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Abstract: Approval of checkpoint inhibitors for treatment of metastatic triple negative breast cancer
(mTNBC) has opened the door for the use of immunotherapies against this disease. However,
not all patients with mTNBC respond to current immunotherapy approaches such as checkpoint
inhibitors. Recent evidence demonstrates that TNBC metastases are more immune suppressed
than primary tumors, suggesting that combination or additional immunotherapy strategies may
be required to activate an anti-tumor immune attack at metastatic sites. To identify other immune
suppressive mechanisms utilized by mTNBC, our group and others manipulated oncogenic epithelial-
to-mesenchymal transition (EMT) programs in TNBC models to reveal differences between this breast
cancer subtype and its more epithelial counterpart. This review will discuss how EMT modulation
revealed several mechanisms, including tumor cell metabolism, cytokine milieu and secretion of
additional immune modulators, by which mTNBC cells may suppress both the innate and adaptive
anti-tumor immune responses. Many of these pathways/proteins are under preclinical or clinical
investigation as therapeutic targets in mMTNBC and other advanced cancers to enhance their response
to chemotherapy and/or checkpoint inhibitors.

Keywords: triple negative breast cancer; epithelial-to-mesenchymal transition; immune suppression;
immunotherapy; metastasis

1. Introduction

Triple negative breast cancer (TNBC) is an aggressive breast cancer subtype that lacks
expression of targetable receptors maintained by other subtypes of the disease, including
estrogen receptor (ER), progesterone receptor (PR) and human epidermal growth factor
receptor-2 (HER2). As a result, few targeted therapies are approved for use in a majority
of TNBC cases. Most patients are treated with a combination of chemotherapy, radiation
and surgery. Further, TNBC recurs as metastatic disease more rapidly than the other
breast cancer subtypes, usually within 2-3 years after diagnosis [1]. The 5-year survival
rate for patients with metastatic TNBC (mTNBC) is only 26% [2]. Approval of the first
immunotherapies in mMTNBC, the checkpoint inhibitors pembrolizumab (blocking antibody
against programmed death-ligand 1/PD-L1) [3] and atezolizumab (blocking antibody
against programmed cell death protein-1/PD-1) [4], generated enthusiasm for the use
of immunotherapies in breast cancer. However, the 2-year overall survival for mTNBC
patients treated with the combination of chemotherapy and checkpoint inhibitor was only
~50% for pembrolizumab [3], and atezolizumab was voluntarily withdrawn from use in
mTNBC for reasons unrelated to safety or efficacy. These clinical findings suggest that
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immunotherapy for mTNBC could be improved by combining checkpoint inhibitors or
identifying additional immunotherapy strategies.

There is increasing justification for alternative immunotherapy approaches for mTNBC.
Recent reports indicate that TNBC metastases are more immune suppressed than primary
tumors because they have decreased abundance of many immune cell types including
CD4* and CD8* T cells [5,6]. However, the one immune cell type that increased in mTNBC
was suppressive macrophages [5,6]. These studies suggest that the stress of metastasis
may alter TNBC and its interaction with the tumor microenvironment (TME) leading to
enhanced immune suppression. Thus, an improved understanding of immune modulatory
pathways increased during metastasis may reveal alternative immunotherapy approaches
for TNBC, including therapies that limit suppressive macrophages. Our group and others
have approached this idea by manipulating oncogenic epithelial-to-mesenchymal transition
(EMT) programs in TNBC models. This revealed pathways utilized by TNBC to support
immune suppression and metastasis. Each section of this review will focus on one pathway
identified by these studies, including those involved in tumor cell metabolism, cytokine
milieu and secretion of additional immune modulators. Discussion will focus on current
evidence from preclinical and clinical studies that suggest targeting these pathways could
limit TNBC metastasis through impacts on both TNBC cells and cells in the TME.

2. Experimental Models of Breast Cancer Metastasis and Epithelial-to-Mesenchymal
Transition (EMT)

2.1. Modeling Breast Cancer Metastasis

2.1.1. Immune-Competent Models of Breast Cancer Metastasis

The strengths and weaknesses of breast cancer metastasis models have been thor-
oughly reviewed by other groups [7-9]. This section will briefly highlight the advantages
and disadvantages of the most common in vivo, immune-competent mTNBC models dis-
cussed throughout this review. A commonly used spontaneous lung metastasis model is
the transgenic Mouse Mammary Tumor Virus-Polyoma Virus Middle T Antigen (MMTV-
PyMT) model that recapitulates many aspects of human breast cancer biology [10]. Mouse
mammary tumor cell lines are also frequently used. These are generated from sponta-
neously arising tumors (examples: 4T1, 66Cl-4 and 67NR cells developed from a tumor in
BALB/c mice [11]) or transgenic models (example: Met-1 cells developed from a late-stage
MMTV-PyMT tumor [12]). These cell lines have varying metastatic capacities and can be
introduced orthotopically into the primary site (mammary fat pad) and progress to lung
metastasis. In some cases, clones of mammary carcinoma cell lines that spread to other
metastatic sites were generated by selection, including the 4T1.2 bone-trophic derivative of
4T1 cells [13]. Alternatively, mammary carcinoma cells can be injected into the tail veins
of mice to preferentially seed the lung. However, the tail vein injection model does not
include the early stages of metastasis, such as detachment from the basement membrane,
invasion and intravasation. Further, this technique does not model the full immune re-
sponse to metastasis, including formation of the pre-metastatic niche that relies on immune
cell involvement. The advantage of tail vein injection is that its independent of primary
tumor growth and thus can be a less variable and more reproducible model of late-stage
metastasis [14]. To model metastasis to organs other than the lung, mammary carcinoma
cell lines can be injected into other sites. For example, portal vein injection can be used to
model breast cancer liver metastasis [15], and cardiac injection can be used to model more
widespread metastasis, especially disease that spreads to the bone (reviewed in [16]).

2.1.2. Patient Derived Xenograft Models of Breast Cancer Metastasis

The metastasis models discussed above use immune-competent mice which allows
analysis of the immune system; however, many of these models only metastasize to select
sites, primarily the lungs. To better model the heterogeneity of breast cancer metastatic
spread, many groups have developed patient derived xenograft (PDX) models of breast
cancer. PDXs are patient specimens that were introduced into mammary fat pads and
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passaged in immunocompromised mice. PDXs are often derived from metastatic sites
such as pleural effusions and they better recapitulate the metastatic profile of donor breast
cancer patients [17,18]. A disadvantage of PDX models is that immunocompromised mice
lack many components of the immune system. As the number of clinical trials that include
immunotherapies increase in breast cancer, more extensive testing of PDX models in mice
reconstituted with human immune cells, termed “humanized” mice, is needed. This will
determine whether these models can recapitulate or predict patient responses to single or
combination immunotherapy treatments.

2.2. Manipulating EMT in Breast Cancer Models
2.2.1. Introduction to EMT

EMT is a normal developmental process during which epithelial cells detach from the
basement membrane, lose their cell-to-cell junctions and transition to a more mesenchymal
phenotype characterized by increased motility and invasiveness (as reviewed in [19]).
TNBC cells aberrantly co-opt this process and undergo at least partial EMT to support pro-
tumor phenotypes such as chemotherapy resistance, metastasis and immune suppression.
A reciprocal mesenchymal-to-epithelial transition often occurs at the metastatic site to allow
outgrowth. Thus, carcinoma cells exist in a continuum between epithelial and mesenchymal
states, leading to the term “epithelial-to-mesenchymal plasticity” [20]. Both normal and
oncogenic EMT are modulated by transcription factors including the Zinc finger E-box-
binding homeobox 1 (ZEB1), SNAI1 (SNAIL), SNAI2 (SLUG) and Twist-related protein 1
(TWIST). Each of these function as transcriptional repressors of the well-known epithelial
genes, including CDH1 that encodes E-cadherin [21].

2.2.2. Methods to Manipulate EMT in Breast Cancer Models

To study breast cancer EMT and its impact on immune suppression, some groups
such as the Weinberg group overexpressed EMT transcription factors [22,23]. Additionally,
they selected for a population of cells with high EMT-transcription factor expression. An
alternative strategy promotes EMT in epithelial-like breast cancer cells, such as those
derived from ER+ disease. In this case, well-established EMT inducers like transforming
growth factor-beta (TGF-f3) are used [24]. Interestingly, TGF-f3 impacts EMT partly through
regulation of micro-RNAs (miRNAs) which are powerful post-transcriptional regulators
of gene expression. Our group demonstrated that more mesenchymal-like human TNBC
maintain a distinct miRNA profile compared to more epithelial-like ER+ disease [25], and
the miR-200 family was the most differentially expressed. The miR-200 family members
are known as the “guardians of the epithelial phenotype” because they target several
mesenchymal transcription factor transcripts for degradation or translation inhibition.
One family member, miR-200c, has been restored to mesenchymal-like TNBC models
to effectively reverse EMT. In a claudin-low breast cancer model, miR-200c restoration
decreased primary tumor growth and late-stage lung metastasis [26]. We also used miR-
200c restoration to reveal mechanisms that support TNBC chemotherapy resistance and
metastasis [27,28]. These studies demonstrate that manipulation of EMT through several
mechanisms can be a powerful tool to identify pathways that support TNBC metastasis.

3. EMT and Immune Modulation
3.1. Preclinical and Clinical Evidence for Immune Modulation via EMT in Breast Cancer

Clinical analysis of gene profiling conducted on 11 different cancer types, including
the breast, led to generation of a pan-EMT signature that linked EMT to immune suppres-
sion [29]. Tumors with the highest mesenchymal-like scores had decreased expression of
miR-200 family members and increased expression of genes encoding checkpoint proteins
associated with suppressed T cells, such as PDCD1 (PD-1) and cytotoxic T-lymphocyte as-
sociated protein 4 (CTLA4/CTLA-4). Ligands for checkpoint proteins were also correlated
with a mesenchymal-like score, including CD274 (PD-L1) that is expressed by tumor cells
and several immune cells in the TME. However, tumors that retained a more epithelial-like
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profile expressed a gene signature associated with higher levels of the miR-200 family. We
modeled these clinical findings by restoring miR-200c to human TNBC cells lines and the
Met-1 mouse mammary carcinoma cell line. Restoration of miR-200c decreased expres-
sion of genes in the pan-EMT signature and those associated with immune modulatory
pathways including allograft rejection, complement and cytokine signaling [30,31]. We
further explored the relationship between miR-200c and immune modulatory pathways
in breast cancer specimens from The Cancer Genome Atlas (TCGA) [32]. In this clinical
dataset, miR-200c expression inversely correlates with genes representing similar immune
modulatory pathways to those altered by miR-200c in our TNBC models, including cy-
tokine signaling, allograft rejection and complement (Table 1). These findings suggest
that high expression of miR-200c may predict a more active TME. To test this hypothesis,
we conducted CIBERSORT analysis on the same TCGA dataset [32]. CIBERSORT is an
algorithm that uses 22 established immune cell gene profiles to predict relative immune cell
abundance from bulk mRNA sequencing data [33]. Breast cancer patients with miR-200c
expression in the top quartile have a significant increase in T follicular helper (Tg,) cells
when compared to those with miR-200c in the bottom quartile (Figure 1A). Tg, are a marker
of tertiary lymphoid structures (TLS), and TLS predict a better overall survival in breast
cancer [34]. B cells are also an essential component of TLS; however, CIBERSORT predicted
no change in the abundance of B cell populations (memory B cells and plasma cells) with
miR-200c expression (Figure 1B). This finding demonstrates possible limitations of using
bulk mRNA sequencing data to fully capture the complexities of the TME. Finally, CIBER-
SORT predicted a trend towards increased M1 anti-tumor macrophages in specimens with
high miR-200c (Figure 1C), suggesting that the TME of miR-200c-expressing breast cancers
may be more anti-tumor.

Table 1. Pathways negatively correlated with miR-200c in breast cancer specimens. Gene Set Enrichment Analysis (GSEA)

was conducted on genes that correlate negatively with miR-200c in breast cancer specimens from The Cancer Genome Atlas
(TCGA), Nature 2012 dataset [31]. The top GSEA Hallmark pathways are shown. Those involved in immune modulation
are italicized and bolded. ES = Enrichment Score; NES = Normalized Enrichment Score; NOM p-val. = Nominal p-value;

FDR g-val. = False Discovery Rate g-value.

Top Pathways Downregulated by miR-200c

Term Count ES NES NOM p-Val. FDR g-Val.
HALLMARK_EPITHELIAL_MESENCHYMAL_TRANSITION 198 —0.75 —3.39 <0.00001 <0.00001
HALLMARK_MYOGENESIS 198 —0.54 —2.47 <0.00001 <0.00001
HALLMARK_KRAS_SIGNALING_UP 196 —0.54 —2.45 <0.00001 <0.00001
HALLMARK_UV_RESPONSE_DN 142 —0.56 —2.44 <0.00001 <0.00001
HALLMARK_COAGULATION 134 —0.56 —2.43 <0.00001 <0.00001
HALLMARK_TNFA_SIGNALING_VIA_NFKB 198 —0.53 —2.40 <0.00001 <0.00001
HALLMARK_ANGIOGENESIS 36 —0.68 —2.39 <0.00001 <0.00001
HALLMARK_APICAL_JUNCTION 195 —0.51 —2.31 <0.00001 <0.00001
HALLMARK_TGF_BETA_SIGNALING 54 —0.59 —2.21 <0.00001 <0.00001
HALLMARK_ALLOGRAFT_REJECTION 193 —0.48 —2.20 <0.00001 <0.00001
HALLMARK_INFLAMMATORY_RESPONSE 198 —0.48 —2.20 <0.00001 <0.00001
HALLMARK_COMPLEMENT 197 —0.47 —2.16 <0.00001 <0.00001
HALLMARK_APOPTOSIS 160 —0.48 —2.14 <0.00001 <0.00001
HALLMARK_IL2_STAT5_SIGNALING 195 —0.42 —1.93 <0.00001 0.000068
HALLMARK_INTERFERON_GAMMA_RESPONSE 192 —0.42 —1.93 <0.00001 0.000063

HALLMARK_HYPOXIA 199 —-0.41 —1.90 <0.00001 0.000059
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Table 1. Cont.

Top Pathways Downregulated by miR-200c

Term Count ES NES NOM p-Val. FDR g-Val.
HALLMARK_IL6_JAK_STAT3_SIGNALING 83 —0.43 —1.76 <0.00001 0.000908
HALLMARK_ANDROGEN_RESPONSE 96 —0.41 —1.68 0.001431 0.002189
HALLMARK_P53_PATHWAY 194 —0.37 —-1.67 <0.00001 0.002450
HALLMARK_BILE_ACID_METABOLISM 112 —0.39 —1.63 <0.00001 0.003382
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Figure 1. Relative immune cell abundance as predicted by gene expression using CIBERSORT on
breast cancer specimens with high versus low miR-200c. mRNA profiling curated by The Cancer
Genome Atlas (TCGA), Nature 2012 dataset [31] was assessed for the relative amounts of (A) T cells,
(B) B cells, and (C) macrophages using CIBERSORT [32]. Specimens were stratified by expression
of miR-200c in the lowest quartile (Low, N = 65) or highest quartile (High, N = 64). Shown is the
median number of predicted immune cells. Student’s unpaired two-tailed t-test.

3.2. Manipulation of EMT in Breast Cancer Models Reveals Additional Immune Modulators

Given the link between EMT and immune suppression in breast cancer specimens, our
group and others have manipulated EMT in TNBC models to identify additional clinically
relevant immune modulatory pathways. We restored miR-200c to human TNBC cell lines
and this decreased expression of known immune modulatory miR-200c targets [30] such
as PD-L1 [35,36]. This study also revealed new immune suppressive miR-200c targets
that may dampen anti-tumor immunity in mTNBC, including tryptophan-2,3 dioxygenase
(TDO2), chitinase-3 like-1 (CHI3L1) and heme oygenase-1 (HO-1). Restoration of miR-200c
to Met-1 mammary tumors derived from the MMTV-PyMT model enhanced secretion of
immune modulatory cytokines, like granulocyte macrophage-colony stimulating factor
(GM-CSF) [31]. In a study conducted by a separate group, miR-200c was restored to
eight mammary carcinoma models [37]. This altered monocyte and neutrophil infiltration,
possibly due to changes in secretion of cytokines such as macrophage colony-stimulatory
factor (M-CSF). Seminal work by the Weinberg group utilized cell lines created from MMTV-
PyMT tumors that were characterized as more epithelial versus mesenchymal-like due to
expression of EMT transcription factors and epithelial markers such as E-cadherin [22].
When introduced into mammary fat pads, the mesenchymal-like cell lines generated
more immune suppressed tumors when compared to epithelial-like counterparts [22].
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Exploration of secreted factors that differed between these models revealed 5’-Nucleotidase
(NT5E or CD73), M-CSF and osteopontin (OPN) were increased in mesenchymal-like
tumors [23]. Knocking down each one of these factors in tumor cells enhanced response to
anti-CTLA-4 antibodies. The remainder of this review will focus on the factors identified
by EMT manipulation (CD73, HO-1, TDO2, GM-CSF, M-CSF, CHI3L1 and OPN) and will
highlight preclinical and clinical studies that demonstrate how each impact breast cancer
metastasis and immune suppression (summarized in Figure 2).

Active Anti-Tumor Immune Suppressed Pro-Tumor Immune
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Figure 2. Model of actionable immune modulatory pathways revealed by epithelial-to-mesenchymal
transition (EMT) manipulation in triple negative breast cancer (TNBC). EMT was manipulated in
TNBC models by restoring miR-200c to mesenchymal-like TNBC cells or selecting for epithelial versus
mesenchymal populations using expression of mesenchymal transcription factors (ZEB1, TWIST,
SNAIL). These approaches led to identification of several immune modulatory factors (cytokines:
GM-CSE, M-CSF; metabolizing enzymes: CD73, TDO2, HO-1; other secreted factors: CHI3L1, OPN;
checkpoint protein: PD-L1). These factors may work in tandem to support a suppressed pro-tumor
microenvironment in mesenchymal-like TNBC, and a more active anti-tumor microenvironment in
epithelial-like ER+ breast cancers. This figure was made with biorender.com.

4. Modulation of EMT Reveals Immune Suppressive Enzymes

EMT metabolically rewires breast epithelial cells [38,39] and may contribute to the
dynamic metabolic remodeling required during metastasis (as reviewed in [40]). Metastatic
tumor cells that alter their metabolism may also extrinsically impact the TME (as reviewed
in [41]). This section will focus on three enzymes, CD73, HO-1 and TDO2, that were identi-
fied by manipulating breast cancer EMT by our group [30] and the Weinberg group [23]
and summarize how each may impact breast cancer metastasis and anti-tumor immunity.

4.1. 5'-Nucleotidase (NT5E)/CD73
4.1.1. CD73 and Breast Cancer Metastasis

Solid tumors often have high adenosine levels in their extracellular fluid [42]. This
correlates with elevated expression of the rate-limiting adenosine producing enzyme NT5E,
more commonly known as CD73, on multiple cells in the TME including tumor and
immune cells. Adenosine production by CD73 requires the degradation of adenosine
triphosphate (ATP) to adenosine monophosphate (AMP) by ectonucleoside triphosphate
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diphosphohydrolase-1 (CD39) (Figure 3). AMP is then converted to adenosine by CD73.
Elevated adenosine and CD73 in breast cancer specimens correlated with poor prognosis,
metastasis and resistance to chemo- and immunotherapy [43-46]. CD73 in breast can-
cer cells promoted EMT, migration and proliferation due to interactions with oncogenic
signaling through the TGF-f3, 3-Catenin and mitogen-activated protein kinase (MAPK)
pathways [23,47,48].

A
24
CD39

Cell Membrane

Figure 3. Adenosine metabolism pathway. Adenosine triphosphate (ATP) is degraded to adenosine
monophosphate (AMP) by ectonucleoside triphosphate diphosphohydrolase-1 (CD39). AMP is
then converted to adenosine (ADO) by 5’-Nucleotidase (NT5E/CD73). Both enzymes are expressed
on the cell surface of numerous cells in the tumor microenvironment. This figure was made with
biorender.com.

4.1.2. Adenosine and the Breast Cancer Microenvironment

Adenosine binds to four adenosine receptors (A1R, A2AR, A2BR, A3R) on breast can-
cer cells to activate pro-tumor phenotypes like ER signaling, stemness and motility [49-51].
In one study, tumor cell-A2BR enhanced spontaneous 4T1.2 lung metastasis [52]. In a
separate study using the same model, tumor-derived adenosine simultaneously supported
tumor cell motility and metastasis while also decreasing anti-tumor natural killer (NK) cell
activity [53]. Thus, tumor cell-adenosine may function in both an autocrine and paracrine
manner to support tumor progression. In fact, the tumor-promoting effects of CD73 are
believed to be primarily mediated by suppression of anti-tumor immune cells, such as
T cells and NK cells. Adenosine can alter immune cell signaling through essential func-
tional pathways such as interleukin-6 (IL-6), interferon-gamma (IFNy) and arginase-1
(ARG1) [45,54-58]. Indeed, the Weinberg group showed that silencing tumor cell-CD73
effectively enhanced CD8* T cell cytotoxicity [23], while other groups demonstrated that
it dampened the activity of pro-tumor immune cells [46,57,58]. Treatment of TNBC-like
4T1.2 primary tumors or establish lung metastases with anti-CD73 antibodies enhanced
sensitivity to doxorubicin and checkpoint inhibitors by activating the adaptive immune
response [59,60]. These preclinical studies suggest that adenosine orchestrates a complex
pro-tumor signaling network. Targeting this network may dynamically reshape the TME
to be more anti-tumor. However, the impact of immune cell-derived adenosine on breast
cancer cells needs to be further explored. For instance, a major source of tumor adenosine
may be regulatory T cells (Tregs) that express elevated CD39 and CD73 upon activation
(reviewed in [61]). The impact of Treg-produced adenosine on cancer cells or other cells in
the TME has yet to be determined in TNBC.

4.1.3. Clinical Targeting of CD73 in Breast Cancer

Given the preclinical findings that CD73 and downstream adenosine signaling have po-
tent tumor cell intrinsic and extrinsic effects, this pathway is being explored clinically. One
group generated an adenosine signaling gene signature that predicted decreased survival
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and poor response to immunotherapies in patients representing all cancers in the TCGA [62].
Thus, CD73 may be a biomarker for response to chemo- and immunotherapy [45,63-65].
Early clinical targeting of the adenosine pathway is underway in breast cancer, and pre-
liminary results suggest treatment strategies are on-target and well-tolerated (reviewed in
Table 2). However, emerging preclinical studies call for simultaneous inhibition of multiple
parts of this pathway, such as inhibiting both CD39 and CD73 (reviewed in [63]). This
approach needs to be explored further preclinically and clinically in breast cancer.

Table 2. Summary of clinical trials targeting the adenosine pathway in breast cancer.

Clinical Trial Combination Results;
Target Drug Number Study Phase = Cancer Type Therapy Publications
NCT02503774 I Solid tumors PD-1 Ongoing; [64,65]
Inoperable or Paclitaxel,
Oleclumab NCT03616886 I/11 mTNBC Carll;cl)jl:illatm, Recruiting
(MEDI9447)
CD73 Doxorubicin-
NCT03875573 I ER+ breast  cyclophosphamide, oy o 0 1661
cancer pre-operative
radiation
LY3475070 NCT04148937 I Advanced PD-1 Ongoing
solid tumors
Advanced -
NZV930 NCT03549000 1/1b PD-1, A2AR Recruiting
cancers
CD73/A2AR Sel Recruiting;
elect well-tolerated, some
CPI-006 NCT03454451 I/Ib advanced PD-1 or A2AR . ’
cancers anti-tumor
activity [67]
A2AR NIR178 NCT03207867 1I Solid tumors PD-1 Recruiting
Doxorubicin
NCT03719326 I mINBCor 4 PI3Ky or .
ADAR+A2BR Etrumadenant ovarian aclitaxel Ongoing; favorable
* (AB928) P safety profile [68]
NCT03629756 I Advanced PD-1
cancers

4.2. Heme Oxgenase-1 (HO-1)
4.2.1. HO-1 and Breast Cancer Metastasis

HO-1, the inducible heme oxygenase isoenzyme, degrades heme into carbon monox-
ide (CO), ferrous iron, and biliverdin that is quickly converted to bilirubin by biliverdin
reductase (BLVR) (Figure 4). Through its catabolites, HO-1 plays an established role
in responding to oxidative stress and maintaining cellular homeostasis. HO-1 is also
implicated in tumor therapy resistance and metastasis. In breast cancer models, HO-1
was elevated in cells that survived or were resistant to chemotherapy treatment [69-72].
Competitive inhibition of HO-1 suppressed breast cancer cell growth [73] and decreased
tumor growth in MMTV-PyMT tumors when used in combination with chemotherapy [74].
In clinical studies, HO-1 protein or mRNA (HMOXT) correlated positively with breast
cancer progression [75,76]. HMOX1 also predicted poor overall survival and decreased
relapse free survival for breast cancer patients [74,77], demonstrating a role for HO-1
in tumor progression. However, HO-1 has a controversial role in EMT. HO-1 was ele-
vated in mesenchymal-like TNBC versus epithelial-like ER+ breast cancer models [30],
in part due to its regulation by miR-200c [78]. Other studies indicate that HO-1 inhibits
breast cancer EMT [79,80], suggesting the reciprocal effects of HO-1 and EMT need to be
further delineated.
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Figure 4. Heme metabolism pathway. Heme oxygenase-1 (HO-1) degrades heme into three immune

modulatory byproducts, carbon monoxide (CO), ferrous iron (Fe+2) and biliverdin. Biliverdin
is quickly converted to bilirubin via biliverdin reductase (BLVR). This figure was made with
biorender.com.

4.2.2. HO-1 and Immune Suppression in Breast Cancer

HO-1 is emerging as an important modulator of anti-tumor immunity. Enzymatic
HO-1 inhibition re-sensitized a resistant mammary carcinoma model of TNBC to anti-PD-
1 treatment in obese mice [81]. Further investigation demonstrated that HO-1 protects
tumor cells from T cell killing induced by PD-1 blocking antibodies [81]; however, the
impact of this combination in lean mice remains to be explored. In the TME, HO-1 is
also highly expressed in tumor-infiltrating myeloid cells [82]. Pharmacologic inhibition
of HO-1 in 4T1 mammary tumors that are a model of TNBC reverted pro-tumor M2
macrophages to an anti-tumor M1 phenotype [73]. In a separate study, HO-1-expressing
tumor associated macrophages (TAMs) supported mammary carcinoma lung metastasis by
enhancing metastatic cell intravasation [83]. These studies suggest that HO-1 inhibition in
breast tumors may simultaneously target tumor cells and immune cells to limit metastasis.

HO-1 may additionally impact the TME via its enzymatic byproducts (reviewed
in [84]). In models of organ transplant and autoimmune disease, biliverdin limited T
cell, neutrophil and macrophage infiltration and proliferation [85,86]. Bilirubin impacted
the function and proliferation of endothelial cells, macrophages, T cells and dendritic
cells [87-91]. The HO-1 metabolite CO protected endothelial cells from apoptosis by up-
regulating pro-survival MAPK signaling [92]. These findings suggest that the byproducts
of either tumor cell or macrophage HO-1 may impact the TME, calling for further inves-
tigation of this pathway and its inhibition in mTNBC. It is exciting to note that there are
many clinical strategies to target HO-1. Some of the HO-1 enzymatic inhibitors used in
the studies discussed here are FDA approved for use in newborns with severe jaundice,
a disease characterized by high serum bilirubin levels (reviewed in [93,94]). Thus, HO-1
inhibitors could be repurposed as a treatment for mTNBC, although these clinical studies
have not yet begun.

4.3. Tryptophan 2,3-Dioxygenase (TDO2)
4.3.1. TDO2 and Breast Cancer Metastasis

The first step of the multistep tryptophan (Trp) catabolism pathway, which ultimately
leads to de novo synthesis of nicotinamide adenine dinucleotide (NAD"), involves the
conversion of Trp to kynurenine (Kyn) by TDO2 or Indoleamine 2,3-dioxygenase (IDO) [95].
TDO?2 is normally expressed in the liver and brain and is responsible for modulating cir-
culating Trp levels that have numerous systemic effects [96]. IDO is expressed in most
normal tissues and for this reason it has been more extensively studied in cancers (reviewed
in [97]). However, inhibition of IDO did not improve response of melanoma patients to
checkpoint inhibitors, possibly due to compensation by TDO2 (reviewed in [98]). These
clinical results led to increased exploration of TDO2 in cancers, including in TNBC. Gene
expression of TDO2 was higher in breast cancer when compared to normal breast tissue,
and this upregulation was often associated with more mesenchymal-like, aggressive breast
cancer subtypes [99,100]. Breast cancer patients with high TDO2 also had poor distant
metastasis-free survival and overall survival when compared to those with low TDO2
levels [99,101,102]. These clinical findings suggest that EMT may enhance TDO2 to support
breast cancer metastasis. Indeed, restoration of miR-200c to human TNBC cell lines directly
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targeted and repressed TDO2 [30]. Additional preclinical studies demonstrated that TDO2-
produced Kyn enhances tumor cell proliferation, migration and invasion in an autocrine
manner [99,101]. For example, we showed that TNBC cells grown in forced suspension
cultures to model the anchorage-independent stages of metastasis had increased TDO2
expression and Kyn production [99]. Under these conditions, Kyn bound to tumor cell aryl
hydrocarbon receptor (AhR) and supported cancer cell survival. Thus, TDO2 inhibition
decreased the outgrowth of TNBC cells in the lungs of immunocompromised mice follow-
ing tail vein injection. These studies demonstrate a role for TDO2-produced Kyn in TNBC
progression; however, further analysis of the impact of metabolites downstream of Kyn on
breast cancer cells is needed.

4.3.2. Tryptophan Catabolism and the Breast Cancer Microenvironment

The Trp catabolism pathway also has paracrine effects on the TME due both to the
local depletion of Trp and accumulation of Kyn (reviewed in [102]). IDO-dependent Trp
catabolism induced CD4* helper T cell apoptosis [103,104], CD4" T cell differentiation into
suppressive Tregs [105-107] and CD8* cytotoxic T cell dysfunction [108]. Together, these
effects on T cells may suppress the adaptive anti-tumor immune response to support tumor
progression; however, the impact of TDO2 on tumor immune evasion is underexplored in
breast cancer. Initial studies from our group have begun to address this gap in knowledge
by demonstrating that TDO2-dependent Kyn secretion reduced the viability and function
of primary human CD8" T cells [109]. Future studies should determine whether TDO2 can
support an immune suppressed microenvironment by impacting multiple T cell types, as
previously observed with IDO, through either depletion of Trp or production of Kyn and
other downstream Trp metabolites.

4.3.3. Clinical Targeting of Tryptophan Catabolism

Due to the tumor cell intrinsic and extrinsic roles of Trp catabolism, IDO inhibitors
are being investigated in multiple clinical trials. Inhibitors of both IDO and TDO?2 are also
in development. Studies showed that TDO2 predicts a worse outcome in breast cancer
patients than IDO [99,109]. This suggests that TDO2 may be more important than IDO in
promoting breast tumor progression and calls for TDO2 inhibitors to enter clinical testing
in mTNBC. However, TDO2 inhibitors are only under preclinical development (reviewed
in [110]). The first TDO2 inhibitor ever developed, 680C921 [111], has been widely tested in
cell culture models, but its limited bioavailability hindered in vivo studies [112]. A newer
inhibitor, LM10, with improved solubility and bioavailability was developed for in vivo
use and is currently under investigation [113]. Further, dual IDO and TDO2 inhibitors
are being explored that should completely block tumor production of Kyn [110,114-117].
With a similar objective, Kynases, which are derivatives of bacterial enzymes, are being
investigated for their ability to degrade Kyn in the TME [118,119]. While each of these
treatments is promising, several issues need to be considered before clinical testing. For
instance, immune evasion is not only caused by Kyn accumulation, but also by Trp deple-
tion which will not be affected by Kynases. After more extensive preclinical testing, these
treatments could provide an additional immunotherapy to limit mTNBC progression.

5. EMT Regulated Immune Modulatory Cytokines

Cancer cells secrete several cytokines to impact immune cell infiltration, differentia-
tion, activation and function. Each group that manipulated EMT in TNBC models using
miR-200c or EMT transcription factor levels identified changes in tumor cell cytokine
secretion [23,31,37]. Interestingly, these reports revealed that EMT suppresses or activates
a different cytokine milieu, which is possibly a result of heterogeneity in the breast cancer
and EMT models used. This section will discuss some of the common cytokines identified,
GM-CSF and M-CSFE and how they impact immune cells in the breast cancer TME.
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5.1. Granulocyte-Macrophage Colony-Stimulatory Factor (GM-CSF)
5.1.1. GM-CSF and Breast Cancer Metastasis

Restoration of miR-200c altered several cytokines in human breast cancer and mam-
mary carcinoma models including GM-CSF [31], a potent inducer of monocyte differen-
tiation, maturation and function. Other groups have similarly demonstrated that EMT
reversal in TNBC-like mouse models via depletion of the EMT transcription factor Snail
increased GM-CSF [120]. In this study, GM-CSF supported M1 anti-tumor macrophage
polarization and treatment with a GM-CSF blocking antibody reversed macrophages to
a pro-tumor M2 polarization state. This suggests that downregulation of GM-CSF may
be a prominent mechanism utilized by mesenchymal-like breast cancers to modulate
macrophages. In support of this idea, intra-tumoral delivery of GM-CSF to orthotopic Met-
1 mammary tumors decreased primary tumor growth, lung metastasis and M2 macrophage
polarization by enhancing M1 macrophage polarization [121]. However, a recent study
showed that mammary tumor cell produced GM-CSF supports the presence of suppressive
myeloid cells [122]. This could be because GM-CSF induces myeloid derived-suppressor
cells (MDSCs) (reviewed in [123]), a pro-tumor immune cell type that dynamically sup-
presses T cell responses [124]. Since MDSCs express many of the same markers as both M1
and M2 macrophages [125], further characterization of the impact of GM-CSF on MDSC
populations during TNBC EMT is needed. Other studies also suggest that mesenchymal-
like breast cancer cells preferentially secrete GM-CSF [126,127]. These findings demonstrate
that each breast tumor may secrete a different cytokine milieu. Further investigation of
cytokine profiles between breast cancer patients and metastatic sites is needed.

5.1.2. Clinical Testing of GM-CSF Therapy

In addjition to impacting macrophages, GM-CSF activates anti-tumor T cell responses
by enhancing dendritic cell (DC) antigen presentation. Initial studies in the late 1990s
demonstrated that a tumor vaccine generated from irradiated GM-CSF-overexpressing
mammary carcinoma cells provided 100% protection against mammary tumor forma-
tion [128]. Later studies demonstrated that this was due to enhanced antigen presentation
by DCs [129]. In a model of HER2+ breast cancer, the combination of chemotherapy and a
whole cell vaccine generated from tumor cells expressing the oncogene Neu and GM-CSF,
delayed tumor growth by activating an anti-tumor T cell response [130]. These preclinical
studies led to clinical testing of GM-CSF therapies with HER2 vaccines (summarized in
Table 3). This combination has also been tested with the addition of trastuzumab, a HER2
targeting antibody [131-133]. Finally, GM-CSF delivery has also been achieved clinically
using allogenic breast cancer cells engineered to secrete high levels of GM-CSF, termed
SV-BR-1-GM cells [134,135] (NCT00095862). Another approach was to generate tumor
cell vaccines from GM-CSF-expressing HER2+ breast cancer cells [136,137] (NCT00093834,
NCT00399529). The results of these trials overall demonstrate improved response in TNBC
patients with GM-CSF therapy, although the optimal combination with chemotherapy or
other immunotherapies requires further preclinical and clinical testing.

Table 3. Summary of clinical trials targeting Granulocyte-Macrophage Colony-Stimulatory Factor (GM-CSF), Colony Stimu-
lating Factor-1 Receptor (CSF1R) and Macrophage Colony-Stimulatory Factor (M-CSF) in breast cancer. NeuVax = HER2
vaccine with GM-CSF; DCIS = ductal carcinoma in situ; DFS = disease free survival; TAMs = tumor associated macrophages;

PFS = progression free survival.

Clinical Trial Combination ..
Target Drug Number Study Phase Cancer Type Therapy Results; Publications
HER2-low Well-tolerated, no
NCT01479244 1 breast ) change DFS [138]
GM-CSF  NeuVax vaccine HER-low Well-tolerated,
NCT01570036 1I breast Trastuzumab increased DFS in TNBC

patients [139]
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Table 3. Cont.

Clinical Trial Combination .
Target Drug Number Study Phase Cancer Type Therapy Results; Publications
IL-2and Increased cytotoxic
NCT00027807 I Stage IV breast autologous y
T cells [140]
T cells
. . Increased DFS for
Sargramostim NCT00524277 II Breast HER?2 vaccine TNBC [141]
NCT00436254 I HER2+ brfeast HER? vaccine Immunogenic out to
and ovarian 60 weeks [142]
NCT02636582 II DCIS HER?2 vaccine Ongoing
Well-tolerated,
NCT01525602 I Advanced solid Paclitaxel promising decrgase in
tumors monocyte recruitment
Pexidartinib [143]
(PLX-3397) -
NCT01596751 I Metastatic Eribulin Completed., results not
breast published
CSF1R NCT01042379 1I Breast - Ongoing
Decreased immune
Emactuzumab Advanced or ressive TAMs, n
acizumad  NCT01494688 I metastatic Paclitaxel SUPPTESSIVE SA VS, O
(RG7155) anti-tumor activity
tumors
[144]
. Dose dependent
LY3022855 NCT01346358 I Advanced solid - pharmacokinetics, no
tumors .. ..
clinical activity [145]
Advanced Carboplatin On-target, no change in
NCT02435680 I and
M-CSF Lacnotuzumab TNBC emcitabine PFS [146]
i (MCS110) 8
NCT02807844 Ib/I1 Advanced PD-1 Antl-turr.lor response in
tumors pancreatic tumors [147]

5.2. Macrophage Colony-Stimulating Factor (M-CSF)/Colony Stimulating Factor-1 (CSF-1)
5.2.1. M-CSF and Breast Cancer Progression

M-CSE, also known as CSF-1, is an important mediator of monocyte recruitment,
function and differentiation into macrophages. Two groups identified M-CSF as a se-
creted factor that was enhanced in breast cancer cells by EMT [23,37]. M-CSF was also
increased with EMT in inflammatory breast cancer models [148]. Clinically, M-CSF and its
receptor, Colony Stimulating Factor-1 Receptor (CSF1R), were elevated in breast cancer
patients with local invasion or metastasis compared to those without tumor spread, and
their expression predicted poor survival [149,150]. Further, serum levels of M-CSF were
elevated in breast cancer patients with lymph node involvement compared to those with-
out local invasion [151]. These findings suggest that M-CSF may support breast cancer
metastasis and prompted one group to generate a M-CSF response signature composed
of 603 genes. Applying this signature to breast cancer specimens, including those from
early pre-malignant lesions know as ductal carcinoma in situ (DCIS), demonstrated that
M-CSF activation was present in a subset of DCIS specimens [152,153]. Further, this signa-
ture was positively associated with tumor grade in malignant tumors. M-CSF activation
may be present throughout several steps of carcinogenesis from malignant transformation
through metastasis.
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5.2.2. Preclinical and Clinical Targeting of M-CSF in Breast Cancer

In several elegant in vivo studies undertaken in TNBC-like mouse models, M-CSF dy-
namically impacted the TME, largely through recruitment and education of TAMs. MMTV-
PyMT mice containing null recessive CSF1 (encodes M-CSF) had no change in primary tu-
mor incidence or growth but had decreased formation of lung metastases [154]. Follow-up
experiments demonstrated that this is due to the impact of M-CSF on macrophage recruit-
ment, which is required for the pro-metastatic angiogenic switch [155]. Intravital imaging
revealed that macrophages utilize M-CSF to communicate with tumor cells via a paracrine
loop of M-CSF secreted by tumor cells and EGF secreted by macrophages [156,157]. This
signaling loop supported tumor cell migration and intravasation into the blood stream
and thus metastasis. In another study, CSF1R was inhibited with a blocking antibody in
pre-malignant MMTV-HER2 tumors that model HER2+ breast cancer [158]. This decreased
lung metastasis but did not impact primary tumor growth. These promising preclinical
experiments led to clinical targeting of either M-CSF or CSF1R in patients with advanced
breast cancer (summarized in Table 3). However, results from these trials showed little
clinical benefit. A lack of clinical response could be explained by a preclinical study where
TNBC-like 4T1 mammary tumors were treated with several anti-M-CSF/CSF1R thera-
pies [159]. Each treatment resulted in increased neutrophil and monocyte recruitment that
together supported tumor progression. This suggests that the impact of M-CSF or CSF1R
inhibition on cells other than macrophages should be evaluated.

6. Other Secreted Immune Suppressive Factors Identified via EMT Modulation

In addition to altering tumor cell metabolism and cytokine secretion, our group and
the Weinberg group identified other secreted factors, such as CHI3L1 and OPN, that are
modulated by EMT in breast cancer models [23,30]. This section will discuss these factors
as emerging immune modulatory targets in mTNBC even though strategies to target them
are at an early stage of development or do not yet exist.

6.1. Chitinase-3 Like-1 (CHI3L1)
6.1.1. CHI3L1 and Breast Cancer Metastasis

CHIB3L1 (also referred to as YKL-40, human cartilage glycoprotein-39/HC gp-39 or
murine breast regression protein-39/BRP39) is a chitinase-like protein that lacks enzymatic
activity [160]. It is secreted by many cell types including activated macrophages [161,162],
neutrophils [163], chondrocytes [164], osteoblasts [165], activated T cells [166] and cancer
cells [167]. Serum CHI3L1 is upregulated in patients with chronic inflammatory diseases
like asthma and chronic obstructive pulmonary disease (COPD) [168], and it is a biomarker
of poor survival in various cancers (as reviewed in [169]). In the normal breast, CHI3L1
was increased during the dynamic remodeling that accompanies weaning known as invo-
lution [170]. In primary breast cancers, elevated levels of tumor and serum CHI3L1 were
correlated with poor differentiation, mesenchymal markers, tumor grade and a shorter
relapse-free survival [171-173]. In metastatic breast cancer patients, high serum CHI3L1
levels predicted a decrease in overall survival when compared to patients with normal
CHI3L1 levels [174]. Thus, CHI3L1 may support metastatic breast cancer progression,
and exploration of this idea has just begun in preclinical models. We demonstrated that
human ER+ breast cancer cells with a point mutation in the ligand binding domain of
ESR1 (encodes ER) had increased expression of CHI3L1 when compared to those with
wild type ESR1 [175]. Increased CHI3L1 in mutant ESR1 cells conferred an invasive ad-
vantage that was lost when cells were treated with a CHI3L1 blocking antibody. CHI3L1
also enhanced migration of the mesenchymal-like HER2 expressing breast epithelial cell
line, D492HER?2 [176]. In this study, CHI3L1 simultaneously acted in a paracrine manner
to support angiogenesis. Further, blockade of astrocyte secreted CHI3L1 increased the
survival of mice harboring cortical breast cancer metastases [177]. Together these studies
suggest that CHI3L1 mediates a signaling loop between tumor cells and cells in the TME.
However, the impact of EMT on this signaling loop remains underexplored. Preliminary
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evidence from prostate cancer and non-small cell lung cancer showed that CHI3L1 induces
EMT markers such as TWIST, SLUG and SNAIL [178,179]. Thus, the role of CHI3L1 as a
mediator of EMT needs to be investigated in breast cancer.

6.1.2. Impact of CHI3L1 on the Tumor Microenvironment

In addition to its effects on breast cancer cells, CHI3L1 impacts immune cells. Treat-
ment of macrophages with CHI3L1 increased pro-tumor M2 polarization genes and
enhanced the infiltration of immune suppressive T cells into primary mammary tu-
mors [180,181]. Alternatively, inhibition of CHI3L1 in mouse models of TNBC supported
an active TME and decreased spontaneous and late-stage mammary carcinoma lung metas-
tasis [181-183]. These studies call for further exploration of the impact of CHI3L1 on
immune cells. For instance, single cell immunophenotyping technologies could be used to
determine which cells in the TME produce the most CHI3L1 and which cells are the most
impacted by CHI3L1. Such a study may be imperative before CHI3L1-directed therapies,
such as CHI3L1 blocking antibodies, enter clinical testing in mTNBC.

6.2. Secreted Phosphoprotein 1 (SPP1)/Osteopontin (OPN)
6.2.1. OPN and Breast Cancer Metastasis

SPP1 encodes the secreted integrin-binding glycol-phosphoprotein OPN. Circulat-
ing and tumor levels of SPP1 positively correlated with a poor prognosis and shortened
survival in breast cancer patients [184,185]. Further, low OPN levels predicted a better re-
sponse to standard of care breast cancer therapies such as neoadjuvant chemotherapy [186]
and endocrine inhibitors [187]. Due to the predictive value of SPP1/OPN levels, new
immunoassays are being developed to quantify OPN in breast tissues [188]. However, the
predictive value of the OPN transcript and protein do not always correspond. For instance,
only SPP1 gene expression, not protein expression, predicted recurrence following tamox-
ifen treatment [187]. Future studies should evaluate both mRNA and protein levels of this
gene to fully understand the predictive value of OPN. Despite this potential limitation,
SPP1 was highly expressed in mesenchymal-like aggressive breast cancers, such as those
representing the basal-like subtype, when compared to more epithelial less-aggressive
subtypes of the disease [189-192]. Interestingly, knockdown of SPP1 by the Weinberg group
in MMTV-PyMT-derived cell lines significantly decreased mesenchymal markers such as
Snail and Zebl1 [23], and this decreased metastatic potential [193]. Together, these studies
suggest that OPN may function in an autocrine manner to support breast tumor cell EMT
and metastasis, although further preclinical testing of this idea is needed.

6.2.2. OPN and the Breast Cancer Microenvironment

Tumor-derived OPN also supports tumor progression in a paracrine manner. For
instance, SPP1 knockdown in TNBC-like mammary carcinoma cells inhibited tumor growth
in both immunocompetent and immunodeficient mice [23]. Interestingly, when tumor
growth was compared between these experimental groups, SPP1 knockdown tumors
grew better in immunodeficient compared to immunocompetent mice. These data suggest
that the paracrine, immune modulatory functions of SPP1 contributes to breast tumor
progression. For example, knockdown of SPP1/Opn in tumor cells promoted polarization
of macrophages to an anti-tumor phenotype [23]. In addition to macrophages, T cells were
impacted in this study which included increased T cell infiltration and cytotoxicity but
decreased T cell suppression. Within the stroma, SPP1 induced fibroblast reprogramming
and activation toward a pro-inflammatory, pro-tumor phenotype [194]. OPN even functions
as an adhesive substrate for platelet aggregation [195], which has previously been shown
to promote tumor progression and metastasis [196]. Together these studies suggest that
tumor secreted-OPN may suppress the TME.

OPN is also expressed by several cell types in the TME such as myeloid cells [193],
fibroblasts [194] and in the case of bone metastases osteoblasts/osteoclasts [197]. Expres-
sion of OPN by these cells supports metastasis. This was demonstrated by a study that
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introduced TNBC-like 4T1 mammary tumor cells into SPP1~/~ null mice which resulted
in decreased spontaneous lung metastasis [193]. Interestingly, simultaneous knockdown
of SPP1 in 4T1 tumor cells caused a complete abrogation of metastasis. Therefore, SPP1
expressed in both the microenvironment and in the tumor may support breast cancer metas-
tasis. Given these data, SPP1/OPN appears to be a promising therapeutic target in breast
cancer. Unfortunately, no targeted therapies have been developed, which is likely due to
the complexity of the varied functions of SPP1 throughout the body [198-202]. However,
given the impact of SPP1/OPN on breast cancer progression in preclinical studies, the
search for effective and safe SPP1/OPN targeted therapies should continue.

7. Conclusions and Future Directions

This review highlights how reversal of EMT in TNBC models revealed immune
modulatory factors that are in preclinical or clinical development for treatment of mTNBC.
Some of these targets, such as M-CSF, have been tested in multiple clinical trials and seen
limited anti-tumor activity. While these results may seem discouraging, they suggest
that additional studies are needed to better understand the complex microenvironment of
metastatic breast cancers. For instance, preliminary analyses suggest that TNBC patients
with chemotherapy-responsive, early-stage disease have an influx of anti-tumor immune
cells after one course of chemotherapy [203]. Nonetheless, immune cell presence drops
below baseline by the end of the chemo regimen. Whether metastases have a similar peak of
immune response to chemotherapy remains unknown. Preclinical or clinical studies testing
this idea may reveal a treatment window where immunotherapies are most effective.

The heterogeneity of the immune cell milieu between metastatic sites also needs to
be considered when developing additional TNBC immunotherapies. Preliminary studies
suggest that liver metastases are more likely to be immune deserts than other metastatic
sites [204]. Thus, patients with liver metastases may benefit from strategies that enhance
immune cell presence, such as adoptive T cell transfer, rather than those that suppress
immune cell recruitment like M-CSF blocking antibodies. As combination immunotherapy
clinical trials become prevalent in breast cancer, more extensive immune profiling of
metastatic sites may also reveal optimal immunotherapy combinations.

Finally, this review largely focuses on factors increased during EMT to promote a
suppressed TME. Other breast cancer subtypes, such as ER+ disease, that undergo less
of an oncogenic EMT progression, may not be responsive to the targets discussed in
this review. Future studies should focus on immune modulatory pathways/proteins
upregulated in epithelial compared to mesenchymal breast cancer models. These could
serve as immunotherapy targets in other breast cancer subtypes that are less responsive to
immunotherapies. Manipulation of EMT has and will continue to be a powerful tool to
discover clinically relevant breast cancer immunotherapy targets.
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