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Abstract: Lanthanides (Ln), applied mostly in the form of nanoparticles (NPs), are critical to emerging
high-tech and green energy industries due to their distinct physicochemical properties. The resulting
anthropogenic input of Ln and Ln-based NPs into aquatic environment might create a problem of
emerging contaminants. Thus, information on the biological effects of Ln and Ln-based NPs is urgently
needed for relevant environmental risk assessment. In this mini-review, we made a bibliometric
survey on existing scientific literature with the main aim of identifying the most important data gaps
on Ln and Ln-based nanoparticles’ toxicity to aquatic biota. We report that the most studied Ln for
ecotoxicity are Ce and Ln, whereas practically no information was found for Nd, Tb, Tm, and Yb.
We also discuss the challenges of the research on Ln ecotoxicity, such as relevance of nominal versus
bioavailable concentrations of Ln, and point out future research needs (long-term toxicity to aquatic
biota and toxic effects of Ln to bottom-dwelling species).

Keywords: ecotoxicology; bioaccumulation; nanomaterials; rare-earth elements; bibliometric
analysis; safety

1. Introduction

In the periodic table, the lanthanides (Ln) comprise 15 metals with atomic numbers from 57 (La)
to 71 (Lu). Together with Sc and Y, they form the group of rare earth elements (REE), as defined by
the International Union of Pure and Applied Chemistry (IUPAC). Ln (mostly in the form of oxides) is
widely used in modern technologies, e.g., catalysis, electronics, cell phones, LED light bulbs, wind
turbines, electric cars, fuel cells, and fuel additives, due to their unique magnetic, phosphorescent,
and catalytic properties [1,2]. Electric cars, for instance, contain remarkable quantities of lithium and
neodymium, wind turbines neodymium and dysprosium, and solar cells contain several Ln [3]. Due
to that, REE have been named “the vitamins of modern industry” [4].

Ln are often applied as manufactured nanoparticles (NPs, i.e., particles with at least one dimension
less than 100 nm) [5], usually in the form of Ln oxides, and used e.g., in solid oxide fuel cells and in gas
separation membranes. One of the most widely used Ln oxide NPs is CeO2 with the global estimated
market volume at 2016 of 9100 t and the main application areas energy storage and polishing [6].
Gd2O3 NPs may replace the Gd-chelates currently used as contrast agents in magnetic resonance
imaging due to their higher performance [7]. In addition, La2O3 NPs [8] CeO2 NPs [9–11], Gd2O3

NPs [12], and Tb-based [13] and Ln-doped NPs [14] also have potential as antimicrobials.
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A detailed review on technologies and environmental impact concerning Ln has recently been
published by [2] and it is recommended for further and more detailed information. Apart from
technological applications, Ln have been used as micro-fertilizers [15] and may also end up in the
environment as side-products of application of phosphorous fertilizers [16]. Ln-based NPs can reach
aquatic ecosystems via several pathways, e.g., by exhaust emissions, leaching from coatings and paints,
and via effluents from waste water treatment plants from industry [17]. Approximately 3% of the
produced CeO2 NPs have been estimated to reach the aquatic environment [17], where they mainly
accumulate in sediments [18]. However, the presence of these NPs at concentrations up to 5.2 ng/L has
already been recorded in Dutch surface waters [19]. Ln-containing electronic waste problems are also
increasing and need addressing [2].

Gadolinium is perhaps one of the most widely studied lanthanide in the environment, due to the
wide use of Gd chelates as contrast agents for MRI [20]. A substantial increase in Gd levels in water
bodies over the past decades has been reported [21,22]. The increasing application and registration
of ‘anthropogenic’ anomalies of Ln in different environmental compartments indicate that Ln are
the new emerging contaminants [23]. Thus, relevant data on environmental fate and (eco)toxicity of
Ln are needed for the evaluation of the potential hazards of Ln contamination of the environment
and, in particular, of the aquatic ecosystems. It could be assumed that, analogously to metal-based
nanomaterials (CuO, ZnO, nAg) [24–26], soluble Ln compounds leached from Ln-based NPs induce
the observed toxic effects. Indeed, in the case of Dy2O3 NPs, dysprosium ion was the main contributor
to the overall toxicity of the Dy2O3 NPs towards E. coli [27] and dissolved Ce-ions ‘explained’ the
toxicity of CeO2 NPs to algae Chlamydomonas reinhardtii [28]. Additionally, it was shown that Ce-ions
(but not CeO2 NPs) were taken up by C. reinhardtii [29]. Thus, the knowledge on (eco)toxicity of Ln ions
is an integral part of safety assessment of Ln-based nanomaterials. However, the level of knowledge
on environmental concentrations, hazardous levels, speciation, and bioaccumulation properties of Ln
ions is remarkably lower [30,31] when comparing with widespread toxic contaminants, such as Pb,
Cd, Hg, As, Cu, and Zn [32]. During the last decades, both beneficial and adverse biological effects
of Ln on different groups of organisms have been reported [30,33–35]. Most studies have focused
on their potential effects on humans, soil organisms, and plants, as Ln are widely used in medicine
and agriculture (fertilizers). Specifically, it has been reported that increasing Ln concentrations in the
environment may cause their accumulation in humans necessitating the need for long-term studies
and observations [36–39]. Although recently comprehensive reviews on e.g., ecotoxicity of certain Ln
have been published, for example, on lanthanum by Herrmann et al. [40] and on CeO2 NP by Dahle
and Arai [41], and it has been shown that both Ln salts and Ln-based NPs can negatively affect aquatic
biota [30]; overall data on aquatic organisms are scarce [42,43]. A few attempts have been made to
determine the safe levels for Ln in surface waters [40,44], but it remains a challenge due to the lack of
reliable data.

We intended to provide an overview on accumulated scientific information on lanthanides/Ln
compounds’ environmental safety while considering the recent industrial developments and the safety
information for chemicals and materials introduced to the market. This overview is mainly based on
bibliometric survey on existing scientific literature with the main aim to identify the most important
data gaps on Ln and Ln-based nanoparticles’ toxicity to aquatic biota that need to be addressed in the
future studies. However, collection of the toxicity values available for Ln was not the target of this
mini-review. We also discuss the main challenges of ecotoxicologica evaluation of Ln (interpretation of
the toxicity results given the bioavailable fraction often remains unknown) as well as the applicability
of laboratory test results for evaluating the risks of environmental Ln contamination. We chose
Web of Science database (Clarivate Analytics) as a main source of information for our survey, while
assuming that this database reflects both the scientific developments in technologies, as well as in
hazard evaluation.
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2. Existing Ecotoxicological Knowledge on Lanthanides: Identifying the Data Gaps

2.1. Choice of the Key-Words for the Search in WoS (Web of Science)

According European Union (EU) Regulation REACH (Registration, Evaluation, Authorisation,
and Restriction of Chemicals) the safety assessment must be performed for new and existing chemical
compounds on the EU market [45]. As a rule, the standardized toxicity tests (by OECD, ISO, US
EPA, ASTM) should be used for ecotoxicity evaluation of chemicals [46], whereas the number and
type of the bioassays depend on the chemical’s annul production/sales volume. In general the annual
production exceeding 1 t needs data on short-term toxicity to invertebrates (such as D. magna acute
test) and/or growth inhibition of aquatic plants (e.g., algae or duckweed). When the annual tonnage
exceeds 10 t, a fish short-term toxicity test is also needed as well as activated sludge respiration
inhibition test. From annual production exceeding 100 t, long-term toxicity tests on invertebrates, fish
and bioaccumulation assays are mandatory and from annual tonnage of 1000 also long-term toxicity
assays with benthic organisms must be performed. The above-described mandatory tests are a proxy
of the aquatic ecosystem that is composed of organisms from different food-chain levels (producers,
consumers, and decomposers).

REACH has also issued additional toxicity testing guidelines for low solubility substances
(e.g., poorly soluble Ln-based NPs [18]), for which (i) long-term tests on zooplankton or fish, (ii) toxicity
to benthic organisms, and iii) an additional sub-lethal endpoint should be used [46]. Thus, information
on the Ln toxicity was collected on the basis of the above described recommendations while using
the key-words, including organism groups (aquatic macrophytes and microalgae, invertebrates, fish,
benthic organisms) of REACH priority. In addition to acute toxicity data, long-term toxicity and
bioaccumulation data were studied. Moreover, microorganisms were added to cover another important
ecological organism groups in the aquatic environment. The data contributed by the authors of this
paper were not omitted if not indicated differently.

2.2. Information on Different Ln Compounds: WoS

The search for information on ecotoxicity of different lanthanides (general search for REE and
Ln and for individual Ln from La-Lu) was performed in WoS on 4 June 2019, and the results of the
search and the respective search terms (key-words) are presented in Table 1. Altogether, the following
organism groups were addressed: microorganisms, phytoplankton, macrophytes, zooplankton, nekton,
and benthos. In addition, the number of papers covering both toxicity and bioaccumulation of Ln was
separately tabulated (Table 1). This pool of papers (altogether 241 papers, many of which reoccurring
in different searches) was used for the analysis of the evolution of the research since 1991 (Figure 1),
distribution of the research between different forms of Ln (ions, nanoparticles, complexes, substances
in nature) (Figure 2); acute or chronic toxicity data (Figure 3). Information on environmental hazard
for benthic organisms (Figure 4) and bioaccumulation (Figure 5) was separately analysed.

As seen in Figure 1, the majority (~90%) of the information on environmental hazard of Ln
has been published within the past 10 years. La and Ce were the most studied elements within
Ln (Table 1, Figure 2), as also shown by others [43,47]. This can be, in particular, explained by the
application of La-based compounds in waterbodies to reduce bioavailable phosphorus to manage
noxious cyanobacterial blooms [48]. Element-wise, Pagano et al. (2015) showed the same trend
concerning information on human and animal health: Ce, La, and Gd were most studied Ln [36].
Studies on environmental hazard of Ce mostly concerned Ce-based NPs (Figure 2), assumingly due to
their wide use as the car-exhaust catalysts and fuel additives [17,41]. The effect of ions was studied in
up to half of the studies for all elements except Nd that has been studied more in the form of Nd-ions
(Figure 2). For the Ln of higher atomic mass (Tb-Lu), monitoring the data of Ln concentrations in
natural environment was dominating (Figure 2).
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Table 1. Information on environmental hazard of individual lanthanides for main aquatic organism
groups: number of papers in Web of Science (WoS), including 16 reviews. Search in WoS was made on
4 June 2019 and it covered Title, Abstract, Author Keywords, and Editor Keywords. The search terms
are presented and explained in the footnotes.

Ecological Group
Ln,

REE 8 La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Total *

Microorganims 1 19 11 48 3 1 3 3 5 1 3 1 1 0 1 3 93
Phytoplankton 2 21 13 28 1 0 4 2 5 1 0 1 1 1 0 1 58
Macrophytes 3 13 6 5 1 1 0 0 0 0 0 0 1 0 1 0 17
Zooplankton 4 13 7 14 0 0 1 0 2 0 1 1 1 0 0 1 28

Nekton 5 17 13 22 1 0 1 2 3 0 0 1 1 0 0 1 41
Benthos 6 17 8 7 0 0 2 1 3 0 0 0 0 0 0 0 24

Bioaccumulation 7 37 12 20 1 0 2 3 2 0 0 0 1 1 1 0 51
1 (element name) AND (* toxic *) AND (microorganism * OR bacteri * OR protozoa OR protist * OR yeast) 2 (element
name) AND (* toxic *) AND (phytoplankton OR microalga * OR alga *) 3 (element name) AND (* toxic *) AND
(macrophyte * OR “aquatic plant *” OR macroalga * OR duckweed OR Myriophyllum) 4 (element name) AND
(* toxic *) AND (zooplankt * OR microinvertebrate * OR microcrustacea * OR * daphni * OR “D. magna”) 5 (element
name) AND (* toxic *) AND (fish OR Danio “or “D. rerio”) 6 (element name) AND (* toxic *) AND (benth * OR mussel
* OR clam * OR oyster * OR oligichaet * OR amphipod * OR chironomid *) 7 (element name) AND (* toxic *) AND
(* accumulat * OR “body burden” OR * uptake) AND (marine OR aquatic OR aqueous OR * water *) 8 (Lanthanide *
OR “rare earth”) AND (* toxic *) AND (one of the combinations given above) * Total number of papers found in the
literature search. The total number is lower than the sum of the papers found in each individual search as some of
the papers occurred repeatedly in the searches.
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Figure 2. The number of papers for individual Ln compounds in the chemical form of: ions,
nanoparticles, complexes or as present in the natural environment (monitoring data). The number of
papers is indicated inside or left to the respective column. The pool of initial data analysed in this
Figure is described in Table 1 (reviews have been omitted).
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Figure 3. Share of publications on ecotoxicity of Ln based on exposure time: (i) only acute (<14 days)
toxicity data, (ii) studies including long-term (≥14 days) experiments, (iii) monitoring studies where
data were collected from natural populations, and (iv) reviews. The publications are given separately for
different organism groups (see Table 1) from left to right: microorganims, phytoplankton, macrophytes,
zooplankton, nekton, and benthos. The number of papers within each category is given inside or left to
the respective column.
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bibliometric search (Table 1) for macrophytes and benthos (reviews omitted). Altogether 32 species
from 23 papers (21 papers on benthos and two papers on macrophytes). Subsurface-feeders included
oligochaetes and amphipods Corophium volutator. “Other surface-feeders” were collector-feeders (insect
larvae, crustaceans, snails) and predators (insect larvae, mites).
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Figure 5. The percentage of organism groups (microorganisms, phytoplankton, macrophytes,
zooplankton, fish, and benthos) used in bioaccumulation studies (reviews omitted) based on
the bibliometric information on bioaccumulation (see Table 1). 57 organisms were used in the
bioaccumulation studies of 45 papers.

2.3. Analysis of the Existing Information Describing the Environmental Hazard of Ln

2.3.1. Acute and Long-Term Exposure

Long-term toxicity data were best represented among the studies with benthic organisms (40%
of the studies) (Figure 3), which was probably due to the abundance of standardised long-term
test protocols for these organisms. Long-term studies on Ln were relatively well represented in the
publications on zooplankton (29%) and fish (21%), both of which have OECD long-term protocols
available and are especially high priority in the REACH legislation. OECD Daphnia sp. reproduction test
was the most commonly used test for evaluating long term effects of Ln for zooplankton. Macrophytes
also had a relatively high proportion (24%) of long-term toxicity data, possibly due to the fact that
macrophytes have mainly been used for bioaccumulation (usually long-term) experiments (Figure 3).
Long-term toxicity studies on Ln using unicellular organisms were rare (4% of the studies with
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microalgae and 4% with other unicellular organisms/microorganisms). Most of the microorganisms’
studies concerned the antimicrobial efficiency of engineered (nano)materials.

2.3.2. Information on Toxicity of Ln for Benthic Organisms

Although Ln and Ln-based NPs both tend to accumulate in the sediments [18], only 10% of all
the studies (altogether 24 papers on Ln) covered benthic organisms (Table 1). There was just one
laboratory study on La [49] and one monitoring study on La from modified bentonite [50], which
included macrophytes (Elodea nuttallii) with roots growing in the sediment. Most of the experiments
and monitoring studies on Ln were conducted with bivalves and other sediment surface feeders
(Figure 4). Although filter-feeding bivalves are exposed to contaminants inside the sediments [51],
subsurface-feeders, mainly feeding by digesting sediments, are still considered to be better indicators
of toxic effects of settled forms of Ln [46,52]. However, only few studies included sediment-ingesting
benthic organisms (oligochaets, sediment-dwelling amphipod Corophium volutator).

Element-wise, the studies mostly concerned La, Ce, Eu, Gd, and Sm, with no individual Ln
ecotoxicological studies on nine Ln (Pr, Nd, Tb–Lu) (Table 1).

2.3.3. Bioaccumulation Studies

21% of the aquatic ecotoxicity publications on Ln (altogether 51 papers) included information on
the bioaccumulation of Ln (Table 1). Most of these studies used macrophytes and benthos (mostly
bivalves) as test species (Figure 5). No bioaccumulation data were found for five Ln (Nd, Tb, Dy, Ho,
Lu; Table 1).

Altogether, there were seven studies that followed all of the major REACH recommendations,
e.g., included long-term bioaccumulation studies with benthic organisms. These studies exposed
bivalves [33,53–56], crayfish [57], chironomids [50], and rooted aquatic plants [50] to Ln ions or their
complexes. Only one study concerned Ln-based NPs (CeO2) [58] examining accumulation in a food web
that included bivalves, snails, and benthic shrimps. As a rule, the groups of organisms that were mostly
used in the bioaccumulation studies were macrophytes (28%) and bivalves (26% of papers; Figure 5).
In addition to exposure studies, eleven bioaccumulation studies were based on the monitoring of
natural benthic populations [53,59–68] that could also be considered to be long term bioaccumulation
studies. Similarly to laboratory exposure studies, bivalves were the predominant test species in the
monitoring studies [53,59,61–64,66–68]. In addition to bivalves, snails [59], crustaceans [59–61], sea
urchins [63], insect larvae [59,63], mites and oligochaets [59], and rooted plants [65] were analysed.

3. Environmental Safety Assessment of Ln Compounds

The information on (i) potential hazard to living organisms (toxicity values that were obtained from
laboratory testing and bioaccumulation potential) and (ii) environmental exposure levels (predicted
environmental concentrations) are the key data for environmental safety assessment of chemicals [46].
For Ln, there are knowledge gaps in both of these data groups. Below, we will mostly focus on the first
aspect—hazard data—briefly summarizing existing information on the hazard of Ln to aquatic species
and highlight the main knowledge gaps. More detailed overviews of Ln toxicity values are available in
other reviews [30,40,43,47,69].

3.1. Potential Hazard of Ln to Aquatic Ecosystems: State of the Art

3.1.1. Toxicity to Aquatic Biota

The available information shows that Ln based (nano)particles (mostly CeO2) may pose a threat
to aquatic biota, but the majority of the experiments reported effect concentrations exceeding 10 mg
Ce/L. For example, ciliates were tolerant to CeO2 NPs at concentrations up to 200 mg/L, depending on
the composition of the multispecies communities in a 64-day experiment [70]. Analogously, no toxicity
of CeO2 was observed for protozoan Tetrahymena thermophila (24 h EC50 > 100 mg/L) and bacteria
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Vibrio fischeri (30-min. EC50 > 500 mg/L) although the particles were producing reactive oxygen species
(ROS) in abiotic conditions [71]. No adverse effects of CeO2 NPs on chironomid development, growth,
or emergence were reported upon exposure up to 100 mg/L, despite the fact that ingestion of the
particles by organisms was recorded [72]. 10-day CeO2 NPs exposure to up to 100 mg/L did not induce
mortality for sediment-dwelling amphipod Corophium volutator, while DNA damage and oxidative
stress were induced at exposure concentration of 12.5 mg/L [73]. CeO2 NPs induced significant adverse
biological effects in long-term studies with crustaceans and fish at 10–100 mg Ce/L [74,75]. It also has
been shown that Ln can change the microbial community’s structure: a 15-day exposure to CeO2 NPs
increased the proportion of algae and decreased the proportion of bacteria in the biofilm [76]. The
toxicity study of nine (doped) lanthanide oxides for crustaceans Daphnia magna (48 h immobilisation
test) and algae Raphidocelis subcapitata (72 h growth inhibition assay) showed that the toxicity of the
most toxic compounds was due to toxic heavy metals that were used as dopants that were shed into
the test environment (e.g., Ni from LaNiO4) [77,78]. Thus, Ln based NPs are neither the most toxic
NPs [79,80] nor safe for the aquatic biota.

As a rule, Ln based (nano)particles have proven to be remarkably less toxic than the corresponding
soluble Ln salts [71,77]. However, it is very difficult to differentiate between the toxic effects of
ions and particles due to the limited knowledge on toxicity of Ln ions and Ln behaviour in the test
medium. For example, Sm and Ho oxide NPs were toxic for Hydra attenuata (96 h EC50 0.1–1 mg/L),
but in crustaceans Thamnocephalus platyurus assay, the same NPs induced no toxicity (24 h LC50 >

100 mg/L) [81]. However, for Ln-based NPs with low dissolution rates, e.g., CeO2, particle-induced
toxicity might be more relevant [75,82]. The dissolution of Ln-based NPs might occur at nano-bio
interface and be an important cause of toxic effects [11,83–85]. Other particle-specific effects include
physical effects after ingestion by, or adsorption on, the organism [86–88], induction of oxidative
stress [89,90], and membrane damage [71,91–94], along with entrapment of unicellular organisms into
NPs agglomerates [28,77].

Most data on the Ln salts’ toxicity to aquatic organisms results from the acute tests (Figure 2),
whereas the results remarkably vary. For example, acute (48 h) Ln toxicity (EC50) to crustaceans D.
magna that was calculated based on the measured total concentration in test medium ranged from 0.2
to 24 mg Ln/L [40,44,95] and EC50 calculated on the measured dissolved Ln concentrations ranged
from 0.04 to 1.2 mg Ln/L [96,97]. Movement inhibition-based EC50 for oligochaets exposed to Ln salts
was 9.6–12 g Ln/L, which is a very high concentration but still similar to the results of toxic metals,
such as Cd and Ni in the same test conditions [98]. Long-term studies with benthic filter feeders,
such as pearl oysters, have shown that food-borne exposure to Eu3+ and Eu complexes modified the
microstructure and colour of pearls produced by pearl oysters indicating the possibility of Eu being
metabolised similarly to Ca [99]. Additionally, it was shown that Ln-rich river sediment induced
mortality of benthic ostracods [100]. Long-term exposure of Daphnia to natural REE-enriched mine
tailing leachates resulted in a larger number of offspring that was smaller in size when compared to
the control, indicating that Ln might induce adverse effects in natural conditions [101]. The gills and
liver of fish may also be adversely affected upon long-term exposure to CeO2 NPs [102].

Studies with macrophytes also yielded highly variable results. Chlorophyll reduction and
oxidative damage has already been observed at 1.4–2.8 mg Pr/L in duckweed Spirodela polyrrhiza with
Ln mainly deposited in the cell wall [103,104]. On the other hand, the growth of another duckweed
species—Lemna minor—was promoted by the presence of Ce salts at concentrations up to 139 mg
Ce/L and only decreased at higher concentrations of Ce [105]. The long-term (17–21 days) studies
with cyanobacteria showed hormesis at concentrations up to 0.1 or up to 0.5 mg Ln/L after exposure
to LaCl3 [106] and CeCl3, respectively [107]. Higher concentrations induced a decline in growth,
reproduction, chlorophyll a content, and K and Mg content. Even though Ln are also used as Ca
channel blockers to study uptake routes of other heavy metals, Ca concentrations in cyanobacteria
increased with increasing LaCl3 exposure levels [106].



Nanomaterials 2020, 10, 328 9 of 19

Factors that may be the cause for high intraspecific variation of Ln toxicity values will be discussed
below (Section 4).

3.1.2. Bioaccumulation of Ln

It is difficult to draw conclusions regarding the Ln bioaccumulation results, since the test design
(test organisms, exposure conditions, test duration, type of Ln compounds) in different studies varied
considerably (Section 2.3.3). For example, it was shown that Gd accumulated approximately 100-fold
more when applied as GdCl3 when compared to application as Gd-based contrast agent common
in hospital waste waters [33]. Studies with bivalves showed that the La and Ce contents were
higher in mussels (mean 0.041–0.069 mg/kg) than in oysters (0.012–0.021 mg/kg) [67]. Anthropogenic
and geogenic Ln may accumulate differently. Anthropogenic Gd from contaminated sites was not
incorporated into river bivalve shells, whereas geogenic Gd was [64], thus confirming the experimental
results of [34]. However, anthropogenic La and Sm were bioavailable and accumulated in the shells
similarly to geogenic ones [65].

According to most publications, Ln may be classified as elements with low bioaccumulation
potential in aquatic organisms. The highest reported bioconcentration and bioaccumulation factor
values for bivalves were between 23 and 357 [34,54–56], which are well below 2000—the threshold
to classify substances as bioaccumulative by REACH legislation (Annex VIII) [45]. Freshwater
crayfish accumulated La from La modified bentonite, mainly in gills resulting in 122-fold increase
when compared to the control (182 µg/g) and in the carapace (18 µg/g), indicating La uptake by
gills [57]. Similarly, La content in rooted plant Elodea nuttallii increased up to 127-fold when compared
to the control plants during the first growing season after application of La-modified bentonite.
The concentrations remained up to 112-fold elevated as compared to the control for at least two
years after Ln-modified clay application proving the high accumulation potential for plants. The
concentrations in E. nuttallii reached up to 871 mg/g La in its tissues within a month from application
of La modified bentonite into the test environment, but accumulation in filter-feeding chironomid
larvae was insignificant [50].

A relatively high Ln content in biota has also been reported. Ln (together with Sc and Y)
concentration in soft tissue of bivalves reached 1.6 mg/kg in studies by Rodriguez-Hernandez et al. [66].
Marine crabs in fertiliser-polluted waters accumulated waterborne Ln in the shell (2.5 mg/kg) and
foodborne Ln in the claw muscles (0.44 mg/kg) [60]. Study on Ln pollution-exposed crabs showed that
Tm and La were also found in the exoskeleton [61]. Ln accumulation (0.02–12.2 mg/kg) in Portugese
freshwater mosses led to a bioconcentration factor of up to 1.1 × 106 being the highest for La and Ce,
whereas all 13 studied REEs could be classified as bioaccumulative [65].

The biomagnification potential of Ln could still be considered to be limited, according to
available literature. Indeed, even biodilution of Ln has been observed in natural ecosystems [59,63].
For example, the Ce concentrations were lower in higher food chain level (fish) than in lower food
chain level organisms in bioaccumulation experiments with CeO2 NPs in the constructing freshwater
ecosystem [58].

3.2. Environmental Exposure Levels of Ln

Assessment of the Ln release into the environment and the resulting accumulation in the aquatic
ecosystems should consider different emission sources and pathways, as well as the fate of anthropogenic
Ln in various environmental matrices. This is a very difficult task, given the variety of Ln industrial
applications and lack of the experimental data on Ln behaviour in aquatic ecosystems [2,41]. Notably,
there are knowledge gaps, even on Ln release from the mine wastes [108] —the oldest Ln pollution
source. Therefore, only the direct measurement of Ln in different environmental compartments allows
for evaluating the contamination trends due to the lack of a working life-cycle material flow and
environmental fate models for Ln. The data obtained show that the surface waters are generally
characterized by very low (<ng/L to 200 ng/L) Ln concentrations [109–117]. However, the higher
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levels of Ln have also been reported: sum Ln concentrations in the Syr Darya River ranged from
15.1–28.3 µg/L [118] and concentrations of Ln in stream waters (Eastern Canada) from <5 to 11,540 ng/L,
with an average of 253 ng/L (n = 498) [119]. At very polluted sites, Ln concentrations may increase up
to 78 µg/L [114,120] and, in exceptional cases, e.g., in acid mine drainage waters or after lake restoration
while using Ln-modified bentonite clay, Ln concentrations may even reach 15 mg/L [116,121–125].
Thus, comparison of the Ln concentration in the surface waters and reported toxicity values allows
for concluding that, although even in contaminated waters Ln concentrations are still lower than the
reported toxic concentrations for aquatic organisms, in certain cases (e.g., in the treated water bodies
or mine waste water) Ln may already disturb normal function of ecosystem.

4. Uncertainties in Evaluation of Potential Hazard of Ln Compounds to the Aquatic Organisms

The main problems that complicate the use of the laboratory ecotoxicity test results for the realistic
chemicals’ safety assessment are similar to Ln compounds and other types of metal-based nanoparticles,
namely (i) the interpretation of the obtained toxicity values and (ii) ecological relevance of the data
that were obtained in the laboratory tests.

4.1. Behaviour of Ln in the Test Environment

Correct reporting of real exposure concentrations is the most important problem in the
interpretation of the toxicity test results. The reported effect concentrations for Ln compounds
may be calculated either on the basis of nominal or measured concentrations in the test media (total or
dissolved), making the comparison of the results from different studies complicated or impossible (see
Section 3.1.1). The same holds true for the extrapolation of the laboratory data to aquatic ecosystems
(from lab to field).

It is known that speciation and, as a result, the bioavailability of Ln compounds (added in soluble
or poorly soluble form) in the test environment, mostly depends on the chemical composition of the
test medium. Indeed, variation of the Ln toxicity values, depending on the test medium, has been
demonstrated in several studies [95,96]. For metal-based nanomaterials, the main processes affecting
bioavailability in the test medium are aggregation, sedimentation, and dissolution. Ln-based NPs
can be stabilised by phosphates [28] and by organic matter [126]. The stabilising effect has shown
to be weaker for CeO2 NPs already stabilised with polymers by the manufacturer [127]. Suspended
CeO2 NPs were more toxic to zooplankton than settled particles [128]. The stabilising effect of NPs by
organic matter also increased the uptake of citrate-coated CeO2 in fish [129], but decreased toxicity of
uncoated CeO2 to fish [130]. The presence of Fe, on the other hand, increased microorganism-CeO2

interactions and, thus, the toxicity [131].
Ln-based NPs [131] and, especially, their agglomerates caused flocculation of algae [28,77] similarly

to Ln salts. Ln ions, in turn, tend to form insoluble or poorly soluble complexes in most ecotoxicity
test media [132,133]. The presence of phosphates leads to Ln precipitation [28,71,134,135]; chlorides
may increase the solubility of Ln compounds [121]; high water hardness causes the precipitation of
Ln, destabilisation and coagulation of Ln colloids; Fe and Al ions promote the formation of soluble
Ln species [111,125,136]. The presence and chemical composition of dissolved organic matter may
also significantly affect Ln bioavailability [137–139]. Ln internalisation is lower in the presence of
organic matter [138], but complexes with small organic molecules can be taken up by the cells of
aquatic plants [105], fish [140], and algae [88,141]. The test medium has strong impact on Ln toxicity,
as insoluble Ln salts may cause reducing Ln bioavailability, and thus toxicity, as mentioned above.
For example, reduction of the phosphate concentration (nutrient sequestration) in the test medium by
Ln was the main mechanism for algal growth inhibition reported by Joonas et al. [77]. In addition to
the composition of the test medium, the speciation of Ln remarkably depends on the used nominal
concentration and exposure duration [95,139,142]. Moreover, Ln ‘ionic’ complexes are labile and, thus,
Ln bioavailability might significantly vary during experiments [143].
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4.2. Ecological Realism of the Laboratory Toxicity Test Results

Low ecological relevance of standardized ecotoxicity testing methods is increasingly
discussed [144,145]. The main weaknesses that hamper extrapolation of laboratory test results to
aquatic ecosystems are common for all chemicals/pollutants [146]. However, in the case of Ln, they
are especially important, mostly due to the speciation issues that are described above. In addition,
in laboratory tests, Ln/Ln NPs behaviour significantly differs from the natural conditions, due to
(i) too high (environmentally irrelevant) exposure concentrations and (ii) environmentally irrelevant
chemical composition of the test media (e.g., artificial fresh water lacking organics). Thus, a shortage
of information on the Ln behaviour in the different exposure medium and natural waters make the
correct interpretation of the toxicity test results very problematic.

It has been previously shown that, for the hazard evaluation of Ln, acute toxicity data are not
reliable due to very high nominal concentrations and the very short exposure duration used in
acute toxicity assays [95], but most of the publications on Ln toxicity present results from acute tests
(Figure 2). Long-term experiments are also much more informative as the transformation of Ln NPs in
the environment might change their bioavailable fraction [147].

Another limitation of the laboratory testing is the small number of tests species usually used in
chemical safety evaluation. Moreover, in the case of Ln compounds, benthic organisms should be
more represented. For example, fish take up CeO2 NPs, largely by the gastrointestinal tract [148],
thus making benthic and bottom-feeding fish more prone to the potential harmful effects of CeO2 via
NPs uptake [149]. However, information on potential Ln toxicity to benthic organisms is very limited
(Figures 2 and 4).

4.3. Ln as a Uniform Group of Elements

It could be assumed that the toxicity of individual Ln to biota is similar due to similar chemical
properties [150], and from the environmental safety point of view, Ln may be considered as a uniform
group of elements. Indeed, most of the studies support this hypothesis. Tai et al. [151] evaluated the
toxicity of 13 Ln to unicellular algae Skeletonema costatum and showed that the growth inhibitory effects
of all these elements were similar, i.e., not dependent on Ln: the 96 h EC50 values were approximately
29 micromol/L. Five Ln nitrates (Ce, Gd, La, Nd, and Pr) showed very similar toxicity to unicellular alga
Rapidocelis subcapitata [77], protozoa Tetrahymena thermophila [71], and crustacean Daphnia magna [95].
However, for V. fischeri, the toxicity values of these five Ln varied remarkably, ranging from 3 mg/L for
Gd to 21 mg/L for La [71].

In general, the accumulation of Ln is in accordance with their concentrations in nature [59],
although Ln of lower atomic mass tends to accumulate in slightly higher concentrations. Indeed, Ln of
lower atomic mass were consistently more concentrated in natural benthos samples of bivalves, in
sea urchins, freshwater benthos [63], crabs [60], soft tissues of mussels [62], as well as in freshwater
mosses [65]. Additionally, the Ln-tolerant strains of bacteria preferred to take up Ln of lower atomic
mass from Ln-containing acid mine drainage [152]. In another acid mine drainage exposure experiment,
however, Ln of medium atomic weight accumulated in bivalves more than light or heavy ones [53].
Variation in toxicity or the accumulation of individual Ln tested at the same conditions may be
explained by slightly different chemical behaviour [41] and, consequently, their bioavailability to the
test organisms.

5. Summary

Analysis of published information regarding the potential hazard of Ln compounds to aquatic
ecosystems showed that the current accumulated knowledge on Ln toxicity and behaviour in the
complex systems is too scarce to support the reliable environmental safety assessment. The main data
gaps and recommendations for further investigations are as follows:
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• The most ecotoxicologically studied Ln are Ce and Ln. Practically no information was found for
Nd, Tb, Tm, and Yb. More attention in scientific research could be drawn to Ln with lower atomic
mass, as they are more abundant and tend to bioaccumulate more than heavy Ln.

• There is a considerable lack of long-term ecotoxicity data from environmentally relevant exposure
conditions (Ln concentrations and test media), although these data are the most relevant for an
evaluation of the potential hazard of anthropogenic Ln to aquatic ecosystems.

• As Ln tend accumulate in the sediments, more attention should be paid to the adverse effects of
Ln to bottom-dwelling species, especially to sediment-digesting ones that are underrepresented in
the current literature.

• Although the current environmental concentrations of Ln are still too low to cause adverse effects,
remarkable bioaccumulation of Ln in some aquatic plant species is a warning sign. Therefore,
additional information on the Ln bioaccumulation potential at all food chain levels is needed.

• There is an urgent need for additional knowledge on the behaviour of Ln in the aquatic environment.
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