

KM273043 Denmark

KP645361 Poland

MF668920 USA

MN726484 Japan

GQ169364 Ireland

MH211473 A. pegreffii China

KF032056 A. simplex × A. pegreffii

KF032058 Turkey

KF032060

KY524216 A. berlandi Indonesia

JQ912692 A. nascettii Italy

JX486104 Brazil

JN005767 A. ziphidarum Portugal

EU718473 Mauritius

KF673776 A. typica China

EU327689 Brazil

KX098561 USA

JQ912694 A. brevispiculata Italy

EU327691 A. physeteris Brazil

GU295976 A. paggiae Greenland

KC970082 Pseudoterranova 
cattani

Argentina

KM273078 P. decipiens Denmark

AB576757 P. azarasi Japan

KM491173 Contracaecum 
osculatum

Denmark

EU678869 C. rudolphii Italy

JF424598 C. bioccai USA

LC422643 Ascaris lumbricoides Japan

Inc., Seattle, WA, USA) and MEGA7 (Kumar  
et al., 2016). Contiguous ITS1-5.8S-ITS2 sequences 
863 bp in length were submitted to GenBank NCBI 
under accession numbers: MT192598, MT192599, 

MT250915, and MT250916. Genetic distances 
(p-distance; %) between sequences were calculated 
using the two-parameter Kimura model and the 
gamma distribution (0.5).

The phylogenetic relationships between nema
todes were reconstructed using Neighbor-Joining 
(NJ) method (Kimura 2-parameter + G) in program 
MEGA7 (Kumar et al., 2016) and maximum likelihood 
(ML) method based on the Hasegawa-Kishino-Yano 
model (chosen using the information criteria of Bayes 
(BIC)) in PhyML (Guindon et al., 2010) implemented 
on the ATGC online bioinformatics platform. The 
tree with the highest log likelihood was shown. 
Initial trees for the heuristic search were obtained by 
applying the BioNJ. A Gamma shape parameter was 
used to model evolutionary rate differences among 
sites (5 categories (+G, parameter = 0.8895)). The 
analysis involved 34 nucleotide sequences. There 
were a total of 877 positions in the final dataset. 
Ascaris lumbricoides (Linnaeus, 1758) from the family 
Ascarididae Baird, 1853 was used as an outgroup.

Results and discussion

Morphological analysis of the nematodes according 
to Mozgovoy (1953) showed that they are from 
the genus Anisakis. Molecular analysis detected 
that these nematodes belonged to the species  
A. simplex. All 12 sequences were identical. No fixed 
substitutions were found when compared nucleotide 
sequences of the ITS1-5.8S-ITS2 rDNA region of the 
studied samples with sequences of this species from 
different geographical localities (Table 1). Probably, the 
methods of nematode expansion are so effective that 
panmixia occurs at the whole-species level, which 
can be indirectly associated with anthropopression. 
A. simplex worms have the potential to affect fishing 
industries, which maintain food and economic 
stability. The detection of A. simplex helminths in 
minced fish increases the probability of infection of 
the human population, so there should be tight control 
over the distribution of such products in the food 
markets (Bao et al., 2017). Dead A. simplex larvae 
can save allergenic properties even after prolonged 
storage in frozen form (−20 ± 2°C for 11 months) 
(Rodríguez-Mahillo et al., 2010). WHO recognized  
A. simplex as the parasite with the largest number 
of known allergens 14 ‘Ani s’ proteins, demonstrated 
strong cross-reactivity (especially Ani s 2 (paramyosin) 
and Ani s 3 (tropomyosin)) to homologous proteins of 
other nematodes and invertebrates and resistant to 
pepsin (Aibinu et al., 2019; Baird et al., 2014).

In order to establish phylogenetic relation
ships among anisakids, the phylogenetic tree was 
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reconstructed based on the sequences of the ITS1-
5.8S-ITS2 region with indicated ranges of genetic 
p-distances (Fig. 1). Two clades according to the 
subfamilies Contracaecinae (Anisakinae Railliet and 
Henry, 1912; Mozgovoy and Shakhmatova, 1971) of 
the family Anisakidae were distinctly distinguished 
on the tree. Contracaecinae clade contains three 
species: Contracaecum osculatum (Rudolphi, 
1802), C. rudolphii (Hartwich, 1964), and C. bioccai 
(Mattiucci et al., 2008).

The Anisakinae clade branched into four distinct, 
reliably supported subclades. The first subclade 

(I) includes species of the genus Pseudoterranova 
(Mozgovoy, 1950). The species A. paggiae (Mattiucci, 
Nascetti, Dailey, Webb, Barros, Cianchi, and Bullini, 
2005), A. brevispiculata (Dollfus, 1966), A. physeteris 
form the second subclade (II). The third subclade (III) 
is represented exclusively by the species A. typica. 
The species A. simplex, A. pegreffii, A. berlandi, 
A. nascettii (Mattiucci, Paoletti, and Webb, 2009), 
A. ziphidarum (Paggi, Nascetti, Webb, Mattiucci, 
Cianchi, and Bullini, 1998) make up the fourth 
subclade (IV). Within the IV subclade, nematodes 
are divided into three groups located on separate, 

Figure 1: Phylogenetic relationships of family Anisakidae based on ITS1-5.8S-ITS2 rDNA 
sequences reconstructed by Maximum Likelihood (ML) and Neighbor-Joining (NJ) methods. 
Nodal support values are shown based on 1,000 bootstrap replicates (ML/NJ). The tree was 
drawn to scale, with branch lengths measured in the number of substitutions per site. Accession 
numbers are given for each species/strain at the end of each sequence. The arrows with generic 
names are indicating branches. Genetic distances between species and genera are indicated at 
the junction of the dotted lines. The scale bar represents the number of substitutions per site.
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well supported branches: (i) A. simplex, hybrid  
A. simplex×A. pegreffii, A. pegreffii, and A. berlandi; 
(ii) A. nascetti group; (iii) A. ziphidarum group.

When determine sibling species A. simplex,  
A. pegreffii, A. berlandi into a single complex A. simplex 
sensu lato Mattiucci et al. were based on analyses 
of data collected from allozyme loci (Mattiucci et al.,  
1986, 2005; Nascetti et al., 1983, 1986; Paggi  
et al., 1998). Probably, we should once again check 
the correctness of the assumption that the data 
on the polymorphism of enzyme loci obtained 
by electrophoretic methods can be considered 
typical for the genotype as a whole. Apparently, 
we are not able to estimate the overall frequency of 
polymorphism by simply extrapolating the data on 
the frequency of proteins polymorphism. To choose 
appropriate gene regions for resolving a particular 
systematic question among the organisms at a 
certain categorical level is still a difficult process. 
Such highly conserved nuclear markers as 18S and 
28S rRNA genes are not able to divide the pure 
specimens of anisakids; moreover, there are not 
enough data on these markers to reconstruct the 
phylogenetic relationships of these worms between 
genera and within the family Anisakidae (Nadler et al., 
2005, 2007). On the contrary, high copy and short 
transcribed rDNA spacers ITS1, ITS2 (Campbell et al.,  
1994; Hoste et al., 1995; Samson-Himmelstjerna  
et al., 1997) and the region spanning the ITS1, the 5.8S 
gene, and the ITS2 of the ribosomal DNA are suitable 
genetic markers for the identification of nematodes, in 
particular anisakid species regardless of their stage 
of development (D’Amelio et al., 2000; Jabbar et al., 
2012, 2013). The genetic differentiation among cryptic 
species of the A. simplex complex is detectable in 
the ITS region of the rDNA, and this differentiation 
supports the validity of these species. According to 
our data, between the sequences of A. simplex and 
the hybrid form A. simplex × A. pegreffii, and similarly 
between A. pegreffii and A. simplex × A. pegreffii, 
genetic p-distances were the same – 0.1%. Genetic 
p-distances between the ITS1-5.8S-ITS2 regions 
of A. simplex and A. pegreffii were 0.3%. Genetic 
p-distances between A. simplex and A. berlandi 
(former A. simplex C), as well as between A. pegreffii 
and A. berlandi were 0.7%. Similar p-distances 
(0.2-0.6%) have been obtained by comparing the 
ITS sequences of the A. suum (Goeze, 1782) and  
A. lumbricoides – widely known pig parasites in 
China (Li et al., 2017). The researchers noted that 
there was no clear clustering on a phylogenetic tree 
reconstructed for ascarids between A. suum and  
A. lumbricoides. However, these worms were con
sidered as the valid ones. The division of the A. suum 

and A. lumbricoides species has been a crucial factor 
in understanding the epidemiology of helminths and 
the possibility of developing methods for controlling 
parasitic infections for medicine and veterinary. The 
phylogenetic reconstruction by Tunya et al. (2020) 
showed a clear division of Anisakis spp. despite 
the fact that the distances between A. pegreffii and  
A. simplex were even less (0.1%) than those described 
in our study. The percentages of genetic differences 
vary within different worm (and other organisms’) taxa 
and there is no absolute ‘yardstick’ (Blasco-Costa  
et al., 2016).

First, we suggest that distances of 0.3 to 0.7% 
correspond to interspecific ranges in the structure of 
the family Anisakidae. Second, a powerful argument 
for the reconsideration of taxonomic structure of  
A. simplex species complex was phylogenetic analysis 
performed using the mitogenome sequences of  
A. pegreffii, A. simplex sensu stricto, and A. berlandi. 
Three sibling species were distinctly separated from 
each other and this was also strongly supported by 
bootstrap values (Yamada et al., 2017). Third, even 
gene loci coding metallopeptidase enables detection 
of fixed nucleotide positions (SNP) demonstration 
that A. pegreffii, A. simplex (s. s.), and A. berlandi are 
independent (Palomba et al., 2020). Fourth, biology 
of helminths cannot be the reason for determine  
A. simplex and A. pegreffii into one species complex. 
In the in vivo and in vitro studies A. simplex sensu 
stricto and A. pegreffii species had a differential 
pathogenic potential and the propensity to trigger 
allergic reactions (D’Amelio et al., 2020). A. simplex 
sensu stricto and A. pegreffii are able of hybridizing in 
the sympatric areas and co-infect the same fish host, 
but no fertile adult hybrids F1 A. simplex × A. pegreffii 
have been found (Aibinu et al., 2019; Mattiucci et al., 
2016; Mladineo et al., 2017). Fifth, A. simplex and  
A. pegreffii were considered independent species by 
Mozgovoy (1953). So, at present, we suppose, that 
there is absolutely no reason to save the species 
complex Anisakis simplex sensu lato, because only 
the precise identification of parasites is essential for 
their distribution and epidemiology.

Interspecific relationships within the subclade II vary 
in the range of 4.9 to 6.2%, overlapping with genetic 
p-distances within species from the subclade IV – 0.3 
to 8.0%. Pairwise comparison between species of 
these two subclades demonstrated a higher level of 
divergence more likely corresponded to the intergeneric 
ones – 10.4 to 16.4% (Fig. 1). This is also confirmed by 
the similar values of p-distances between the anisakids 
from IV, III, II subclades and species from the other 
genus Pseudoterranova (subclade I), which vary in the 
range of 10.8 to 18.6%. In addition to genetic data, the 
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question about the morphological differences of the 
third-stage larvae of the species included in subclade II 
has already been raised, according to it, they belong to 
the second morphotype that distinguishes them from 
the species from IV and III subclades, comprising larvae 
of the first morphotype (Iñiguez et al., 2009). Based 
on these data, we suggest restoring the taxonomic 
status of the subgenus Skrjabinisakis (Mozgovoy, 1953) 
upgrading it to the genus level. Thus, this subgenus 
was first described in the genus Anisakis for spe
cies A. physeteris, A. skrjabini, and A. schupakovi 
(Mozgovoy, 1953). Then after Mozgovoy subgenus 
Skrjabinisakis supported by Japanese scientists based 
on the morphology of adults and larva (Oishi et al., 
1970). Based on larval morphology and genetic data for 
A. physeteris and later for A. brevispiculata published 
by Mattiucci et al. (1986, 2001), respectively, the validity 
of the subgenus Skrjabinisakis was justified as well. 
Of these worms species status was confirmed using 
molecular genetics data only for A. physeteris (Iñiguez 
et al., 2009).

The species A. typica (subclade III) does not take 
an unambiguous position on phylogenetic trees 
reconstructed using various methods with respect to 
the other Anisakis spp. (Iñiguez et al., 2009; Sardella 
and Luque, 2016), which may suggest paraphyletic 
relationships among representatives of the genus 
Anisakis. The genetic distances for A. typica indicate 
its remarkable divergence from the other species 
of the subfamily Anisakinae. Thus, A. typica is very 
distant from: species of subclade II (17.8-19.7%); 
species of subclade IV (14.9-17.8%); species of genus 
Pseudoterranova (18.1-18.6%) (Fig. 1). Based on the 
intergeneric distances of Pseudoterranova species and 
A. typica, the latter should be considered in the distinct 
genus. It is known from the literature that this species 
was previously put in the genus Peritrachelius (Diesing, 
1851; Jägerskiöld, 1894). Until 1882, this genus has 
been considered separate and included the species P. 
insignis (synonym for Anisakis insignis) (Dräsche, 1882). 
Peritrachelius was a subgenus of Ascaris with species 
Anisakis typica and Anisakis insignis (Jägerskiöld, 1893). 
Later Mozgovoy (1953) synonymized Peritrachelius with 
the genus Anisakis (Mozgovoy, 1953). Based on the 
genetic data analysis, we suggest restoring the genus 
Peritrachelius for Anisakis typica.

To sum up, the true genus Anisakis sensu stricto 
probably includes independent species: A. simplex 
sensu stricto, A. pegreffii, A. berlandi, A. ziphidarum, 
and A. nascettii. In the structure of the subfamily 
Anisakinae, for the first time, it was proposed to 
restore two genera: Skrjabinisakis including species 
A. paggiae, A. brevispiculata, and A. physeteris, and 
Peritrachelius – for A. typica.

Short annotated list of some genera of the 
family Anisakidae (Skrjabin and Karokhin, 1945)

The genus Anisakis (Dujardin, 1845)
Diagnosis: Ventriculus long, S-shaped or straight 

(juveniles), length is larger four or more times than width. 
Vulva located in the midbody or anteriorly or posteriorly 
to it. Spicules long, its length exceeds 1.5 mm.

Type species: Anisakis dussumierii (Beneden, 
1870) Baylis, 1920 (sensu Mozgovoy, 1953).

Anisakis simplex (Rudolphi, 1809) Baylis, 1920
Synonyms: Ascaris simplex (Rudolphi, 1809), nec.  

A. simplex (Dujardin, 1845); Ascaris angulivalvus (Creplin, 
1851); Anisaks salaris (Gmelin, 1790) Yamaguti, 1935.

Hosts: Balaenoptera acutirostrata (Lacepede, 
1804), B. borealis (Lesson, 1828), B. musculus 
(Linnaeus, 1758), B. species; Delphinapterus leucas 
(Pallas, 1776); Delphinus delphis (Linnaeus, 1758), 
D. species; Eumetopias jubatus (Schreber, 1776); 
Hyperoodon rostratus (Van Beneden and Gervais, 
1880); Lagenorhynchus albirostris (Gray, 1846),  
L. obscurus (Gray, 1828); Mesoplodon bidens (Sowerby, 
1804); Monodon monoceros (Linnaeus, 1758); 
Phocaena phocaena (Linnaeus, 1758); Pseudoreca 
crassidens (Owen, 1846); Platanista gangetica (Lebeck, 
1801); Globicephala melaena (Traill, 1809); Orcinus orca 
(Linnaeus, 1758); Stenella coeruleoalba (Meyen, 1833); 
Halichoerus grypus (Fabricius, 1791); Phoca vitulina 
(Linnaeus, 1758).

Localization: stomach, intestine, esophagus.
Distribution: Northern waters of the Atlantic Ocean 

and the Pacific Ocean; Baltic Sea.

Anisakis pegreffii (Campana-Rouget and 
Biocca, 1955)

Synonym: Anisakis simplex A of Nascetti, Paggi, 
Orecchia, Smith, Matticucci, and Bullini (1986).

Hosts: Monachus monachus (Hermann, 1779); 
Delphinus delphis (Linnaeus, 1758); Ziphius cavirostris 
(Cuvier, 1823); Tursiops truncates (Montagu, 1821).

Localization: digestive tract (first part of the 
intestine).

Distribution: the Mediterranean Sea (type locality – 
East coast of Sardinia, near Dorgali) and the waters of 
the Southern Atlantic Ocean.

Anisakis berlandi (Mattiucci, Cipriani, Webb, 
Paoletti, Marcer, Bellisario, Gibson and Nascetti, 
2014)

Synonym: Anisakis simplex sp. C of Mattiucci  
et al. (1997).

Hosts: Pseudoreca crassidens (Owen, 1846); 
Ziphius cavirostris (Cuvier, 1823).

Localization: stomach.
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Distribution: Southern waters of the Atlantic Ocean 
and Northern Pacific Ocean.

Anisakis nascettii (Mattiucci, Paoletti and Webb, 
2009)

Synonyms: Anisakis sp. A of Pontes et al. (2005) 
and Iglesias et al. (2008); Anisakis sp. of Valentini  
et al. (2006).

Host: Mesoplodon grayi (Von Haast, 1876).
Localization: stomach.
Type locality: New Zealand coast, South Pacific.

Anisakis ziphidarum (Paggi, Nascetti, Webb, 
Mattiucci, Cianchi and Bullini, 1998)

Hosts: Mesoplodon mirus (True, 1913), M. layardii 
(Gray, 1865); Ziphius cavirostris (Cuvier, 1823).

Localization: stomach.
Distribution: the Mediterranean Sea and the 

Southern waters of the Atlantic Ocean.

The genus Skrjabinisakis (Mozgovoy, 1951) 
stat. n.

Diagnosis: Ventriculus short, straight, length is 
equal or nearly equal to width. Vulva located in the 
anterior fourth or third of the body. Spicules short, its 
length not exceeding 0.67 mm.

Type species: Skrjabinisakis physeteris (Baylis, 
1923) comb. n.

Skrjabinisakis physeteris (Baylis, 1923) comb. n.
Synonym: Anisakis physeteris (Baylis, 1923); 

Anisakis skrjabini (Mozgovoy, 1949).
Hosts: Physeter catodon (Linnaeus, 1758), P. 

microcephalus (Linnaeus, 1758); Kogia breviceps 
(Blainville, 1838); K. sima (Owen, 1866); Ziphius 
cavirostris (Cuvier, 1823).

Localization: stomach.
Distribution: South-Eastern Africa; the 

Mediterranean Sea and the Atlantic Ocean.

Skrjabinisakis schupakovi (Mozgovoy, 1951)
Synonym: Anisakis species (Schupakov, 1936).
Hosts: Phoca caspica (Gmelin, 1788).
Localization: stomach.
Distribution: Caspian Sea (Chechen Island).

Skrjabinisakis paggiae (Mattiucci, Nascetti, 
Dailey, Webb, Barros, Cianchi and Bullini, 2005) 
comb. n.

Synonyms: Anisakis paggiae (Mattiucci, Nascetti, 
Dailey, Webb, Barros, Cianchi and Bullini, 2005).

Hosts: Kogia breviceps (Blainville, 1838); K. sima 
(Owen, 1866).

Localization: stomach.

Distribution: the Atlantic Ocean, particularly in its 
central part.

Skrjabinisakis brevispiculata (Dollfus, 1966) 
comb. n.

Synonyms: Anisakis brevispiculata (Dollfus, 1966).
Hosts: Kogia breviceps (Blainville, 1838); K. sima 

(Owen, 1866); Physeter microcephalus (Linnaeus, 1758).
Distribution: the Mediterranean Sea and the 

waters of the Central Atlantic Ocean.
Localization: stomach.

The genus Peritrachelius (Diesing, 1851)
Diagnosis (sensu Stiles and Hassall, 1899): 

Ventriculus medium-sized, S-shaped, length is larger 
nearly five times than width. Vulva located near the 
midbody. Spicules unequal, long: left – 3.0 mm, right 
– 0.9 mm length.

Type species: Peritrachelius typicus (Diesing, 
1860; Jägerskiöld, 1894).

Peritrachelius typicus (Diesing, 1860; Jägerskiöld, 
1894)

Synonyms: Anisakis alexandri (Hsü and Hoeppli, 
1933); Anisakis tursiopis (Crusz, 1946); Conocephalus 
typicus (Diesing, 1860); Anisakis typica (Baylis, 1920; 
Diesing, 1860).

Hosts: Delphinus delphis (Linnaeus, 1758); 
Globicephalus melas (Flower, 1885); Phocaena 
phocaena (Linnaeus, 1758); Phoca sp.; Lagenorhynchus 
obscurus (Gray, 1828); Sotalia fluviatiles (Gervais 
and Deville, 1853); Stenella coeruleoalba (Meyen, 
1833), S. attenuate (Gray, 1846), S. longirostris (Gray, 
1828); Steno bredanensis G. Cuvier in Lesson, 1828; 
Lagenodelphis hosei (Fraser, 1956).

Distribution: Germany, South-Eastern Africa; 
warm waters of the Atlantic Ocean.

Localization: stomach.
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