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Abstract

The U.S. Food and Drug Administration (FDA) recently approved pembrolizumab, an anti- programmed cell death
protein 1 cancer immunotherapeutic, for use in advanced solid tumors in patients with the microsatellite-high/DNA
mismatch repair-deficient biomarker. This is the first example of a tissue-agnostic FDA approval of a treatment
based on a patient’s tumor biomarker status, rather than on tumor histology. Here we discuss key issues and
implications arising from the biomarker-based disease classification implied by this historic approval.
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Background
The discovery and validation of immune checkpoints
(signal-transducing pathways that modulate immune
system activity) as therapeutic targets has transformed
cancer immunotherapy [1]. The heavily studied immune
system checkpoint, programmed cell death protein
1/programmed death-ligand 1 (PD-1/PD-L1) regulates
T-cell function through the T-cell PD-1 receptor and the
PD-L1 presented by targeted cells [1, 2]. Interactions
between PD-1 and PD-L1 primarily inactivate CD28
signaling to suppress T cell activation [3]. Many approved
immunotherapies inhibit PD-1/PD-L1 interactions in
order to stimulate an immune response against cancer
cells [2].
Pembrolizumab (KEYTRUDA®, Merck & Co., Inc.,

Kenilworth, NJ) is a humanized, mouse- derived anti-PD-1
antibody that promotes tumor-cell apoptosis by binding to
T-cell PD-1 receptors and disrupting interaction with
PD-L1 molecules on tumor cells [4, 5]. Pembrolizumab is
approved for use in patients with melanoma, non-small
cell lung cancer (NSCLC), head and neck squamous cell
carcinoma, classical Hodgkin lymphoma, urothelial car-
cinoma, and gastric/gastroesophageal junction cancer [4].
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There are multiple immunological factors that poten-
tially contribute to pembrolizumab’s efficacy in subsets
of patients with melanoma or NSCLC, among other can-
cers. Studies have noted that both melanoma and
NSCLC display increased tumor immune infiltrate and
PD-L1 expression [6–9]. Synergy exists between these
two factors as well, as increased IFN-γ release by infil-
trating immune cells can upregulate PD-L1 expression
[10]. Additionally, melanoma and NSCLC are diseases
that display increased tumor mutational rate and burden
due to both environmental and behavioral factors. In-
creased tumor mutational burden can promote increased
neoantigen expression, which promotes T cell expansion
and recruitment [11, 12]. Thus, data supports a hypoth-
esis that anti-PD-1 therapy may be more effective in tu-
mors increased in mutational burden, but this has not
been experimentally verified.
Cancer biomarkers are specific DNA/RNA/protein fea-

tures that correlate with either risk of cancer progression
(prognostic) or response to a specific therapy (predictive).
Identification of cancer biomarkers has been a significant
factor in recent changes in disease classification and ther-
apy [13]. Two common predictive biomarkers, which are
often found together, are tumor microsatellite instability
(MSI) and DNA mismatch repair deficiency (dMMR). The
dMMR biomarker indicates whether a tumor’s DNA mis-
match repair (MMR) system is deficient (d), based on the
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mutation or methylation status of 4 genes: MLH1, MSH2,
MSH6, and PMS2. These genes can be inactivated through
hereditary (Lynch syndrome) or somatic (sporadic) muta-
tion, or silenced through promoter methylation [14–16].
Tumors positive for the dMMR biomarker commonly ac-
cumulate mutations that expand and/or reduce specific re-
petitive DNA microsatellite sequences [15]. Mutational
assessment of 5 diagnostic microsatellite sequences using a
commercially available assay is considered the current
standard for evaluating tumor microsatellite biomarker sta-
tus. A tumor is designated MSI-high (MSI-H) if at least 2
of 5 microsatellites harbor mutations [17]. Other methods
used to determine MMR status include immunohisto-
chemistry for MMR gene products and next-generation
sequencing (NGS) to assess microsatellites across the gen-
ome [18, 19].
MSI status is variable across cancer types. MSI-high

(MSI-H) biomarker designation is common in endomet-
rial cancers, but is rare in hepatic, biliary tract, and
pancreatic cancers [20, 21]. Additionally, mutated micro-
satellite loci can vary between cancer types and tumor
histology [21]. In an early phase I study of the anti-PD-1
agent nivolumab, one patient with dMMR-positive colo-
rectal cancer (CRC) had a durable complete response [22].
In 2015, a small study first reported the potential efficacy
of pembrolizumab in treating tumors with the MSI-H/
dMMR biomarker. Researchers observed that patients
with mismatch-deficient CRC who received pembrolizu-
mab had 40% and 67% increases in objective response rate
(ORR) and progression-free survival, respectively, com-
pared to patients with mismatch-proficient tumors [23].
Combined data from disease-specific pembrolizumab

clinical trials (KEYNOTE-016, KEYNOTE-164, KEYNOTE-
012, KEYNOTE-028, and KEYNOTE-158) confirmed
these findings, and on May 23, 2017 the U.S. Food and
Drug Administration (FDA) granted accelerated approval
for pembrolizumab in adult and pediatric patients with
unresectable or metastatic solid tumors with positive
MSI-H or dMMR biomarkers [4]. Full approval will re-
quire additional trials showing continued safety and effi-
cacy. However, this marks the first tissue-agnostic
approval of any drug and thus represents a paradigm shift,
as oncologic diseases may now be classified by either
tumor biomarker status or tumor histogenesis. Here we
discuss the implications of this novel biomarker-based
disease classification for cancer immunotherapy research
and practice.

The vision of biomarker-based treatment
This first FDA approval of a therapy based on tumor
biomarker status aligns with the clinical vision of
precision medicine—highly individualized, customizable
health care that many believe is the future of cancer
diagnosis and treatment. Oncologic precision medicine
involves screening for, and selecting therapies based on,
an individual’s tumor-specific biomarkers to enhance
clinical outcomes and minimize adverse events. The use
of imatinib for Philadelphia chromosome-positive pa-
tients with chronic myeloid leukemia (CML) is one of
the earliest examples of a therapy designed to target a
specific tumor biomarker. Imatinib, a tyrosine kinase in-
hibitor, was rationally designed to inhibit the breakpoint
cluster region (BCR)-Abelson (ABL) fusion protein that
arises in Philadelphia chromosome-positive patients (~ 90%
of all patients with CML) [24]. Imatinib moved from initial
human trials to FDA approval in CML settings in just
3 years, likely due to intelligent developmental program
design [25]. Approval of pembrolizumab for treatment of
MSI-H/dMMR-positive tumors continues this progression
toward precision medicine.
Why was pembrolizumab the first anticancer agent to

receive tissue-agnostic FDA approval? One likely factor
was that the initial randomized pembrolizumab trials
conducted across tumor types prioritized tissue collec-
tion. This allowed investigators to retrospectively test
the tissue-agnostic hypothesis across a larger number of
samples to strengthen their conclusions [7]. These data
indicate the importance of acquiring tissue during
clinical trials to support future hypothesis testing and
sophisticated design of biomarker-based studies. Con-
cerning this approval, retrospective data was verified
through multiple prospective clinical trials (KEYNOTE-016
and KEYNOTE-164), emphasizing a design of initial ran-
domized clinical trials validated with prospective, hypoth-
esis testing analyses. The FDA has prioritized this type of
clinical trial design, as evidenced by the request for a pro-
spective trial to grant anti-PD-1 nivolumab an extended
indication for treating MSI-H/dMMR tumors outside of
the original colorectal cancer indication (CheckMate-142)
[26]. It is also important to note that, in general, immuno-
therapies are rationally designed from a foundation of
preclinical data, without which this groundbreaking
tissue-agnostic FDA approval of an immunotherapeutic
cancer drug might never have been achieved.

MSI-H/dMMR as a biomarker for therapy selection
The MSI-H/dMMR biomarker has been used to guide
prognosis for patients with stage II CRC, using tests
such as Oncotype DX® [27, 28]. MSI-H/dMMR has also
been used to predict the efficacy of chemotherapy for
patients with CRC [29]. Although the presence of the
MSI-H/dMMR biomarker varies across cancer types,
clinical trials and pathophysiological studies indicate
wide distribution of this biomarker across tumor types
(e.g., uterine, gastric, CRC, liver, RCC) [21, 30]. This is
especially apparent in cancers located in tissues exposed
to a high burden of potential dietary mutagens, such as
CRC and gastric cancers [15, 20, 21]. Additionally, the
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MSI-H/dMMR biomarker indicates tumor hypermuta-
bility, which can promote both immune system recogni-
tion and response to anti-PD-1 immunotherapies [31].
Cancers with the highest incidence of dMMR/MSI-H
positivity, such as melanoma and NSCLC, also have
increased prevalence of somatic mutations (Fig. 1) [32]. It
is important to also consider how mutation may impact
immunotherapy resistance. Anti-PD-1 resistance can arise
through several mutation- derived mechanisms, including
reduced interferon signaling through inactivation of JAK1
and JAK2, immune escape through HLA loss, as well as
altered antigen presentation through loss of beta-2-
microglobulin heterozygosity [33–35].
Using biomarker status to classify disease has a number

of clinical implications. Perhaps most important, efficient
and consistent biomarker testing methods will be required
to ensure that patients are correctly selected for therapy.
To date, no formal MSI-H/dMMR companion diagnostic
accompanies approval of pembrolizumab for biomarker-
based disease. Additionally, MSI-H/dMMR biomarker
classification methods are evolving and can be assessed by
various methods, including MSI mutational burden using
PCR, MMR protein expression by immunohistochemistry,
or using NGS to assess MSI across the genome [17–19].
The availability of multiple methods increases variability
in determining patients’ tumor biomarker status [4, 17].
Developing standardized MSI-H/dMMR biomarker as-

sessment protocols could reduce such variability. PCR
methods, in particular, must account for tissue variability,
as traditional methods were primarily validated for use in
CRC and will have different sensitivity when applied in
other cancers [16]. NGS methods that more thoroughly
interrogate microsatellite loci across tumor types may
Fig. 1 Prevalence of somatic mutations across respective cancer types. Eac
represent the median number of mutations across samples. ALL, acute lym
lymphocytic leukemia. Adapted from 27
provide the best approach for standardizing MSI classifi-
cation [19]. Any developed technology will also require
optimization in order to reduce false negatives and/or
positives. Optimal tissue collection procedures, as well as
reduced error rates in utilized sequencing technologies,
will help in this regard. It will also be necessary to develop
standardized recommendations to guide patient selection
for biomarker assessment. Currently, guidelines from the
National Comprehensive Cancer Network (NCCN) and
the American Society of Clinical Oncology (ASCO) rec-
ommend that all patients with CRC be tested for MSI-H/
dMMR biomarker status [36, 37]. Biomarker testing rec-
ommendations for patients with other tumor types will
need to be developed over time. Biomarker testing will
also become imperative for patients with metastatic dis-
ease who are approved to receive pembrolizumab [4].
Modifying and standardizing payment options for bio-
marker testing will also be critical, as variations in insur-
ance coverage could reduce the number of patients who
elect to receive biomarker-based therapy, even if they are
potentially eligible for it.

Drug development for biomarker-defined disease
Biomarker-based disease classification will require new
approaches concerning drug development. Researchers will
need to determine whether clinical trial design should be
tissue- agnostic, investigating therapeutic efficacy against
multiple tumor types according to biomarker status. One
example of this strategy is the ongoing NCI-MATCH trial
(Molecular Analysis for Therapy Choice) investigating the
efficacy of a variety of therapies against solid tumors posi-
tive for a range of biomarkers, including sunitinib against
tumors positive for cKIT mutation and afatinib against
h dot represents an individual sample and red horizontal lines
phoblastic leukemia; AML, acute myeloid leukemia; CLL, chronic
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tumors positive for EFGR mutation [38]. Further preclin-
ical biomarker research will be essential to the develop-
ment of tissue-agnostic therapies. For example, we know
that increased tumor PD-L1 expression is associated with
PD-1-positive immune-cell infiltration.
Preclinical research may determine whether tumor

PD-L1 status, activated T-cell infiltrate, or other immune
checkpoint expressions are valuable adjuncts to MSI-H/
dMMR status in predicting response to pembrolizumab
[6, 7]. Standardized biomarker cutoffs will also need to
be identified and incorporated across both drug develop-
ment and clinical trial programs. PD-L1 positivity cutoff,
for example, is variable across cancer types [39]. Drug
development programs and clinical trials will require
consistent biomarker cutoffs to ensure optimal thera-
peutic design and implementation.
Biomarker-based disease classification may affect the

design of future combination therapies that target the
PD-1/PD-L1 checkpoint. Combination immunotherapy
may be more effective than monotherapy because of its
potential to concurrently target multiple immune check-
points [40]. Tissue-agnostic therapies may be excluded
from traditional trials of combination therapies on the
theory that it is not worthwhile to employ them towards
tissue- specific cancers. The approval of pembrolizumab
for MSI-H/dMMR-positive solid tumors provides a prom-
ising platform for future tissue-agnostic combination ther-
apies. Approval of tissue-agnostic combination therapy,
however, may require that regulatory bodies recognize
that each drug within a combination therapy may not re-
quire prior tissue-agnostic approval as a monotherapy to
eventually prove more effective in combination.

Tissue-agnostic targeting of the PD-1/PD-L1 pathway
The PD-1/PD-L1 checkpoint has been extensively stud-
ied, and PD-1 and PD-L1 inhibitors have induced en-
couraging clinical responses in patients with NSCLC,
melanoma, Hodgkin lymphoma, urothelial carcinoma,
RCC, and many other cancers [4, 5, 41–45]. The intro-
duction of disease classification by tumor biomarker sta-
tus makes it important to fully understand how dMMR
affects the immune checkpoint. The precise mechanism
of pembrolizumab’s effect on MSI-H/dMMR-positive tu-
mors remains unclear. The most persuasive mechanistic
hypothesis is that increased tumor mutational burden
promotes neoantigen expression and T-cell expansion,
which enhance the anti-PD-1 response [7]. Increased
neoantigen expression by MSI-H/dMMR- positive tu-
mors may also correlate with increased PD-L1 ex-
pression, which would promote PD-1-positive T-cell
infiltration [6, 7]. While not confirmed experimentally,
this hypothesis posits immune-cell infiltration and
tumor mutational burden as key predictors of pembroli-
zumab efficacy in patients with MSI-H/dMMR-positive
tumors (Fig. 2). Novel technologies that can quantify
tumor-infiltrating CD8-positive T cells and/or mutational
burden may help predict response to immunotherapy.
Clinical trials have established the optimal dose of

pembrolizumab as 200 mg every 3 weeks for adults, and
2 mg/kg (up to 200 mg) every 3 weeks for children [4].
Pembrolizumab dosing for MSI-H/dMMR-positive solid
tumors is the same [4]. Anti-PD-1 therapies have shown
acceptable safety profiles to date, yet targeting the PD-1/
PD-L1 checkpoint in MSI-H/dMMR-positive tumors ex-
poses patients to the drug in many clinical contexts for
which there are scant safety data. For example, approval
of biomarker-based pembrolizumab included pediatric
patients, despite the fact that children were excluded
from all five dMMR/pembrolizumab clinical trials (me-
dian age: 55, 36% age 65 or older) [4]. In addition, since
patients eligible for pembrolizumab will have failed
prior treatment, a complete therapeutic history will
need to be considered to ensure maximum efficacy and
to limit adverse events [4]. It is possible, for example,
that pembrolizumab will be less effective in patients
who have received prior immunotherapies due to im-
mune system cross-talk, since targeting one immune
checkpoint through prior therapy may alter the activity
of another, separate pathway. Cross-talk can also lead
to T-cell exhaustion and reduce the efficacy of im-
munotherapy [2, 46].

Clinical significance of biomarker-based disease
classification
Biomarker-based disease classification may expand treat-
ment options. Tissue-agnostic therapies will likely be
administered to a larger pool of patients than tissue-
specific therapies. However, relying on biomarker testing
may limit therapy options. Limited access to specialized
assays and tissue testing by laboratories certified by the
Clinical Laboratory Improvement Amendments (CLIA)
could deter the use of biomarker-based therapies, espe-
cially for smaller healthcare facilities. Increased access to
CLIA-certified NGS-based platform testing, in conjunc-
tion with IHC readily performed across the country,
could potentially mitigate this challenge.
Increased use of biomarker-based treatment could lead

to more widespread use of cancer immunotherapy and
other precision oncology treatments. Programs to edu-
cate patients about cancer biomarkers and the need for
more tumor biomarker testing would be a boon to
patients undergoing these novel therapies.
Of course, improved outcomes would be the best

recommendation for biomarker-based therapies. It is
noteworthy that in the phase III KEYNOTE-023 trial,
patients with advanced PD-L1-positive NSCLC who re-
ceived pembrolizumab scored higher on the European
Organization for the Research and Treatment of Cancer
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Fig. 2 In patients with dMMR or MSI-H – positive tumors, multiple mutations accumulate and increase the likelihood of immunologically relevant
neoantigens (a). Neoantigens are presented in the context of the MHC molecules on the tumor cells (b). T-cells specific for presented neoantigens
can become activated initiating a series of molecular events including production and secretion of IFN-gamma by the T-cell (c). Among other
things, this will cause up regulation of PD-L1 on the tumor cell which binds to PD-1 on the T-cell and sends a signal to inhibit activation (c).
However, interruption of that negative signal (e.g., by an anti-PD-1 antibody) can reinvigorate the T-cell and promote anti-tumor activity (d)
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(EORTC) core quality of life questionnaire than patients
who underwent chemotherapy (6.9 [95% CI: 3.3–10.6]
for pembrolizumab vs. − 0.9 [95% CI: 4.8–3.0] for
chemotherapy) [47].

Future directions for biomarker-based immunotherapies
Approval of pembrolizumab for biomarker-based disease
increases the likelihood that other therapeutic agents and
biomarkers will receive tissue-agnostic approval in the fu-
ture. Nivolumab, another anti-PD-1 agent, appears well on
its way to tissue-agnostic approval for dMMR-positive can-
cers. A recent study revealed a 24% ORR among patients
with a range of non-CRC dMMR-positive cancers treated
with nivolumab (n = 35; 95% CI: 11–41) [48]. Moreover,
31% (23/74) of patients with MSI-H/dMMR-positive
metastatic CRC treated with nivolumab had investigator-
assessed objective responses (95% CI: 21–43) [26]. Discov-
ery of more biomarkers will also promote the development
of tissue-agnostic therapies. Along with MSI-H/dMMR
status, many clinical trials have verified the importance of
tumor mutational burden and PD-L1 status in predicting
response to treatment, providing additional impetus for de-
veloping tissue-agnostic therapies [39, 49]. The advance-
ment of single-cell analytics, as well as broad-range
biomarker assessment technologies, will also spur bio-
marker research and novel tissue-agnostic strategies.
Conclusion
Advanced sequencing and diagnostic tools have given re-
searchers and clinicians a new lens through which to
view cancer. The “big picture” approach of classifying
disease based on tumor location may be supplanted by
the use of definitive biomarkers, which would naturally
lead to treatments based on tumor biomarkers rather
than histology-specific status. The FDA approval of pem-
brolizumab for advanced MSI-H/dMMR-positive solid
tumors is a tipping point for disease reclassification based
on tumor-specific factors, and propels oncology further
toward the goal of precision medicine. Biomarker-based
disease classification will allow clinicians to individualize
treatment, which will enhance therapeutic response and
reduce adverse events.
Beyond its use in the clinic, pembrolizumab can also

serve as a blueprint for future therapies to gain approval
for tissue-agnostic administration. To date, pembrolizu-
mab is the only therapy to gain approval for the
treatment of patients with MSI-H/dMMR-positive solid
tumors, meaning that clinicians cannot simply substitute
other checkpoint inhibitors in place. Each agent seeking
a similar indication will require individualized clinical
trial validation. Additionally, consistent biomarker as-
sessment protocols and treatment regimens for a variety
of patient populations must also be developed before
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new therapies can receive FDA approval. Finally, while
researchers may identify new targetable biomarkers for
pembrolizumab or any other therapy, these hypotheses
must also be confirmed in both randomized and pro-
spective clinical trials. This initial tissue-agnostic
designation of any systemic anti-cancer therapy is a
promising step for the field of oncology, but more work
remains. The goal now is to continue improving clinical
outcomes by validating and selecting optimal treatments
based on a patient’s tumor biomarker profile.
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