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Clot-Based Radiomics Predict a Mechanical 
Thrombectomy Strategy for Successful 
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Xavier Montet, MD; Simon Burgermeister, MD; Pierre-Alexandre Poletti, MD; Alexandra Platon, MD; Karl-Olof Lovblad, MD;  
Paolo Machi , MD, PhD

BACKGROUND AND PURPOSE: Mechanical thrombectomy (MTB) is a reference treatment for acute ischemic stroke, with 
several endovascular strategies currently available. However, no quantitative methods are available for the selection of 
the best endovascular strategy or to predict the difficulty of clot removal. We aimed to investigate the predictive value of 
an endovascular strategy based on radiomic features extracted from the clot on preinterventional, noncontrast computed 
tomography to identify patients with first-attempt recanalization with thromboaspiration and to predict the overall number of 
passages needed with an MTB device for successful recanalization.

METHODS: We performed a study including 2 cohorts of patients admitted to our hospital: a retrospective training cohort (n=109) 
and a prospective validation cohort (n=47). Thrombi were segmented on noncontrast computed tomography, followed by 
the automatic computation of 1485 thrombus-related radiomic features. After selection of the relevant features, 2 machine 
learning models were developed on the training cohort to predict (1) first-attempt recanalization with thromboaspiration and 
(2) the overall number of passages with MTB devices for successful recanalization. The performance of the models was 
evaluated on the prospective validation cohort.

RESULTS: A small subset of radiomic features (n=9) was predictive of first-attempt recanalization with thromboaspiration 
(receiver operating characteristic curve–area under the curve, 0.88). The same subset also predicted the overall number 
of passages required for successful recanalization (explained variance, 0.70; mean squared error, 0.76; Pearson correlation 
coefficient, 0.73; P<0.05).

CONCLUSIONS: Clot-based radiomics have the ability to predict an MTB strategy for successful recanalization in acute ischemic 
stroke, thus allowing a potentially better selection of the MTB strategy, as well as patients who are most likely to benefit from 
the intervention.
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Mechanical thrombectomy (MTB) is a reference 
treatment for acute ischemic stroke (AIS) due 
to large vessel occlusion.1–5 While rapid recana-

lization of the occluded vessel correlates with a better 
clinical outcome6 and a lower rate of periprocedural 
complications,7 the rate of recanalization decreases with 

an increasing number of thrombectomy attempts.8,9 The 
selection of patients eligible for endovascular treatment 
is based on pretherapy brain imaging, and some causes 
of recanalization failure following MTB have been linked 
to clinical, demographic, and procedural factors.10,11 How-
ever, it is currently not possible to predict the success of 
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recanalization following endovascular treatment based 
on pretherapy images alone.

Several strategies for MTB have been suggested12 
by using different medical devices and relying mainly 
on stent retriever or direct thromboaspiration,13 such 
as a direct aspiration first pass technique (ADAPT) 
approach. Although both are comparable in terms of 
overall effectiveness,14,15 there is no method to deter-
mine which one will be the most effective for any spe-
cific patient. In addition, there is no quantitative method 
based on the clot, the treatment target, to predict the 
difficulty of endovascular treatment. It has been shown 
recently that vessel architecture at the occlusion site in 
the form of the angle of interaction between the aspira-
tion catheter and the clot was associated with success-
ful recanalization.16 Another recent study also reported 
that the texture of the clot, or radiomic features (RFs), 
is predictive of recanalization following treatment with 
intravenous alteplase for AIS.17 This suggests that the 
extraction of pretherapeutic RF from radiological imag-
ing may contain valuable information related to the 
composition of the clot, with an impact on the future 
success of MTB.

In the current study, we used pretherapeutic com-
puted tomography (CT) to extract RF from the clot to 
investigate their capacity to predict the success of the 
MTB strategy, with the intention to develop and validate 2 
models: (1) to identify patients with first-attempt recana-
lization with thromboaspiration and (2) to predict the 
overall number of passages with an MTB device required 
for successful recanalization.

METHODS
Patient Selection
The study included 2 cohorts of patients who underwent brain 
CT for suspected AIS. These comprised (1) a training cohort of 
109 patients admitted between January 2017 and December 
2018 that was built retrospectively to select relevant RF and 
train our 2 predictive machine learning (ML) models and (2) a 
prospective validation cohort of 47 patients admitted between 

January and September 2019 that was used to assess the 
accuracy of our predictive models against an external dataset 
(Figure  1). All patients in both cohorts underwent a whole-
brain stroke CT protocol using a SOMATOM Force scan-
ner (Siemens Healthcare), including thin-slice noncontrast 
CT (NCCT; ≤2 mm), CT angiography (≤0.625 mm), and CT 
perfusion. All patients were then treated by MTB with first-
attempt recanalization using thromboaspiration according to 
the ADAPT technique, followed by additional devices at the 
operator’s discretion, such as stent retrievers, if first-attempt 
recanalization with the ADAPT technique failed. The study was 
approved by the local ethics committee for research on human 
subjects (CCER 2017-00922), which waived the need for writ-
ten informed consent. The data that support the findings of this 
study are available from the corresponding author upon rea-
sonable request.

Thrombus Segmentation
NCCT and CT angiography images were automatically coregis-
tered for each patient in both cohorts using a rigid registration 
algorithm provided in 3D Slicer (version 4.10.2).18 A neuroradi-
ologist fellow (J.H.) manually segmented all thrombi on NCCT 
in 3D Slicer while viewing the corresponding CT angiography 
image for guidance, similar to Qui et al.17

RF Extraction
A large number of RFs were automatically extracted from 
the segmented thrombi using pyradiomics (version 2.2.0).19 
This allowed to compute first-order statistics related to 
thrombus intensity, shape, and size features, including higher 
order textural features using gray level co-occurrence matrix 
features, gray level size zone matrix features, gray level run 
length matrix, neighboring gray tone difference matrix, and 
gray level dependence matrix features. Further higher order 
features were added by applying filters to the native NCCT 
images (see Table 1 for details on image filters used). Overall, 
a total of 1485 RFs were extracted from each thrombus seg-
mented on NCCT.

RF Selection
Before developing the 2 models to predict first-attempt 
recanalization and the overall number of passages, we 
selected the most relevant subset of RF on the training 
cohort using univariate feature selection. We used the χ2 test 
to identify individual RF significantly associated with first-
attempt recanalization following thromboaspiration with the 
ADAPT strategy (P<0.05) in the training cohort among all 
1485 RFs extracted previously. These RFs were first normal-
ized to scale all individual features to have unit norm and 
then used to develop models to predict both success using 
the ADAPT strategy and the overall number of passages with 
MTB for successful recanalization.

MTB Strategy Prediction
We developed 2 ML models to predict (1) first-attempt recana-
lization with thromboaspiration with ADAPT and (2) the num-
ber of passages required for successful recanalization. In both 
cases, successful recanalization was defined as a modified 

Nonstandard Abbreviations and Acronyms

ADAPT	 a direct aspiration first pass technique
AIS	 acute ischemic stroke
CT	 computed tomography
HU	 Hounsfield unit
ML	 machine learning
MTB	 mechanical thrombectomy
NCCT	 noncontrast computed tomography
RF	 radiomic feature
tPA	 tissue-type plasminogen activator
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Thrombolysis in Cerebral Infarction score ≥2b.20 The 2 ML 
models were trained on the RF selected previously. The mod-
els were also retrained and assessed individually for each RF 
selected, following the same procedure. In all cases, ML models 
were developed and trained on the training cohort and then 
prospectively assessed on the validation cohort. The selection 
of RF and the development of the 2 ML models were per-
formed using scikit-learning (version 0.21.3), an open-source 
Python library.21

The first ML model was based on a support vector machine 
classifier, and its best parameters were estimated during a 
5×2 nested cross-validation procedure (inner, outer folds) on 
the training cohort. The support vector machine model with 
the best receiver operating characteristic curve–area under 
the curve in the training cohort was assessed on the prospec-
tive validation cohort. Similarly, the second ML regression 
model was based on a support vector regression, and its best 
parameters were also estimated during a 5×2 nested cross-
validation procedure on the training cohort. The support vec-
tor machine model with the best mean squared error score 
in the training cohort was assessed on the validation cohort. 
Results of explained variance, mean squared error, and the 
Pearson correlation coefficient are reported in the indepen-
dent validation cohort.

Radiomics Quality Score
A radiomics quality score has been developed to ensure sci-
entific rigor and a high level of reporting in radiomics studies.21 
The score of this study was 17 of 36; further details are pro-
vided in Table I in the Data Supplement. Our study also meets 
the criteria laid out in the Transparent Reporting of Multivariable 
Prediction Model for Individual Prognosis or Diagnosis state-
ment (Table II in the Data Supplement).

RESULTS
Patient Characteristics
The baseline demographic and clinical characteristics 
of the 47 patients included in the validation cohort 
are summarized in Table  2. The difference regard-
ing clinical and demographic variables was assessed 
using t test for parametric variables, Fisher exact 
test of proportion for categorical variables, and the 
Wilcoxon rank-sum test for nonparametric variables 
to compare patients with and without first-attempt 
recanalization with ADAPT. None of the variables 
assessed was significantly different between the 2 
groups (all P>0.05).

Selection of the Best RF
The most relevant subset of RF was identified using 
univariate feature selection on the training cohort. Four 
of the 9 RFs selected were positively associated with 
first-attempt recanalization following thromboaspira-
tion (P<0.05): large area low gray level emphasis, 
gray level variance, large dependence emphasis, and 
short run emphasis. Thus, a good response to throm-
boaspiration was positively associated with lower 
Hounsfield unit (HU) values, more variance in the clot 
HU values, and a more homogenous and finer clot 
texture. Five of the 9 RFs selected were negatively 
associated with first-attempt recanalization following 
thromboaspiration (P<0.05): entropy, maximum, run 
percentage, coarseness, and gray level nonuniformity 
normalized. Hence, rapid recanalization was nega-
tively associated with higher HU values, as well as 
texture randomness, coarseness, and heterogeneity 
of the clot.

Figure 1. Flowchart of the validation cohort.
AIS indicates acute ischemic stroke; CT, computed tomography; 
CTA, computed tomography angiography; MRI, magnetic resonance 
imaging; MTB, mechanical thrombectomy; and NCCT, noncontrast 
computed tomography.

Table 1.  Radiomics Features and Filters

Radiomics Features Class No. of RFs

First-order statistics 18

Shape based 13

Gray level co-occurrence matrix 23

Gray level run length matrix 16

Gray level size zone matrix 16

Neighboring gray tone difference matrix 5

Gray level dependence matrix 14

Image filters

  Laplacian of gaussian (sigma: 0.5, 1.0, 2.0) 276

  Wavelet 736

  Square 92

  Square root 92

  Logarithm 92

  Exponential 92

RF indicates radiomic feature.
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Predicting First-Attempt Recanalization With 
ADAPT
The first ML model based on a support vector machine 
classifier accurately predicted successful recanaliza-
tion after first-attempt recanalization with ADAPT on 
the independent validation cohort. It performed with an 
overall accuracy of 85.1% (95% CI, 71.7–93.8), a sen-
sitivity of 50.0% (95% CI, 21.1–78.9), a specificity of 
97.1% (95% CI, 85.1–99.9), a positive predictive value 
of 85.7% (95% CI, 44.5–97.8), and a negative predictive 
value of 85.0% (95% CI, 76.2–90.9). Figure 2 shows the 
receiver operating characteristic curve of this predictive 
model based on the 9 selected RFs on the validation 
cohort, with a value of 0.88.

Predicting the Number of Passages With an 
MTB Device for Successful Recanalization
The second ML model was based on a support vec-
tor regression and accurately predicted the number of 
passes with MTB devices for obtaining successful recan-
alization, with an explained variance of 0.70, an mean 
squared error of 0.76, and a Pearson correlation coef-
ficient of 0.73 (P<0.05) on the independent validation 
cohort. The predicted number of passages for all indi-
vidual patients of the validation cohort is shown in Fig-
ure 3, together with the observed number of passages 
performed to achieve successful recanalization (modified 
Thrombolysis in Cerebral Infarction score, ≥2b).

DISCUSSION
We aimed to predict the optimal MTB strategy in patients 
with AIS, based on RF derived from clots identified on 

pretherapeutic NCCTs. By calculating the texture, size, 
shape, and higher order parameters of these clots and 
then developing a predictive model on a first training 
cohort, our study showed that we were able to iden-
tify patients with first-attempt recanalization following 
thromboaspiration in a second validation cohort. We were 
also able to predict the overall number of passages with 
an MTB device required for successful recanalization 
in this same validation cohort. Overall, this may allow a 
selection of the first-line endovascular strategy to be tai-
lored to each patient to reduce the number of passages 
performed. The reduction of MTB passes could allow a 
prompt cerebral reperfusion,6 the reduction of potential 
complications related to several passes,7 and, finally, to 
an improvement of the clinical outcome.8,9

Recent research has shown that it is possible to pre-
dict the clinical outcome of patients undergoing MTB in 
the context of AIS using ML models based on clinical 
variables,22 and this may provide better decision support 
to perform MTB in some patients. In a complementary 
manner, our study showed that it is possible to guide the 
endovascular procedure based on imaging biomarkers 
contained in the pretherapeutic imaging of the clot. A 
few studies have recently focused on the role of throm-
bus in the response to medical or endovascular treat-
ment of AIS.23 For example, it has been shown that the 
vascular architecture adjacent to the clot (ie, the angle 
of interaction between the thrombectomy material and 
the clot) is associated with successful thromboaspira-
tion.16 In our study, we showed that some thrombus 
parameters are predictive of first-attempt recanalization 
following thromboaspiration, as well as the overall dif-
ficulty of thrombus removal. As the RFs include informa-
tion on the shape of the clot, these may have contributed 
to the good prediction observed in the validation cohort. 

Table 2.  Demographic and Clinical Characteristics of the 
Validation Cohort

With FAR Without FAR P Value

Age, y (mean) 73.9 74.7 0.60

Women 6/12 16/35 0.80

Left-side occlusion 7/12 19/35 0.81

Occluded vessel

  M1 segment MCA 11/12 31/35 0.76

  M2 segment MCA 1/12 4/35 0.76

Symptomatic ICH 1/12 4/35 0.76

Hypertension 9/12 31/35 0.25

Hyperlipemia 8/12 25/35 0.76

Diabetes mellitus 3/12 11/35 0.67

Smoking 8/12 16/35 0.21

Atrial fibrillation 4/12 13/35 0.81

Antithrombotic drugs 6/12 25/35 0.18

FAR indicates first-attempt recanalization with ADAPT technique; ICH, 
intracerebral hemorrhage; and MCA, middle cerebral artery.

Figure 2. Receiver operating characteristic curve (ROC)–area 
under the curve (AUC) for the identification of patients with 
first-attempt recanalization with the direct aspiration first 
pass technique strategy in the validation cohort.
The first machine learning model showed good classification accuracy, 
with an ROC-AUC of 0.88 on the independent validation cohort.
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Previous studies did not find a relationship between clot 
size, volume or density, and the efficacy of endovas-
cular treatment.24 Similarly, these parameters were not 
associated with rapid recanalization in our study or in a 
previous trial predicting a response to recombinant tPA 
(tissue-type plasminogen activator) therapy17 and thus 
were not selected in our final models. However, due to 
the automatic calculation of numerous RF, we were able 
to identify several other imaging biomarkers of the clot 
associated with a good response to endovascular treat-
ment. We found that rapid recanalization was positively 
associated with thrombi of a lower HU value, being more 
homogeneous with a finer texture. Conversely, recanali-
zation was slower when the thrombi were of a higher HU 
value and more heterogeneous and coarser.

In a recent study, Qiu et al17 evaluated the value 
of radiomics in predicting the efficacy of intravenous 
alteplase in the treatment of patients with AIS. They 
found that radiomics analysis of heterogeneous thrombi 
texture was able to predict alteplase efficacy. Although 
our study design is similar to that of Qiu et al, we 
focused on the evaluation of the efficacy of radiomics 
in predicting results obtained by endovascular MTB, 
instead of intravenous alteplase. However, the results 
of the two studies can be considered to be complemen-
tary as Qiu et al demonstrated the efficacy of radiomics 
based on the identification of heterogeneous thrombi 
texture, while we demonstrated their efficacy based on 
the identification of homogeneous thrombi. Such find-
ings might have a clinical impact since the treatment 
offered to patients with AIS could be tapered accord-
ing to thrombus texture identified by radiomics on the 
admitting cerebral imaging.

Intracranial thrombi have different biochemical com-
positions, and it has been previously shown that this 
composition appears to affect their treatment response. 
Indeed, thrombi with a high red blood cell content are 
removed more rapidly25 and with significantly less MTB 
passages than thrombi with a low content.26 These 
insights into clot composition appear to be useful for 
the selection of the endovascular treatment strategy, 
as well as for the development of new treatment meth-
ods. The different compositions of these intracranial 
clots also seem to be reflected in their CT or magnetic 
resonance imaging characteristics where red blood cell 
and fibrin levels influence the appearance of the clot.27 
It also appears possible to quantify the red blood cell 
content of the clot based on T2*-weighted magnetic 
resonance imaging. Since RFs are based, in part, on 
clot texture information, it is, therefore, possible that 
they reflect, at least in part, the biochemical charac-
teristics of the clot. However, studies are needed to 
directly relate the different RFs to the biochemical 
characteristics of clots in AIS.

Limitations
Our study has some limitations. First, it is a single-center, 
nonrandomized study. Patients were included after MTB, 
and the effect of our predictive models on endovascu-
lar treatment and clinical outcome was not evaluated. 
Second, our sample size is limited, due, in part, to some 
patients who did not have a CT before MTB as they were 
sent from a primary hospital to our stroke referral center. 
Third, we were unable to directly link the RFs that were 
useful in our prediction models to the biology of thrombi 
as thrombi composition was not systematically analyzed. 
Fourth, RFs can sometimes suffer from poor reproduc-
ibility, particularly due to changes in image acquisition 
parameters. Finally, the manual segmentation of clots on 
NCCT is inefficient in an emergency clinical setting, and 
future studies will have to show whether this segmenta-
tion can be performed semiautomatically.

Our study had an exploratory function regard-
ing the potentialities of radiomics analysis. At present, 
the tools and the time needed to perform the analy-
sis are not adapted for clinical practice. In the present 
setup, radiomics analysis takes ≈20 minutes for each 
patient, with the most time-consuming step being the 
manual segmentation of the clot. Nevertheless, differ-
ent research groups are currently developing automatic 
segmentation algorithms that will hopefully reduce the 
analysis timing.28 A prompt, up-front radiomics analysis 
of the thrombi of patients presenting with an AIS would 
help to predict the most appropriate treatment for each 
person. For example, a combined approach of MTB/
intravenous alteplase could be offered to patients having 
heterogeneous thrombi, while a stand-alone MTB could 
be offered to those with homogenous thrombi. However, 

Figure 3. Number of passages with a mechanical 
thrombectomy (MTB) device predicted and observed.
Overall number of predicted and observed passages with an MTB 
device for successful recanalization (modified Thrombolysis in 
Cerebral Infarction score, ≥2b) in the independent validation cohort. 
The second machine learning model achieved a good prediction 
based on clot-derived radiomic features, with an explained variance 
of 0.70, an mean squared error of 0.76 and a Pearson correlation 
coefficient of 0.73 (P<0.05).
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such clinical benefits related to the radiomics approach 
need to be investigated by further studies.

Conclusions
Extraction of RF from the clot visualized on the prethera-
peutic NCCT provides information on the success and 
difficulty of different MTB strategies in patients with AIS. 
By characterizing the clot, the target of MTB, radiomics, 
might be a promising technology to personalize the 
endovascular management of patients with AIS.
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