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Molecules of the plant world are proving their effectiveness in countering, slowing down, and regressing many diseases. The
resveratrol for its intrinsic properties related to its stilbene structure has been proven to be a universal panacea, especially for
a wide range of neurodegenerative diseases. This paper evaluates (in vivo and in vitro) the various molecular targets of this
peculiar polyphenol and its ability to effectively counter several neurodegenerative disorders such as Parkinson’s, Alzheimer’s,
and Huntington’s diseases and amyotrophic lateral sclerosis. What emerges is that, in the deep heterogeneity of the pathologies
evaluated, resveratrol through a convergence on the protein targets is able to give therapeutic responses in neuronal cells deeply
diversified not only in morphological structure but especially in their function performed in the anatomical district to which they
belong.

1. Introduction

Resveratrol (RV), or 3,5,4󸀠-trihydroxy-trans-stilbene, is an
antifungal molecule of the stilbene family produced in a
variety of plant species in response to pathogen attack or
under stress conditions such as UV radiation and exposure
to heavy metal ions [1]. It is a natural phenol found in
red grapes, mulberries, peanuts, wines, and tea and it can
be extracted from red wine during fermentation of grape
skin. RV exists in two isoforms: trans-RV, the more stable
form, and cis-isomer, both produced as a branch from the
phenylpropanoid pathway [2]. In plants, RV biosynthesis
starts by the coupling of p-coumaric acid, an intermediate
in lignin production, to coenzyme A (CoA) by the action of
4-coumarate CoA ligase (4CL); see Figure 1. Subsequently,
coumaroyl-CoA is converted into RV with release of carbon
dioxide, by sequential addition of three units ofmalonyl-CoA
by the action of stilbene synthase (STS) [3].

In in vitro and in vivo experiments, RV displays a wide
range of beneficial effects on human diseases but the mecha-
nisms by which RV exerts its action have not yet been

clarified. After oral administration, RV is transported to the
circulatory system and is distributed to all organs where it
remains detectable for some hours after administration; it can
also rapidly cross the blood-brain enriching the brain tissue
[4]. However, one of the main limitations of this drug is its
low oral bioavailability, due to rapid excretion and extensive
metabolism into variants of glucuronide and sulfonated
conjugates of unknown potential biological activities [5].

RV shows several mechanisms of action and interacts
with a significant number ofmolecular targets, but its positive
effect on the human health seems to be related mainly to
its antioxidant activity. Since oxidative stress appears to be
closely related to major neuronal pathologies, RV treatment
has been tested with positive results in neurodegenerative
disorders such as Alzheimer’s disease (AD), Huntington’s
disease (HD), prion, cerebral ischemia, Parkinson’s disease
(PD), epilepsy, and amyotrophic lateral sclerosis (ALS) [6],
but there are quite a few studies to describe the dose
dependency of the drug towards these health benefits.

This review aims to give an overview of the beneficial
effects of RV on several human neurodegenerations as AD,
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Figure 1: Biosynthetic pathway of RV.
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Figure 2: Antioxidant activity of RV against ROS.

PD, HD and ALS trying to highlight the mechanisms by
which the polyphenol exerts its specific activity.

1.1. Oxidative Stress and Neurodegenerative Diseases. A suit-
able amount of free radicals is essential for life because
they are involved in cell signaling and are used by phago-
cytes for their bactericidal action [7]. However, nonessential
production of reactive oxygen species (ROS) is suggested
to be strongly associated with the aging process and cer-
tain degenerative disorders. So to human health, the bal-
ance is very important between free radicals produced by
metabolism or derived from environmental sources and

the antioxidant defense systems such as superoxide dismutase
(SOD), catalase (CAT), and glutathione peroxidase (GPx)
able to promptly scavenge and neutralize free radicals (Fig-
ure 2).

Among the pathologies linked to oxidative stress, the
neurodegenerative disorders occupy a relevant side because
neurons are particularly vulnerable to attack by free radical
attacks and oxidative stress is one of the major pathogenic
mechanisms in the etiology of a variety of late onset diseases.
The high vulnerability of the nervous system, including the
brain, spinal cord, and peripheral nerves, to oxidative stress
is due to its elevated bioenergetics and oxygen requirements.
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In fact neurons with axons and multiple synapses have
high ATP demand and they are largely responsible for the
brain’s massive consumption of oxygen in the respiratory
chain; this coupled with the high content of lipid and
easily mobilizable iron from several areas of the brain can
stimulate the generation of ROS (Fenton and/or Haber-
Weiss reactions) [8]. Since age is related to the reduced
capacity to counteract oxidative stress, also this can lead to
irreversible damages that can contribute to the pathogenesis
of neurodegenerative disorders. At the pathological level,
almost all neurodegenerative diseases share common features
such as the generation of misfolded protein deposits, metal
ion deregulation, and exposure to oxidative stress [9–13].
Generally, the protein aggregates are primarily composed of
typical proteins in different diseases. For example, in AD
the extracellular senile plaques are predominantly consisted
of amyloid-𝛽 (A𝛽) peptides derived from the mutations in
genes encoding the amyloid precursor protein (APP), while
the intracellular tangles are from hyperphosphorylated Tau
protein; HD is caused by the gene mutation that affects the
conformation and aggregation propensity of the huntingtin
protein (htt) [14]; in PD the accumulation of intracytoplasmic
Lewy bodies is mainly composed of 𝛼-synuclein and ubiq-
uitin [15]; similarly the protein products of the associated
diverse set of genes including SOD1, TDP43, FUS, UBQLN2,
and C9OKF72 have also been found in neuronal aggregates
from ALS patients [16–18].

Besides, iron changes have been detected in multiple
sclerosis, spastic paraplegia, and ALS, reinforcing the belief
that iron accumulation is a secondary alteration associated
with neurodegeneration, probably due to the changes in the
integrity of the blood brain caused by abnormal vasculariza-
tion of tissue or by inflammatory events [19].

It is demonstrated yet that markers of oxidative stress
precede pathologic lesions in AD, including senile plaques
and neurofibrillary tangles [20]. Furthermore, ATP depletion
or lipid and protein peroxidation induced by ROS is also
implicated in PD and kills neurons by necrotic processes [21];
protein oxidative damage in the form of protein carbonyls
and increased levels of 8-hydroxydeoxyguanosine are also
present in PD brain and some evidences suggest a role for
nitration and nitrosylation of certain proteins due to reactive
nitrogen species [22, 23]. In this context, the linkage between
neurodegenerative diseases and oxidative stress is largely
investigated by researchers. Support for this curiosity comes
from increasing attention to the efficacy of therapies with
antioxidants and to the scavenger substances as protectors
of nervous tissue from damage by oxidative stress. Clearly,
strategies aimed at limiting free radical production, oxidative
stress, and damage may slow the progression of neurode-
generative diseases. Actually there is a great interest to study
the neuroprotective effects of natural products obtained from
plants.There are several natural compounds with antioxidant
properties which may contribute to counteracting oxidative
stress by working to neutralize the excess free radicals
and stopping them from starting the chain reactions that
contribute to disease. In this context, RV for its chemical
properties may be a very promising lead compound to
counteract neuronal pathologies (Figure 3).

1.2. Antioxidant and Prooxidant Effects of RV. The antioxi-
dant and prooxidant activities of RV appear to be dose and
cell type dependent. In particular, antioxidant properties of
RV seem to be enhanced with increasing concentration of
the drug and Cavallaro et al. [24] demonstrated that RV
inhibited superoxide anion generation both in low and high
concentrations.

RV’s activity as antioxidant and free radical scavenger is
related to its ability to transfer hydrogen atoms or electrons
to the free radicals [25, 26]. In this context, the characteristic
position of hydroxyl groups plays a major role, among which
the 4󸀠-hydroxyl group is the most reactive one [27, 28]. RV
antioxidant properties result from its chemical structure; in
fact the molecule contains two phenol groups in which the
presence of conjugated double bond makes the electrons
more delocalized. Support of this hypothetic mechanism
of action comes from studies on oxyresveratrol (oxy-RV),
demonstrating in the modified drug a more effective antiox-
idant activity than RV probably due to the extra hydroxyl
group on oxy-RV which makes oxy-RV a better hydrogen
donor enhancing its antioxidant activity [29]. So RV may
donate hydrogen to free radicals inhibiting the peroxidation
and protecting cellular DNA, lipids, and proteins from
oxidative damage.

Recently, using planar lipid bilayer and liposome models,
it has been shown that RV at low doses interacts with the
surface polar groups and at higher doses localizes in the
outer leaflet of the lipid bilayer. Interestingly, RV localization
is strictly related to the antioxidant properties of the drug,
because the polyphenol localization in the membrane bilayer
prevents lipid peroxidation [30] and intraerythrocyte RV, by
interacting with hemoglobin, may protect the protein against
oxidative damage [31]. The drug breaks the chain-reaction
process of lipid peroxidation by scavenging free radicals and
forming phenoxy radicals that are stabilized by resonance.
For the global reactivity of RV toward ∙OH radical, the most
electrophilic radical is the sequential electron proton transfer
(SEPT): RV+ ∙OH → RV+∙ +OH− ↔ RV(−H)∙ +H

2
O [26].

RV shows amoderate antioxidant activity towards the 1,1-
diphenyl-2-picrylhydrazyl (DPPH) radical, induces a signifi-
cant reduction of superoxide anion, and decreases oxidation
of hemoglobin, contributing to decreasing the superoxide
concentration [31, 32]. In particular, RV action against oxi-
dation of hemoglobin may be due to the action of its phenol
groups which are able to reduce Fe3+ to Fe2+. It is also known
that RV prevents low density lipoprotein (LDL) oxidation,
responsible of atheromatous plaques in atherosclerosis dis-
ease [33]; in fact RV was shown to be more potent than
flavonoids in preventing copper-catalyzed oxidation [34] and
contributed to maintaining the levels of antioxidant enzymes
like GPx, glutathione-S-transferase (GST) and reductase
(GR), SOD, and CAT [35, 36]. Most likely part of beneficial
properties of RV is probably related to concomitant downreg-
ulation of the expression of inducible NO synthase (iNOS)
and upregulation of vasorelaxant endothelial NO synthase
(eNOS) as observed by several studies [37–39]. Interestingly,
RV acting as an antioxidant prevents the formation of
toxic A𝛽 oligomers and protofibrillar intermediates, delaying
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Figure 3: RV and neurodegenerative disease.

the induced A𝛽 toxicity in different neuronal culture models
[40]. These studies contributed to shedding light on the
molecular mechanisms potentially involved in the beneficial
effect of RV intake against AD (Figure 4) [41].

On the other hand, Ahmad results suggest prooxidant
properties of RV at low concentration due to an increase in
intracellular superoxide production and in the presence of
copper ions [42, 43]. In detail, RV promotes the reduction
of copper (II) to copper (I) [36] but its binding with copper
promotes prooxidant activity of the drug [44].

1.3. RV Molecular Targets. Although the interest on RV was
initially focused on its antioxidant properties, it has been
reported that the drug affects a wide range of signaling
transduction pathways.

Several studies using both in vitro and in vivo model
systems have illustrated RV capacity to modulate a multitude
of biological activity associated with cellular growth and
differentiation, apoptosis, angiogenesis, and metastasis [45–
47]. Thus, RV modulates multiple signaling pathways that
interrupt the carcinogenic process and is also able to extend
one or more stages of this process. Also, RV has been
shown to inhibit a plethora of enzymes belonging to different
classes, including (but not limited to) kinases, lipo- and
cyclooxygenases, sirtuins, and other proteins. Furthermore,
RV is reported to induce cell cycle arrest in many cancer cell
lines, probably through the modulation of cyclin dependent
kinase (CDK) associated proteins and through the activity of

the tumor suppressor protein p53 dependent and inde-
pendent pathways [48–50]. p53 is a key mediator in the
prevention of carcinogenesis because it is involved in the
regulation of cell proliferation and apoptosis [51].

In addition, RV has been shown to mediate the activation
of sirtuin-1 (SIRT1). Sirtuin enzymes are a family of highly
conserved deacetylase proteins with potential therapeutic
targets in a variety of human diseases including diabetes,
inflammatory disorders, and neurodegenerative diseases [18].

RV antagonizes calcium cytoplasmic elevation and neu-
rotoxicity generated by ASL [52, 53] and shows many
antioxidant properties. RV has been proven to exert neu-
roprotection against glutamate toxicity in neuronal cultures
[54] and through P13K/Akt pathway by downregulating the
expression of glycogen synthase kinase 3 (GSK-3𝛽) [55].
GSK-3𝛽 is involved in multiple signaling pathways and has
several phosphorylation targets; it is mainly localized in the
cytosol, but lower amounts are expressed in the nucleus
and mitochondria, where it has a regulatory role in the
cell death pathway elicited by stress conditions [56, 57].
A number of studies on cerebral blood flow (CBF) and
cognitive performance in humans provide evidences that
RV administration can modulate brain functions improving
glucose metabolism [58] and vasorelaxation by promoting
eNOS and/or NO synthesis [59, 60].

RV positively influences telomeres length promoting the
expression of Werner syndrome ATP-dependent-helicase,
a telomere maintenance factor [61, 62]; this protection
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is important for mitochondrial efficiency and oxidative
stress defenses because telomere shortening, activating p53
represses the transcription of the peroxisome proliferator-
activated receptor gamma coactivator-1 alpha (PGC-1𝛼) and
impairs mitochondrial function [63]. But RV stimulates
PGC-1𝛼 also through its interaction with SIRT1 where
deacetylating activates PGC-1𝛼. PGC-1𝛼 is a potent stim-
ulator of mitochondrial biogenesis and respiration because
it induces the transcription of nuclear respiratory factor
(NRF)1 and NRF2, leading to the increased expression of
mitochondrial transcription factor A (mtTFA) [64] as well as
other nuclear-encodedmitochondria subunits of the electron
transport chain complex [65].

RV increased cAMP and modulated Akt pathway in
cell model studies [66]; besides, RV activates AMP protein
kinase-SIRT1 autophagy pathway in PD cell model studies
[67], upregulates antiapoptotic Bcl-2 protein, and downreg-
ulates Bax protein expression [68] and also acts as mito-
chondrial antioxidant by elevating the levels of antioxidants
thioredoxin-2 (TRX2) and X-chromosome-linked inhibitor
of apoptosis protein [69]. Another study has shown that
RV increased expression of Bcl-2, thus preventing neuronal
apoptosis [70]. RV appears to be effective in reducing the
inflammatory status; the drug attenuates the activation of
immune cells and subsequent synthesis and release of inflam-
matory mediators through the inhibition of transcription
factors such as nuclear factor-kappaB (NF-𝜅B) [71].

2. RV and Alzheimer’s Disease

AD is a progressive, age dependent neurodegenerative dis-
order leading to the most common form of dementia in
elderly people. Histopathological studies of the AD brain
revealed in the cortex and hippocampus the presence of
ultrastructural changes triggered by two classical lesions,
the extracellular senile plaques mainly composed of A𝛽
peptides and intracellular neurofibrillary tangles composed
of hyperphosphorylated Tau proteins [72, 73]. Tau is a
multifunctional microtubule-associated protein that plays
major role in assembly of microtubules and in bridging
these polymers with other cytoskeletal filaments [74]. The
earliest modification found in AD brains consists of hyper-
phosphorylation on Tau by the action of different protein

kinase and phosphatase systems that lead to structural and
conformational changes in this protein, affecting its bind-
ing with tubulin and the capacity to promote microtubule
assembly [75]. The most relevant protein kinases involved in
Tau modification in neurofibrillary degeneration are GSK3𝛽
[76]. GSK3𝛽 would increase Tau hyperphosphorylation at
sites that transform Tau into a protein lacking the ability to
associate with cytoskeleton.

Although most of the AD cases are sporadic with an
obscure etiology, some forms are inherited and several genes
encoding APP, presenilin 1 (PS1), and presenilin 2 (PS2) were
found to be implicated in familial forms of the disease. In both
cases (familial and sporadic) A𝛽 peptides were regarded as a
causative event in the pathogenesis of the APP by 𝛽 and 𝛾
secretases. The formation of diffusible A𝛽 oligomers that can
aggregate and form fibril and amyloid deposition plaques is
a process that initiates the synaptic malfunction and the AD
toxic effects [77]. Neuropathologic studies show an increased
rate of apoptotic neurons in postmortem sample from AD
patients [78]. Apoptosis, is due to a number of cascades
of cellular events involving caspase activation that actively
kills the cell. In the nervous system, apoptosis appears to be
triggered by trophic factor deprivation.The lack of activation
of intracellular pathway transducing trophic factor leads to
caspase activation. Trophic factor deprivation in neuronsmay
result in dephosphorylation of BAD that interacts with Bcl-2
facilitating the release from mitochondria of cytochrome C
and apoptosis-activating factor (apaf) which finally leads to
caspase 3 activation [79]. These findings in motor neurons
induce oxidative stress involving the production of nitric
oxide, superoxide, and peroxynitrite which also activate
caspase 3, suggesting a more general role of the oxidants
as mediator of apoptosis. At this regard, we should not
forget that also presenilins seem to play a role as modulators
of neuronal apoptosis too. RV has been shown to inhibit
A𝛽 fibrils formation [80, 81] by degreasing A𝛽 production
through sirtuin dependent activation; the drug potentiates
SIRT1 activity via an allosteric mechanism [82, 83]. In detail,
neuronal SIRT1 expression decreased levels of ROCK1, a
serine/threonine Rho-kinase previously shown to regulate
A𝛽metabolism and this effect enhanced 𝛼-secretase activity,
an enzyme which process APP along a nonamyloidogenic
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pathway [84, 85]. Additionally in vitro observations indicated
that SIRT1 can directly deacetylate Tau protein at multiple
residues. The removal of these acetyl groups may expose Lys
residues to ubiquitin ligases so that Tau protein could be
marked for proteasomal degradation [86, 87].

Hooper et al. [88] reported that p53 is upregulated
approximately 2-fold in the superior temporal gyrus of AD
and that p53 induces Tau indirect phosphorylation.Thus, p53
seems to play a pivotal role in AD implying that modulation
of cell death pathways might be of therapeutic benefit
(and indeed in other age related neurological disorders).
The identification of p53 as a SIRT1 substrate highlights a
further protective role of RV in AD-related cognitive decline.
In fact, allosteric modulation of RV on SIRT1 activating
deacetylation of p53 attenuates its activity [89]. Additionally,
inhibition of p53 by RV might alter and in some way
partially inhibit theGSK3𝛽 andp53 interaction. Since p53 and
GSK3𝛽 are both involved in the apoptotic pathway (GSK3𝛽
overactivity leads to increased levels of plaques and tangles
and p53 activity induces Tau phosphorylation), a strong RV
effect may be speculated on AD against several molecular
targets. Besides, Vingtdeux et al. [90] demonstrated the
antiamyloidogenic effect of RV through activation of AMP-
protein kinase (AMPK). AMPK is a heterotrimeric Ser/Thr
protein kinase activated by different upstream kinases among
which calcium/calmodulin-dependent protein kinase kinase-
𝛽 (CamKK𝛽) is predominantly expressed in neuronal tis-
sue [91]. AMPK signaling controls A𝛽 metabolism and
RV increasing intracellular calcium levels promote AMPK
activation by the CamKK𝛽 pathway [90, 92–94]. Alterations
of mitochondrial functioning followed by ROS generation
are two alarming conditions known in aging and early stages
of AD [95]. RV efficiently counteracts both pathological
conditions, on the one hand through activation of SIRT1 and
the PGC1𝛼 pathway that lead to improved mitochondrial
function and efficiency and on the other hand through its
antioxidant activity reducing ROS generation [31, 32, 96–98]
(Figure 5).

3. RV and Huntington’s Disease

HD is an autosomal-dominant neurological disorder; the
most striking pathological manifestation of the disease is
a gradual loss of neurons predominantly in the striatum
causing motor abnormalities and cognitive decline [99].
HD genesis is caused by an unstable trinucleotide CAG
repeat expansion at the N-terminus of the gene encoding
htt [100]. The mutation leads to the production of the htt
with an abnormal protein-protein interaction named mutant
polyglutamine htt (m-htt) which forms cytotoxic aggregates
in neurons [101, 102]. Overexpression of htt fragment in
neurons results in a gain of function mechanosensory defect
that is the cause of the HD pathology.

RVbeneficial effects against 3-nitropropionic acid suggest
a role of the drug in protecting by neurotoxins in HD
because 3-nitropropionic acid is an inhibitor of complex
II of the electron transport chain, which causes HD’s like
symptoms. RV inhibits cyclooxygenase I (COX) activity

significantly improving motor and cognitive impairments in
the 3-nitropropionic acid-induced model of HD [103]. In
addition, RV protects neurons against cytotoxicity of the
mutant polyglutamine htt acting through SIRT1 activation
[104]. Several mechanisms have been proposed by which m-
htt may trigger striatal neurodegeneration, including mito-
chondrial dysfunction, oxidative stress, and apoptosis. In
this context, p53 activation plays a crucial role in mediating
m-htt toxic effects in human neuronal cells. The tumor
suppressor p53 mediates dysfunctions and cytotoxicity in
HD cells and in transgenic mouse whereas its inhibition
prevents these phenotypes [105]. RV protects cells by toxic
effects of m-htt potentiating SIRT1 activity and inducing
an indirect inhibition of p53 because SIRT1 interacts with
and deacetylates p53 [106, 107]. The deacetylation of p53
attenuates its activity and inhibits p53 dependent apoptosis.
In general, p53 activation which happens in HD has been
linked to enhanced mitochondrial oxidation [108, 109], while
activation of SIRT1 as happens in presence of RV allows the
cell to adapt to situations of energy stress [89].

RV can effectively interject in the mitochondrial oxi-
dation through its antioxidant properties and counteract
impaired mitochondrial function through the activation of
the SIRT1-PGC1𝛼 pathway [110–112]. In fact, PGC1𝛼 regulates
the expression and activities of ROS scavenging antioxidant
enzymes and therefore counteracts oxidative stress [113].

4. RV and Parkinson’s Disease

PD is the second most common neurodegenerative disorder
after AD, affecting nearly 2% of individuals over the age of
65 in industrialized countries [114]. Although the etiology
of sporadic PD is poorly understood, there is evidence
that both environmental factors and genetic predisposition
contribute to its development. Rare missense mutations and
more frequent multiplications of a large genomic region
including the 𝛼-synuclein gene cause autosomal dominant
Parkinsonian syndromes [115]. Clinically, PD is characterized
by a progressive neurodegenerative disorders showing inval-
idating neurological symptoms: increasing muscle rigidity,
tremor, bradykinesia, and in extreme cases a nearly complete
loss of movements. Motor symptoms originate from the
degeneration of dopaminergic neurons of the substantia
nigra with a consequent loss of dopamine and accumulation
of intracytoplasmic Lewy bodies, inclusions that contain 𝛼-
synuclein and ubiquitin [15]. Dopamine is inactivated by
the monoamine oxidase enzyme (MAO), a reaction that
yields significant amounts of hydrogen peroxide that must be
continuously detoxified by intracellular antioxidants.

Dopaminergic cells are believed to die by apoptosis rather
than necrosis, but even this basic concept is disputed [116];
there is no doubt that oxidative and nitrative stress occurring
in substantia nigra is prominent features of this disease [117].

The source of nitrogen species (nitric oxide and perox-
ynitrite) is clearly related to alterations in iNOS activity. The
origin of oxygen radicals is much less clear and is based
mainly on indirect biochemical changes, such as increased
iron levels, alterations in antioxidant mechanisms, and mito-
chondrial dysfunction.
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The involvement of mitochondrial impairment in PD
pathogenesis has been established for over two decades.
Complex I inhibition is known to be the major source of free
radicals, and it is thought that the alteration in its functionally
could, above and beyond the declining production of ATP,
give rise to increased oxidative stress, thus explaining the
emergence of the disease [118].

RV treatment ameliorates the mitochondrial respiratory
capacities via a pathway in which SIRT1-AMPK and PGC-1𝛼
play a pivotal role. In detail, the activation of AMPK-SIRT1
signaling by RV results in the induction of the PGC-1𝛼 activ-
ity [119]. The impact of PGC-1𝛼 activation on mitochondrial
respiratory capacities leads to an increase of mitochondrial
biogenesis and improves mitochondrial function.

An interesting hypothesis for the vulnerability of cer-
tain neuronal groups in PD is the relation between the
decline in ATP and the calcium intracellular oscillations.
MAO induced metabolism of dopamine produces calcium
signaling in astrocytes through ROS (hydrogen peroxide,
principally) [120]. This creates a metabolic stress because the
repeated and persistent entry of calcium into cells needs to
be counterbalanced by ATP demanding pumps to restore
the calcium homeostasis [23]. It has been demonstrated that
the opening of L-type calcium channels in the mitochondria
of such neurons makes them highly vulnerable to disease
process [121]. RV can effectively interject the progression of
PD preventing calcium elevation [52, 122, 123].

In experimental models of PD, treatment with RV exerts
neuroprotective effects on dopaminergic neurons probably
related to antioxidant properties of the drug [118, 124]. In
this context, the RV scavenger activity against hydrogen

peroxide (H
2
O
2
) may be particularly efficient; the drug at

100 𝜇g/mL exhibited 60% of its effect [25]. Besides, RV
inducing activation and expression of SIRT1 protects against
pathological 𝛼-synuclein aggregation [125]; in detail, SIRT1
can deacetylate and activate heat shock factor 1 (HSF1),
which affects transcription of molecular chaperons including
heat shock proteins 70 (hsp70). Hsp70 regulate homeostasis
of cellular proteins decreasing the formation of abnormal
protein aggregates [18, 126, 127].

Studies have shown that GSK-3𝛽 inhibition protects the
dopaminergic neurons from various stress-induced injuries,
indicating the involvement of GSK-3𝛽 in PD pathogenesis
because 𝛼-synuclein is a substrate for GSK-3𝛽 phosphoryla-
tion [128]. RV may decrease 𝛼-synuclein protein expression
in cellular model of PD through its downregulation and
partially inhibition of GSK-3𝛽 [129].

5. RV and Amyotrophic Lateral Sclerosis

ALS is a progressive and fatal neurodegenerative disease,
characterized by the selective loss of motor neurons in brain,
brainstem, and spinal cord [130]. In human patients ALS
symptoms onset is varied but usually begins with muscle
weakness, muscle atrophy, and spasticity leading to paralysis,
respiratory insufficiency, and death with a median survival
time of less than 5 years. Although the selective mechanism
of motor neuron death is still unknown, two ALS forms
have been identified: sporadic (SALS) with no known genetic
component and familial (FALS) with a positive familial
history and a genetic component [131]. Currently, several
genes have been identified as possible causes of onset for
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FALS but curiously, although these genes control different
cellular mechanisms, the progression of the disease leads
inexorably to motor neuron degeneration. About 20–40%
of FALS forms have one of over 150 mutations in the
gene for Cu, Zn superoxide dismutase 1 (SOD1) [17], while
unexpectedly mutations in the TDP-43 gene, which codes for
RNA binding protein, are responsible for about 5% of both
FALS and SALS [132]. Really, SALS and FALS are clinically
indistinguishable suggesting a common pathogenesis of the
disease; in fact, the protein products of genes associated with
ALS asmutant SOD1, TDP43, or FUSwere found in neuronal
aggregates from ALS patients and observed to coincide with
the manifestation of disease symptoms in all mouse models
[16, 133] suggesting that, in addition to playing a role in
FALS, these proteins may be altered also in SALS forms of the
disease [134, 135]. The current consensus is that most causes
may converge to the motor neuron damage typified by ALS
[136], from which the most studied are the following.

SOD1 Mutations. SOD1 is a gene that codes for SOD, an
enzyme which helps to convert superoxide radicals into less
harmful molecules. If SOD is damaged, free radicals accu-
mulation could contribute to ALS. In addition, accumulation
of abnormal SOD molecules may be (the seed for large) the
trigger for misfolded protein that are toxic to neurons [137].

Glutamate Toxicity. Under normal conditions, glutamate is
an important neurotransmitter but in patients with ALS
glutamate is accumulated in the synapse.These elevated levels
of glutamate-mediated excitation can kill motor neurons
[138].

Oxidative Stress. Studies have found elevated levels of oxida-
tive stress within the central neurons system in ALS [139].
This condition causing injury of adjacent neurons promotes
the propagating of the disease and may be linked to the
inability of mutant SOD1 to complex Cu and Zn [10].
Diminished metal binding (by SOD1) could also enhance
the release of copper and zinc and trigger metal-mediated
neurotoxicity.

Mitochondrial Dysfunction. Studies of both human and ani-
mal neurons have found extensivemitochondrial dysfunction
associated with ALS [140–142]. In such cases biochemical
analyses have delineated defects in the respiratory chain
complexes I and IV in muscle [143], but the main morpho-
logical damage is the presence of vacuolated mitochondria
derived from a detachment between the inner and the outer
membrane [144]. Several observations linked mutant SOD1
with mitochondrial damage because SOD1 has been found in
the mitochondria intermembrane space, in the matrix, and
in the cytosolic face of the outer membrane [145]. The pres-
ence of SOD1 protects mitochondrial functionality defending
proteins from oxidation but abnormal protein aggregation of
mutant SOD1 could directly damagemitochondria triggering
cell death [146, 147].

Calcium Dysregulation. Ca2+ dyshomeostasis has been impli-
cated in the pathogenesis of motoneurone death in ALS [148,
149]. Calcium accumulation in intracellular compartments

can lead to an increase in the production of nitric oxide
and peroxynitrite both of which could be lethal to the cell
[150, 151]. Yet there is considerable evidence that calcium
overload and mitochondrial abnormalities are early events in
toxicity at least some SOD1 mutants [152, 153].

In this context, RV has shown several benefic effects
which virtually can efficiently counteract ALS molecular
targets. Mitochondrial impairment and ROS generation may
be reduced by antioxidant properties of RV; in this regard,
Song et al. [154] demonstrated the repression of ROS level
after RV treatment in the ALS mice. Besides, as mentioned
before, RV protects against mitochondrial fragmentation by
the activation of PGC1𝛼 mediated by RV-SIRT1 interaction
[18, 96, 155]. Zhao et al. reported that RV through the
overexpression of PGC1𝛼 improved motor performance and
survival in a mouse model of ALS [156].

Activation of SIRT1 by RV treatment has been shown also
to decrease proteotoxic stress derived from misfolded SOD1
aggregates. The proposed mechanism is that SIRT1 activated
by RV can deacetylate HSF1, inducing the transcription
of molecular chaperones such as hsp70 and hsp25 and
decreasing motor neuron death [18, 157, 158]. Song et al.
correlated the strong inhibition effects of RV on apoptosis
with the potential effects of the drug to prevent the motor
neurons from degeneration in ALS [154]. In detail, RV-SIRT1
interaction mediated deacetylation and inhibition of p53
ability to induce the expression of the proapoptotic factor Bax
[159].

RV has already been proven to exert neuroprotection
against glutamate neurotoxicity in neuronal cultures [54] and
to prevent the [Ca2+] elevation [52].

6. Conclusions

In the past few years, it has become clear that the dysfunction
of mitochondrial metabolism and ROS dyshomeostasis are
the main contributing factors in the progression of many
neurodegenerative diseases. However, whether such events
are a primary cause or consequences of the disease progres-
sion is still an unanswered question. Evaluating the safety
and efficacy of small molecules which exhibit remarkable
multipotent ability to control and modulate ROS, metal tox-
icity, and abnormal protein aggregations may be important
elements in the development of new therapeutic strategies to
treat neurodegenerative diseases.

RV as a multitarget compound with several neuropro-
tective roles represents an intriguing candidate for potential
application in the treatment of neurological impairments.
Particularly attractive are recent studies showing the role
of RV in improved mitochondrial functions and biogene-
sis through SIRT1/AMPK/PGC1𝛼 pathway which highlight
RV benefits not only limited to the antioxidant and anti-
inflammatory properties.

It is right to remember the potential problems related to
a possible therapeutic use of the RV, because it is not much
soluble in water [160].

Despite this, RV may be considered as a very promising
“model compound” [161] starting from which useful and
more effective derivatives could be obtained by appropriate
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chemical modifications and decorations of the stilbene scaf-
fold. Recently, it is also worth noting that piceid, a precursor
of RV, exhibited higher scavenging activity against hydroxyl
radicals than RV in vitro [162]. Consequently, the synthesis
of analogues of the RV with improved bioavailability and
solubility could help raise the number of targets affected
by biological molecule and better delineate the pathways of
action, opening new perspectives in the search and synthesis
of novel agents to treat neurodegenerative diseases.
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[129] F. Simão, A. Matté, A. S. Pagnussat, C. A. Netto, and C. G.
Salbego, “Resveratrol prevents CA1 neurons against ischemic
injury by parallel modulation of both GSK-3𝛽 and CREB
through PI3-K/Akt pathways,” European Journal of Neuro-
science, vol. 36, no. 7, pp. 2899–2905, 2012.

[130] L. P. Rowland and N. A. Shneider, “Amyotrophic lateral sclero-
sis,” The New England Journal of Medicine, vol. 344, no. 22, pp.
1688–1700, 2001.

[131] D. W. Mulder, L. T. Kurland, K. P. Offord, and M. Beard,
“Familial adult motor neuron disease: amyotrophic lateral
sclerosis,” Neurology, vol. 36, no. 4, pp. 511–517, 1986.

[132] S. Da Cruz and D. W. Cleveland, “Understanding the role of
TDP-43 and FUS/TLS in ALS and beyond,” Current Opinion in
Neurobiology, vol. 21, no. 6, pp. 904–919, 2011.

[133] M. Prudencio, P. J. Hart, D. R. Borchelt, and P. M. Andersen,
“Variation in aggregation propensities among ALS-associated
variants of SOD1: correlation to human disease,”HumanMolec-
ular Genetics, vol. 18, no. 17, pp. 3217–3226, 2009.

[134] M. DeJesus-Hernandez, I. R. Mackenzie, B. F. Boeve et al.,
“Expanded GGGGCC hexanucleotide repeat in noncoding
region of C9ORF72 causes chromosome 9p-linked FTD and
ALS,” Neuron, vol. 72, no. 2, pp. 245–256, 2011.

[135] A. E. Renton, E. Majounie, A. Waite et al., “A hexanucleotide
repeat expansion inC9ORF72 is the cause of chromosome 9p21-
linked ALS-FTD,” Neuron, vol. 72, no. 2, pp. 257–268, 2011.

[136] J. D. Rothstein, “Current hypotheses for the underlying biology
of amyotrophic lateral sclerosis,” Annals of Neurology, vol. 65,
no. 1, pp. S3–S9, 2009.

[137] C. M. Karch, M. Prudencio, D. D. Winkler, P. J. Hart, and
D. R. Borchelt, “Role of mutant SOD1 disulfide oxidation and
aggregation in the pathogenesis of familial ALS,” Proceedings of
the National Academy of Sciences of the United States of America,
vol. 106, no. 19, pp. 7774–7779, 2009.

[138] J. Dunlop, H. Beal McIlvain, Y. She, and D. S. Howland,
“Impaired spinal cord glutamate transport capacity and reduced
sensitivity to riluzole in a transgenic superoxide dismutase
mutant rat model of amyotrophic lateral sclerosis,” Journal of
Neuroscience, vol. 23, no. 5, pp. 1688–1696, 2003.

[139] F. J. Miana-Mena, E. Piedrafita, C. González-Mingot et al.,
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