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Abstract

Background: Chinese clearhead icefish, Protosalanx hyalocranius, is a representative icefish species with economic
importance and special appearance. Due to its great economic value in China, the fish was introduced into Lake Dianchi
and several other lakes from the Lake Taihu half a century ago. Similar to the Sinocyclocheilus cavefish, the clearhead icefish
has certain cavefish-like traits, such as transparent body and nearly scaleless skin. Here, we provide the whole genome
sequence of this surface-dwelling fish and generated a draft genome assembly, aiming at exploring molecular mechanisms
for the biological interests. Findings: A total of 252.1 Gb of raw reads were sequenced. Subsequently, a novel draft genome
assembly was generated, with the scaffold N50 reaching 1.163 Mb. The genome completeness was estimated to be 98.39 %
by using the CEGMA evaluation. Finally, we annotated 19 884 protein-coding genes and observed that repeat sequences
account for 24.43 % of the genome assembly. Conclusion: We report the first draft genome of the Chinese clearhead icefish.
The genome assembly will provide a solid foundation for further molecular breeding and germplasm resource protection in
Chinese clearhead icefish, as well as other icefishes. It is also a valuable genetic resource for revealing the molecular
mechanisms for the cavefish-like characters.
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Data description
Introduction

Icefishes (Osmeriformes, Salangidae) are widely distributed in
freshwater, coastal, and estuarine habitats in East Asian coun-
tries [1–3]. Chinese clearhead icefish (Protosalanx hyalocranius;
Fig. 1), a diadromous fish, mainly inhabits in coastal areas and
adjacent freshwaters [4–6]. As an economically important fish
in China, the clearhead icefish was widely introduced into some
lakes from the original Lake Taihu half a century ago, and it has
developed a resident life history in these water areas [2, 7, 8].
Because of its transparent body and nearly scaleless skin, sim-
ilar to the Sinocyclocheilus cavefishes [9], we are very interested
in this surface-dwelling fish and are performing comparative
genomics studies to explore the mechanisms for these biolog-
ical phenotypes. However, with the rapid development of the
Chinese economy in recent decades, the population size of the
clearhead icefish has been seriously declining because of over-
fishing, construction of water conservancy facilities, and water
pollution in the ecological systems [10]. To maintain its sustain-
able development in China, here we performed whole genome
sequencing of Chinese clearhead icefish to support its biological
and economic importance.

Sample and sequencing

In this study, we applied Illumina whole genome sequencing
strategy to sequence the genome of Chinese clearhead icefish
(NCBI taxonomy ID: 418454; Fishbase ID: 12236). Genomic DNA
was isolated from the muscle tissue of an individual collected
from the Lake Taihu of Jiangsu Province in China. We con-
structed seven paired-end libraries with three short-insert li-
braries (250, 500, and 800 bp) and four long-insert libraries (2,
5, 10, and 20 kb) using the standard protocol provided by Illu-
mina (San Diego, CA, USA). Subsequent paired-end sequencing
was performed by the Illumina HiSeq 2000 platform for each
library. Finally, we obtained 252.1 Gb of raw reads for further
analysis.

Genome size estimation and genome assembly

The SOAPfilter v2.2 software [11] with optimized parameters (-y
-p -g 1 -o clean -M 2 -f 0) was utilized to remove low-quality raw
reads (including readswith 10 ormore Ns and low-quality bases)
and PCR replicates as well as adaptor sequences. In total, we ob-
tained 169.0 Gb of clean reads. Subsequently, we estimated the
genome size based on the 17-mer depth frequency distribution
method [12]. We applied the following formula to calculate
the genome size: G = k num/k depth = b num/b depth (k num
is the total number of K-mers from the sequencing data, k depth
is the expected coverage depth for k-mers, b num is the to-
tal number of bases, b depth is the expected coverage depth
of bases; As one read with length L generates L-K+1 k-mers,
k num/b num = (L-K+1)/L). In our current study, the K numwas
10500 000 000 and the K depth was 20. Hence, we estimated that
the genome size of Chinese clearhead icefish is 525 Mb.

Table 1: The statistics of genome assembly and annotation for P.
hyalocranius

Genome assembly

Contig N50 size (kb) 17.2
Scaffold N50 size (Mb) 1.163
Estimated genome size (Mb) 525
Assembled genome size (Mb) 536
Genome coverage (X) 315
The longest scaffold (bp) 5 398 389
Gap length (Mb) 122

Genome annotation
Protein-coding gene number 19 884
Annotated functional gene number 19 125 (96.2 %)
Unannotated functional gene number 759 (3.8 %)
Repeat content 24.43 %

The filtered reads were assembled using SOAPdenovo2
v2.04.4 software [13] with optimized parameters (pregraph -K 79
-d 1; contig -M 1; scaff -F -b 1.5 -p 16) to generate contigs and orig-
inal scaffolds. The gaps were filled using GapCloser v1.12 soft-
ware [14] with default parameters and –p set to 25. Finally, we
generated a draft genome assembly of 536 Mb, with the scaffold
N50 reaching 1.163 Mb (Table 1).

The completeness of our assembly was evaluated by using
both CEGMA [15] and BUSCO [16]. The CEGMA program (Core
Eukaryotic Genes Mapping Approach; version 2.4) assessment
with 248 conserved Core Eukaryotic Genes was performed for
evaluation of the gene space completeness. Our results revealed
that the assembled genome had a CEGMA completeness score
at 90.32 % and 98.39 %, which was calculated from the complete
gene set and the partial gene set, respectively. Meanwhile, we
used the representative metazoa gene set [17], which contains
843 single-copy genes that are widely present in metazoan, as a
reference. The assessment demonstrated that the BUSCO value
is 89 %, containing [D: 10 %], F: 7.7 %, M: 2.9 %, n: 843 (C: complete
[D: duplicated], F: fragmented, M: missed, n: genes). These data
from CEGMA and BUSCO indicate that the assembled genome
covered majority of the gene space.

Repeat annotation

Firstly, a de novo repeat library was constructed by the Repeat-
Modeller v1.05 [18] and LTR FINDER.x86 64-1.0.6 [10] with de-
fault parameters. Then, the assembled genome sequences were
aligned against the RepBase v21.01 [19] and the de novo repeat li-
braries to recognize the known and novel transposable elements
using the RepeatMasker v4.06 [20]. Meantime, the Tandem Re-
peat Finder v4.07 [21] with parameters “Match = 2, Mismatch =
7, Delta = 7, PM = 80, PI = 10, Minscore = 50, and MaxPeriod
= 2000” was utilized for annotation of tandem repeats. Further-
more, the RepeatProteinMask software v4.0.6 [20] was used to
predict transposable element relevant proteins in our genome
assembly. Finally, we observed that the repeat sequences

Figure 1: Picture of a Chinese clearhead icefish. It was captured from the Taihu Lake of Jiangsu Province, China.
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Table 2: Detailed classification of repeat sequences in the assembled
genome

Type Repeat size (bp) % of Genome

ProteinMask 9925 152 1.85
RepeatMasker 5 948 136 1.11
Tandem Repeat Finder 66 595 756 12.41
De novo 93726 009 17.47
Total 131 090 229 24.43

account for 24.43 % of the assembled genome (Table 1), and the
de novo annotationmethod predicted themost abundant repeat
sequence among the four methods (Table 2).

Genome Annotation

In brief, we utilized two different methods to predict total gene
set of the clearhead icefish.

de novo annotation
The AUGUSTUS v2.5 [22] and GENSCAN v1.0 [23] were executed
to ab initio predict genes within the assembled genome, with the
repetitive sequences masked as “N” to discard pseudo gene pre-
diction. Those low-quality genes with short length (<150 bp),
premature termination, or frame-shiftingwere removed. Finally,
we identified 23132 and 21379 pro-coding genes by using the
AUGUSTUS and GENSCAN software (Table 3).

Homology annotation
We aligned the protein sequences from six published genomes,
includingDanio rerio [24],Oryzias latipes [25], Takifugu rubripes [26],
Tetraodon nigroviridis [27], Esox lucius [28], and Gasterosteus aculea-
tus [29], against our assembly to predict homology-based genes.
The potential homology-based genes were searched by TblastN
[30] with an e-value of 10−5. The TblastN results were then pro-
cessed by Sorting Out Local Alignment Result [31] to obtain the
best hit of each alignment. Subsequently, GeneWise v2.2.0 [32]
was performed to detect the possible gene structure for the best
hit of each alignment. The low-quality genes were also removed
as described in the above-mentioned de novo annotation.

Integration of annotation results
We employed the GLEAN [33] to generate a nonredundant and
comprehensive gene set. Finally, the best hit of each protein
was obtained through all protein sequences from the GLEAN re-
sults aligned to the databases of the SwissProt and TrEMBL [34]

(Uniprot release 2011.06) by BlastP with an e-value of 10−5. Over-
all, we generated a final gene set with 19,884 genes for the Chi-
nese clearhead icefish (Table 3).

CEGMA was performed again to evaluate the coverage
rate between eukaryotic orthologous group genes predicted by
CEGMAand the predicted total gene set. It demonstrates that the
predicted gene set mapped 96.4 % of the eukaryotic orthologous
groups. Simultaneously, the BUSCO was implemented again to
assess completeness of the predicted gene set. The BUSCO val-
ues were calculated as follows: C: 79 % [D: 16 %], F: 9.8 %, M: 10,
n: 843 (C: complete [D: duplicated], F: fragmented, M: missed, n:
genes). The assessment values from both CEGMA and BUSCO
proved high accuracy of the annotation.

Function annotation
The predicted protein sequences of the clearhead icefish were
aligned against several public databases (Pfam [35], PRINTS [36],
ProDom [37], and SMART [38]) for detection of functional motifs
and domains. Finally, we found that 96.2 % of the predicted total
gene set had been annotatedwith at least one functional assign-
ment from other public databases (Swiss-Prot [39], Interpro [40],
TrEMBL [41], and KEGG [42]).

Genome evolution

We performed phylogenomic analyses with orthologues from
representative species for each clade. We used the Ensembl
BioMart (www.ensembl.org; Ensembl version 76) to extract or-
thologues for zebrafish [24], fugu [26], stickleback [29], medaka
[25], and spotted gar [43]. This generated orthologue dataset
from six species was filtered out to retain only one-to-one or-
thologues. Meanwhile, a new Asian arowana gene set stemmed
from our recent work [44]. To extrapolate the Biomart ortho-
logues to the arowana and clearhead icefish gene sets, we used
zebrafish as the reference. We ran InParanoid [45] for the three
species pairs (zebrafish-arowana and zebrafish-clearhead ice-
fish) at default settings (i.e., a minimum BLASTP score of 40 bits,
minimum 50 % alignment span, minimum 25 % alignment cov-
erage, andminimum inparalog confidence level of 0.05). By com-
paring the three InParanoid outputs, we narrowed down the list
of one-to-one orthologues, presented in all seven species, to 454
genes. Multiple alignments were subsequently performed on
proteins of each selected family using MUSCLE (version 3.8.31)
[46], and protein alignmentswere converted to their correspond-
ing CDS alignments using an in-house perl script (see supporting
data). All the translated CDS sequenceswere linked into one “su-
pergene” for each species. Nondegenerated sites extracted from
the supergeneswere subsequently joined into the new sequence

Table 3: Gene annotation statistics of the genome of P. hyalocranius

Average transcript Average CDS Average Exons Average Exons Average Intron
Method Number length (bp) length (bp) Per Gene Length (bp) Length (bp)

De novo AUGUSTUS 23132 4897.24 1264.61 5.78 218.81 760.04
GeneScan 21379 17213.49 1973.56 10.22 193.05 1652.41

Homolog Danio rerio 25390 7156.92 1312.32 6.17 212.62 1129.99
Oryzias latipes 25319 6411.36 1194.58 5.89 202.73 1066.29
Takifugu rubripes 16563 7990.91 1759.17 11.59 151.75 588.32
Tetraodon nigroviridis 19128 8335.40 1351.98 7.44 181.78 1084.78
Esox lucius 24861 8019.18 1375.58 6.92 198.85 1122.70
Gasterosteus aculeatus 25354 6819.62 1183.46 6.18 191.44 1087.68

Final gene set 19 884 12889.35 1821.79 9.13 199.49 1360.92

http://www.ensembl.org
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Figure 2: Phylogeny of seven representative ray-finned fishes. The spotted gar was used as the outgroup species.

Figure 3: Distribution of 4DTV distances between the clearhead icefish and tilapia. The horizontal axis stands for the 4DTV distance corrected using the HKY model.

The vertical axis represents the percentage of collinear gene pairs.

of each species to construct a phylogenetic tree (Fig. 2) using Mr-
Bayes [47] (GTR+gamma model, Version 3.2). Our phylogenetic
data demonstrate the phylogenetic position of the clearhead ice-
fish (Fig. 2).

Synteny blocks and genome duplication

Genomic homology between the clearhead icefish and Nile
tilapia [48] was examined using i-ADHoRe 3.0 [49] using the fol-
lowing settings: alignment method gg2, gap size 30, tandem
gap 30, cluster gap 35, q value of 0.85, prob cutoff 0.01, an-
chor points 5, and using multiple hypothesis correction FDR.
The output of this was processed by the pipeline and incor-
porated in a relational database to which visualization pro-
grams can connect and on which additional statistical analysis
can then be performed. For synteny detection, the cloud mode
was enabled (cluster type = cloud) and appropriate settings
were selected as follows: cloud gap size 20, cloud cluster gap

20, cloud filter method binomial, prob cutoff 0.01, anchor points
5, multiple hypothesis correction FDR, and level 2 only true. Fi-
nally, we identified 771 synteny blocks containing 7057 genes be-
tween the clearhead icefish and Nile tilapia.

Subsequently, protein sequences of homologous gene pairs
in the identified syntenic regions were aligned using MUSCLE
[46], and the protein alignments were then converted to the CDS
alignments. Finally, 4-fold degenerative third-codon transver-
sion (4DTV) values were calculated on these CDS alignments
and corrected using the HKY model in the PAML package [50].
These data indicate that the clearhead icefish also experienced
the teleost-specific whole genome duplication (Fig. 3).

Conclusion

We generated a draft genome assembly of the Chinese clear-
head icefish. The novel genome data were deposited in publicly
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accessible repositories to promote further biological research,
molecular breeding, and resource protection of this representa-
tive and valuable icefish.

Availability of supporting data

Supporting data and materials are available in the GigaScience
GigaDB database [51], with the raw genome sequences deposited
in the SRA under the bioproject number PRJNA328051.
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