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Simple Summary: The presence of axillary lymph node metastases in breast cancer patients is an
essential factor in axillary surgery and possible additional treatment. This study aimed to investigate
the potential of dedicated axillary MRI-based radiomics analysis for the prediction of axillary lymph
node metastases. Dedicated axillary MRI examinations provide a very specific and complete field
of view of the axilla. Accurate preoperative prediction of axillary lymph node metastases in breast
cancer patients using radiomics analysis can aid in clinical decision-making for the type of treatment.

Abstract: Radiomics features may contribute to increased diagnostic performance of MRI in the
prediction of axillary lymph node metastasis. The objective of the study was to predict preoperative
axillary lymph node metastasis in breast cancer using clinical models and radiomics models based
on T2-weighted (T2W) dedicated axillary MRI features with node-by-node analysis. From August
2012 until October 2014, all women who had undergone dedicated axillary 3.0T T2W MRI, followed
by axillary surgery, were retrospectively identified, and available clinical data were collected. All
axillary lymph nodes were manually delineated on the T2W MR images, and quantitative radiomics
features were extracted from the delineated regions. Data were partitioned patient-wise to train
100 models using different splits for the training and validation cohorts to account for multiple lymph
nodes per patient and class imbalance. Features were selected in the training cohorts using recursive
feature elimination with repeated 5-fold cross-validation, followed by the development of random
forest models. The performance of the models was assessed using the area under the curve (AUC).
A total of 75 women (median age, 61 years; interquartile range, 51–68 years) with 511 axillary lymph
nodes were included. On final pathology, 36 (7%) of the lymph nodes had metastasis. A total of
105 original radiomics features were extracted from the T2W MR images. Each cohort split resulted
in a different number of lymph nodes in the training cohorts and a different set of selected features.
Performance of the 100 clinical and radiomics models showed a wide range of AUC values between
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0.41–0.74 and 0.48–0.89 in the training cohorts, respectively, and between 0.30–0.98 and 0.37–0.99 in
the validation cohorts, respectively. With these results, it was not possible to obtain a final prediction
model. Clinical characteristics and dedicated axillary MRI-based radiomics with node-by-node
analysis did not contribute to the prediction of axillary lymph node metastasis in breast cancer based
on data where variations in acquisition and reconstruction parameters were not addressed.

Keywords: dedicated axillary MRI; axillary lymph node metastasis; node-by-node matching;
radiomics; predictive modeling

1. Introduction

In breast cancer patients, the axillary lymph node status provides essential prognostic
information about the locoregional recurrence and overall survival rate [1–4]. The five-year
survival rate decreases from 99% to 85% with the presence of lymph node metastasis in
the axilla [5]. The presence of axillary lymph node metastasis determines the extent of the
surgical treatment plan, the potential need for (neo)adjuvant systemic therapy, and the
possible indication for postmastectomy radiation therapy with regard to immediate breast
reconstruction [6,7].

In the preoperative setting, imaging for axillary lymph node assessment is recom-
mended in the clinical workup of invasive breast cancer patients [6]. For the evaluation
of tumor extent in the breast or following neoadjuvant treatment, breast magnetic reso-
nance imaging (MRI) is often performed, which includes the axilla in the field of view [8].
However, when using dedicated breast coils, the field of view of the axillary region can be
limited [9]. Therefore, dedicated MR coils for visualization and assessment of the axillary
region have been investigated [10–12]. Dedicated unenhanced T2-weighted (T2W) axillary
MRI showed good diagnostic performance based on node-by-node analysis but remained
insufficient to accurately exclude axillary lymph node metastasis [12].

Although preoperative imaging may be performed to guide the axillary management
of patients, no current imaging modality with optimal diagnostic performance can re-
place the surgical axillary staging procedure. In the era of artificial intelligence, current
developments in radiology focus on the improvement of decision support systems to
maximize the potential role of noninvasive imaging modalities. Radiomics, the application
of machine learning to medical imaging, is a rapidly evolving field that enables high-
throughput quantitative data extraction from standard medical images in an automated
fashion and subsequent data analysis, possibly combined with patient and tumor charac-
teristics, improving the accuracy of diagnostic, predictive, and prognostic models [13,14].
The evaluation of the usefulness of radiomics based on mammography, ultrasound, and
breast MRI has been explored, showing potential in axillary lymph node metastasis pre-
diction [15–19]. However, this research focused on the prediction of axillary lymph node
metastasis from the delineated breast tumor as the region of interest (ROI), and not from
the lymph nodes themselves.

Accurate preoperative prediction of axillary lymph node metastasis in breast cancer
patients can assist in clinical decision-making regarding the type of treatment. Radiomics
features extracted from axillary lymph nodes may contribute to increased diagnostic
performance of MRI in the prediction of metastasis. To our knowledge, no previous study
has reported on node-by-node matching of axillary lymph nodes with pathological findings
in breast cancer patients in the field of radiomics. The purpose of this study was to predict
preoperative axillary lymph node metastasis in breast cancer patients using clinical models
and radiomics models based on unenhanced T2W dedicated axillary MRI features with
node-by-node analysis.
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2. Results
2.1. Patients Characteristics

A total of ninety women were considered for inclusion, of whom twelve were ex-
cluded due to treatment with neoadjuvant systemic therapy before axillary surgery and
three with ductal carcinoma in situ only. Seventy-five patients (median age, 61 years;
interquartile range, 51–68 years) with 511 axillary lymph nodes were included. Patient,
tumor, and treatment characteristics are summarized in Table 1. The median number of
axillary lymph nodes per patient was six, with a range of 1–18. Fourteen of the included
patients were node-positive at final pathology, with a total of 36 axillary lymph nodes
with macrometastases and 58 axillary lymph nodes without metastasis. The remaining 61
patients had 417 axillary lymph nodes without metastasis. The median number of voxels
per ROI for all delineated axillary lymph nodes was 100 (interquartile range, 44–236) and
310 (interquartile range, 130–1676) for all delineated axillary lymph nodes with metastasis.
The Spearman correlation between the number of voxels per ROI and the corresponding
pathological outcome was 0.22.

Table 1. Patient, tumor, and treatment characteristics.

Characteristic Value

No. of patients 75
Age (years) (median; IQR) 61 (51–68)

Clinical tumor size (mm) (median, IQR) 19 (13–28)

Clinical tumor stage (%)
T1 41 (54.7)
T2 32 (42.7)
T3 2 (2.6)

Clinical nodal stage (%)
N0 68 (90.7)
N1 7 (9.3)

Tumor histology (%)
Invasive ductal 55 (73.3)
Invasive lobular 11 (14.7)

Mixed invasive ductal & lobular 3 (4.0)
Other 6 (8.0)

Tumor grade (%)
1 17 (22.7)
2 42 (56.0)
3 16 (21.3)

Breast cancer subtype (%)
ER + HER2− 55 (73.3)
ER + HER2+ 6 (9.0)
ER − HER2+ 2 (2.7)

Triple-negative 11 (14.7)
Not determined 1 (1.3)

Axillary surgery (%)
SLNB 8 (10.7)
ALND 67 (89.3)

Abbreviations: ER, Estrogen receptor; HER2, Human epidermal growth factor receptor 2; IQR, interquartile range;
SLNB, Sentinel lymph node biopsy; ALND, Axillary lymph node dissection.

2.2. Radiomics Feature Extraction and Model Development

A total of 105 original radiomics features were extracted from the dedicated axillary
T2W MR images. No near-zero variance features were detected. Pearson pairwise correla-
tion removed 53 highly correlated features. The optimal subset of features was selected in
the training cohort using recursive feature elimination with repeated 5-fold cross-validation
with a maximum of 20 features. Figure 1 shows the distribution of the number of selected
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features from the 100 iterations for the two different strategies (lymph nodes from all
patients versus only lymph nodes from node-positive patients as data points) for each
model. Supplementary Material A includes a list of how often each feature was chosen in
the 100 iterations for each model.

Figure 1. First (A) and second (B) strategy: distribution of the number of features in each developed model. The two
different models in both strategies were all developed 100 times.

As each iteration resulted in a different set of selected features for each model in
both strategies, it was not possible to obtain a final prediction model. The minimum
and maximum area under the curve (AUC) values in the training cohorts were 0.59–0.80,
0.60–0.85, 0.48–0.84, and 0.55–0.89 for models 1a, 1b, 2a, and 2b, respectively. The median
AUC values for all models in the training cohorts were between 0.72–0.73. All models
showed a wider range of AUC values in the validation cohorts. The AUC value distribution
for all models in the training and validation cohorts are presented in the violin plots in
Figure 2. The minimum and maximum sensitivity in the training cohorts were 30–66%,
53–83%, 7–74%, and 48–82% for models 1a, 1b, 2a, and 2b, respectively. The median
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sensitivity for all models in the training cohorts was between 47–66%. All models showed
lower median sensitivity in the validation cohorts. The minimum and maximum PPV
in the training cohorts were 46–78%, 55–83%, 25–80%, and 52–90% for models 1a, 1b, 2a,
and 2b, respectively. The median PPV for all models in the training cohorts were between
61–67%. All models showed a lower median PPV in the validation cohorts. The diagnostic
performance parameters of the radiomics models (100 iterations) are shown in Table 2.

The additional feature selection step with the cut-off values >0.75, >0.80, and >0.90
resulted in 44, 35, and 8 original features, respectively, available for recursive feature
elimination with repeated 5-fold cross-validation. These results showed no differences
compared to the results found without this additional feature selection step. The violin
plots of the models developed after adding the additional feature selection step can be
found in Figures S1–S3.

Figure 2. Violin plots for the radiomics models developed using the first (A) and second (B) strategy: AUC value
distribuTable 100. iterations) for the four models (1a, 1b, 2a, and 2b) in both the training and validation cohort.
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Table 2. The diagnostic performance of the radiomics models (100 iterations) for the first and second strategy.

Diagnostic
Parameters

Training Validation Training Validation

Sens
(%)

Spec
(%)

PPV
(%)

NPV
(%)

Sens
(%)

Spec
(%)

PPV
(%)

NPV
(%)

Sens
(%)

Spec
(%)

PPV
(%)

NPV
(%)

Sens
(%)

Spec
(%)

PPV
(%)

NPV
(%)

First Strategy

Model 1a Model 1b

Minimum 30 71 46 62 0 78 0 98 53 50 55 72 0 57 0 98

Median 47 81 61 72 33 90 2 99 66 67 67 80 50 75 1 99

Maximum 66 91 78 79 100 97 22 100 83 85 83 88 100 88 10 100

Second Strategy

Model 2a Model 2b

Minimum 7 58 25 54 0 33 0 22 48 46 52 68 0 0 0 0

Median 50 81 62 74 33 76 50 71 66 68 67 80 64 60 50 75

Maximum 74 93 80 83 82 100 100 88 82 92 90 89 100 100 100 100

Abbreviations: NPV, negative predictive value; PPV, positive predictive value; sens, sensitivity; spec, specificity.

2.3. Radiomics Subanalysis

After the exclusion of ROIs with less than 50 voxels, a total of 71 patients were included
for analyses, with 371 axillary lymph nodes. Thirteen of these patients were node-positive,
with a total of 31 axillary lymph nodes with metastasis and 34 axillary lymph nodes without
metastases. The remaining 58 patients had 340 axillary lymph nodes without metastasis.
Excluding small lymph nodes resulted in balanced training cohorts in models 1a and 2a,
eliminating the need to perform random undersampling (models 1b and 2b). The minimum
and maximum AUC values of the balanced models 1a and 2a in the training and validation
cohorts of this subanalysis were 0.53–0.82 and 0.41–0.83, respectively. Violin plots with
the distribution of the AUC values and the diagnostic performance parameters of the
subanalysis are provided in Table S1 and Figure S4.

2.4. Clinical Model Development

The following clinical characteristics were available and selected for the development
of the clinical models: patient age, clinical tumor size, clinical tumor stage, tumor histology,
tumor grade, and receptor subtype (ER, PR, and HER2+). No highly correlated clinical
characteristics were present. The minimum and maximum AUC values in the training
cohorts were 0.52–0.66, 0.43–0.71, 0.41–0.67, and 0.43–0.74 for models 1a, 1b, 2a, and 2b,
respectively. The median AUC values for all models in the training cohorts were between
0.59–0.60. All models showed a wider range of AUC values in the validation cohorts. The
AUC value distribution for all models in the training and validation cohorts are presented in
the violin plots in Figure 3. The minimum and maximum sensitivity in the training cohorts
were 18–64%, 31–71%, 0–65%, and 33–73% for models 1a, 1b, 2a, and 2b, respectively.
The median sensitivity for all models in the training cohorts was between 42–58%. All
models showed lower median sensitivity in the validation cohorts, except for model 2b.
The minimum and maximum positive predictive value (PPV) in the training cohorts were
42–71%, 41–85%, 48–73%, and 43–86% for models 1a, 1b, 2a, and 2b, respectively. The
median PPV for all models in the training cohorts was between 68–70%. All models showed
a lower median PPV in the validation cohorts, except for model 2a. In all four models, the
clinical tumor size was ranked as the most important clinical characteristic followed by age.
The diagnostic performance parameters of the clinical models (100 iterations) are shown in
Table 3.
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Figure 3. Violin plots for the clinical models developed using the first (A) and second (B) strategy: AUC value distributions
(100 iterations) for the four models (1a, 1b, 2a, and 2b) in both the training and validation cohort.

Table 3. The diagnostic performance of the clinical models (100 iterations) for the first and second strategy.

Diagnostic
Parameters

Training Validation Training Validation

Sens
(%)

Spec
(%)

PPV
(%)

NPV
(%)

Sens
(%)

Spec
(%)

PPV
(%)

NPV
(%)

Sens
(%)

Spec
(%)

PPV
(%)

NPV
(%)

Sens
(%)

Spec
(%)

PPV
(%)

NPV
(%)

First Strategy

Model 1a Model 1b

Minimum 18 64 42 65 0 40 0 99 31 46 41 42 0 14 0 97

Median 50 86 68 72 0 91 0 99 58 74 70 64 50 64 1 99

Maximum 64 93 71 78 100 99 18 100 71 92 85 73 100 88 9 100

Second Strategy

Model 2a Model 2b

Minimum 0 55 48 61 0 0 10 34 33 45 43 43 0 0 10 0

Median 42 85 68 72 39 80 69 73 57 75 70 63 61 53 43 67

Maximum 65 100 73 80 100 100 73 84 73 91 86 74 100 100 100 86

Abbreviations: NPV, negative predictive value; PPV, positive predictive value; sens, sensitivity; spec, specificity.
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2.5. RQS and TRIPOD

This study scored a radiomics quality score (RQS) of 58% (21 out of 36 points)
(Table S2). The score of the transparent reporting of a multivariable prediction model
for individual prognosis or diagnosis (TRIPOD) checklist was 67% (18 out of 27 applicable
items) (Table S3).

3. Discussion

Accurate preoperative prediction of axillary lymph node metastasis can assist in
clinical decision-making regarding the extent of axillary surgery and radiation therapy,
and provide essential prognostic information. In this study, clinical models and radiomics
models based on T2-weighted dedicated axillary MRI features with node-by-node analysis
were investigated for the preoperative prediction of axillary lymph node metastasis. The
different sets of features selected at each split resulted in a wide range of AUC values and
did not allow for the development of a final radiomics prediction model. The performance
of the clinical models (AUC values between 0.41–0.74) was lower compared to the radiomics
models (AUC values between 0.48–0.89) in the training cohorts. The validation results of
both models showed a wider range of diagnostic performance parameters compared to the
training results possibly explained by the small dataset, the methodology used for selection
and model building, and potential overfitting. The wide AUC range in the clinical models
leads us to the hypothesis that the small dataset contains unseen biological covariates,
and that therefore the wide AUC range in the radiomics models cannot be explained by
variations in imaging alone.

To the best of our knowledge, this is the first study investigating the role of MRI-
based radiomics for the prediction of axillary lymph node metastasis in breast cancer
patients by extracting features from delineated axillary lymph nodes. Previously published
articles investigated the same topic by extracting the features from the delineated breast
tumor [15,20,21]. These articles showed promising validation results with AUC values
between 0.77–0.82. In this recent study, initially, the small ROI volumes were seen as a
reason for the inconclusive results. If an ROI contains a low number of voxels, it may not
be possible to calculate meaningful radiomics features [22]. However, after the subanalysis
excluding ROI volumes less than 50 voxels, the AUC values were between 0.53–0.82 and
0.41–0.83 for the training cohorts for models 1a and 2a, respectively, which highlights the
effects of differences in scan acquisition and reconstruction parameters. Furthermore, the
skewed data in this recent study may have caused inconsistent results compared to the
previous studies as models tend to favor the more common outcome.

To date, only two previously published articles extracted features from delineated
lymph nodes for radiomics and deep learning analyses. The first article used a neural
network to develop prediction models in head and neck cancer [23]. The second article
developed a radiomics model based on CT images of colorectal cancer patients [24]. Both
studies showed that there is potential by delineating lymph nodes for radiomics and
deep learning analysis for the classification of positive and negative lymph nodes. The
differences in results compared to this recent study may be due to the variety of implemen-
tation of the different steps in the radiomics workflow and the chosen imaging modality
(CT vs. MRI).

The diagnostic performance of dedicated axillary T2W MRI for axillary lymph node
staging has previously been investigated using node-by-node analysis [12]. Schipper et al.
showed AUC values between 0.78–0.88, with a good interobserver agreement (kappa = 0.70).
The current analysis with MRI-based radiomics using dedicated axillary T2W MR images
suggested that the quantitative analysis did not exceed the qualitative analysis by the
radiologists. It was decided to only perform radiomics analyses using the T2W MR images,
as previous research indicated that diffusion-weighted images and apparent diffusion
coefficient measurements have no added value for the axillary lymph node staging [12,25].
Furthermore, a recently published article has shown that the evaluation of axillary lymph
nodes with dedicated axillary MRI is comparable to standard breast MRI with a complete
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field of view of the axillary region [25]. However, the majority of the breast MRI exami-
nations are still performed with an incomplete field of view of the axillary region [9]. In
addition, the coronal view of the dedicated axillary MRI possibly provides more accurate
delineations compared to the transversal view of the standard breast MRI, which could be
of added value to the radiomics analysis.

Most radiomics studies suffer from small and heterogeneous datasets collected from
different imaging systems. In this current study, a great advantage for the radiomics
analyses was the prospectively collected set of MR images on the same MRI scanner using
an equal acquisition protocol with the patients in corresponding positions. Despite the
prospectively collected dataset, a number of acquisition and reconstruction parameters
varied depending on the patient. Furthermore, the different sets of features selected in every
training cohort resulted in a wide range of AUC values and did not allow the development
of a final radiomics prediction model. This could be justified by two theories: (i) The
variations in acquisition and reconstruction parameters significantly affected the value of
radiomics features, resulting in non-comparable data points; or (ii) Radiomics features do
not have an added value in the prediction of axillary lymph nodes metastasis. However,
theory (ii) is less likely, as radiomics models performed well in some splits. Future MRI
phantom and reproducibility studies should investigate the effect of MR image acquisition
and reconstruction parameters on feature values to determine repeatable and reproducible
features. We nevertheless believe that it is also important to publish inconclusive radiomics
results since publication bias seems to play a role in this research field, with only 6% of the
radiomics articles presenting negative results [26].

This study also has certain limitations. The large skewness of the data with only
7% positive axillary lymph nodes was a drawback for the analyses. The skewness of the
data was addressed by splitting the dataset using two different strategies and by using
repeated cross-validation in the training cohort. However, it is important to note that the
ratio of node-positive (19%) and node-negative (81%) breast cancer patients in this study
is comparable to the clinics. Besides the skewness of the data, the included number of
patients was relatively low for radiomics analysis and selecting only node-positive patients
in strategy 2 decreased the number even further. However, since the dedicated axillary MRI
is not included in the breast MRI protocol and no similar public dataset is available, it is not
possible to expand this current dataset. Lastly, manual delineation of the axillary lymph
nodes was performed by one researcher, which potentially could be a major limitation
of the findings because of the susceptibility of inter- and intra-observer variabilities [27].
Although this issue has been addressed in this current study by developing models based
on only robust features for varying breast tumor delineations [28]. Based on the assumption
that breast and lymph node delineations on MRI are comparable, varying delineations did
not affect the radiomics results. However, this topic needs to be thoroughly investigated in
future studies.

4. Materials and Methods
4.1. Patient Population

Consecutive women with histopathologically proven breast cancer, who had under-
gone dedicated axillary MRI between August 2012 and October 2014, followed by sentinel
lymph node biopsy (SNLB) or axillary lymph node dissection (ALND), were considered
for inclusion. Patients were excluded if they had undergone neoadjuvant systemic therapy
before axillary surgery and in the case of ductal carcinoma in situ only. This study was
approved by the local medical ethics committee, and the requirement of written informed
consent was waived due to the retrospective study design. Fifty of the dedicated axillary
T2W and diffusion-weighted MR images were earlier described by Schipper et al. for
axillary lymph node staging, and 90 of the dedicated axillary T2W and gadofosveset-
enhanced MR images were earlier described by Van Nijnatten et al. for axillary lymph
node staging [12,29].
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4.2. Clinical and Pathological Characteristics

Clinical and pathological data were derived from the patients’ medical records:
age, clinical TNM stage, pathological TNM stage, tumor histology, tumor grade, breast
cancer subtype, and type of axillary surgery. Lymph nodes with isolated tumor cells
(≤0.2 mm) and micrometastases (>0.2–≤2.0 mm) were considered negative, while those
with macrometastases (>2.0 mm) were considered positive.

4.3. MRI Acquisition

The dedicated axillary MR images were performed using a 32-channel cardiac coil
on a 3.0 Tesla scanner (Achieva, Philips Healthcare, Best, the Netherlands). During the
MRI examination, the patient was positioned in a supine position with the ipsilateral arm
elevated. The anatomical confines of the dedicated axillary MR images were between
the humeral head and the inferior border of the scapula. The MRI protocol included an
unenhanced three-dimensional T2W turbo spin-echo sequence without fat suppression
(pixel size, 1.25 × 1.25 mm; repetition time, 2000 ms; echo time between 150–202 ms; echo
train length, 52 or 66; flip angle, 90◦; acquisition slice thickness, 2.5 mm; reconstruction slice
thickness, 1.25 mm), a contrast-enhanced T1-weighted sequence, and a diffusion-weighted
imaging sequence with fat suppression.

4.4. MRI Lymph Node Delineation

All axillary lymph nodes of each dedicated axillary T2W MR image were manually
delineated in three dimensions using MIM software (version 6.9.4, MIM Software Inc.,
Cleveland, OH, USA) by a medical researcher (S.S.) with three years of experience in axillary
lymph node imaging validated by a dedicated breast radiologist (M.L.) with eleven years of
experience (Figure 4). No clinical information and pathology results were available during
delineation and validation. The delineated lymph nodes were subsequently matched with
their histopathological findings (node-by-node matching). Reliable node-by-node match-
ing was obtained using single-photon emission computed tomography-X-ray computed
tomography (SPECT-CT) in patients undergoing SLNB, and an anatomical map was used
for patients undergoing ALND. The exact procedure of the node-by-node matching was
previously described by Schipper et al. [30].

4.5. MRI Preprocessing and Feature Extraction

Image preprocessing of the T2W images was performed after delineation. Bias field
correction was applied to every T2W MR image using MIM software to correct for non-
uniform grayscale intensities caused by field inhomogeneities. To ensure better comparabil-
ity of voxel intensities, additional image normalization and discretization was performed
by the open-source Pyradiomics software (version 2.2.0) prior to feature extraction [31].
For discretization, grayscale values were aggregated with a fixed bin width of 10, which
ensured the recommended amount of bins between 30–130 [31]. Resampling was not
required, as all images consisted of isotropic voxels of equal size 1.25 mm3. Quantita-
tive radiomics features were extracted from the delineated regions using the Pyradiomics
software. The extracted features can be subdivided into the following classes: first-order
statistics, three-dimensional shape-based, gray level co-occurrence matrix, gray level run
length matrix, gray level size zone matrix, neighboring gray-tone difference matrix, and
gray level dependence matrix.
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Figure 4. Coronal T2-weighted dedicated axillary MR image of a 55-year old woman with invasive
breast cancer, who was treated with mastectomy and axillary lymph node dissection (pT1N2). The MR
image demonstrates an example of delineations of lymph nodes in the right axilla on the MIM software.

4.6. Radiomics Feature Selection and Model Development

Taking into account the small skewed dataset and the unavailability of an external
validation dataset, the data were randomly divided into training and validation cohort
100 times using two different strategies to create a more balanced training cohort. In the
first strategy, 85% (12 out of 14) of the node-positive (i.e., patients with axillary lymph
node metastasis at final pathology) breast cancer patients were selected in the training
cohort, and all remaining node-positive and node-negative (i.e., patients without axillary
lymph node metastasis at final pathology) patients in the validation cohort, considering
each axillary lymph node as an individual data point when training the model. In the
second strategy, only the lymph nodes of patients with node-positive breast cancer were
considered as individual data points when training and validating the model. To maintain
the original class imbalance of the node-positive patients, 10 patients were selected in the
training cohort. For both strategies, additional models were developed using a random
undersampled balanced training cohort. All lymph nodes of one patient were always
included in either the training cohort or the validation cohort, and therefore each split
caused a varying number of positive lymph nodes in each cohort. Feature selection started
with the removal of near-zero variance features followed by the removal of highly correlated
features using the Pearson pairwise correlation greater than 0.95. Subsequently, recursive
feature elimination with bagged trees was applied with repeated 5-fold cross-validation
to select a maximum number of features in the training cohort. The number of features
was chosen at the point when the addition of more features did not increase the diagnostic
performance of the models. Random forest binary classification models were trained,
using optimized random forest parameters (number of trees and features per node) for
the training cohort, selecting the optimal number of features for each generated model. In
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addition, a separate set of models was generated using the same pipeline but by adding an
additional feature selection step at the very beginning. In this step, features robust to the
variability of manual delineations of breast tumors on MRI by four observers were selected
according to three different cut-off values (intraclass correlation coefficient of >0.75, >0.80,
and >0.90) [28]. Figure 5 provides an overview of strategies 1 and 2 with the different
developed models.
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4.7. Radiomics Subanalysis

A separate set of models was generated using the first and second strategies as
described earlier on a dataset where ROIs with less than 50 voxels were excluded [31]. On
these models, only the additional feature selection step with different intraclass correlation
coefficient cut-off values was not performed.

4.8. Clinical Model Development

Clinical models were trained based on clinical characteristics available before the
axillary surgery. Random forest models with bagged tree function for the prediction of
axillary lymph node metastasis were trained and validated using the same strategies as
described above, except for the feature selection step, which was only the removal of highly
correlated clinical characteristics. These clinical models were used to indicate the effect of
known and unknown patient’s biological covariates compared to a pure imaging-based
model as well as to rank the importance of the clinical characteristics in this dataset using
the Gini impurity method.

4.9. Statistical Analyses and Study Evaluation

The statistical analyses, including dataset splitting and balancing, feature selection,
model development, and performance evaluation, were performed in R (version 3.6.3;
http//www.r-project.org) using R studio (version 1.2.1335, Vienna, Austria) [32]. The
performance of all models was assessed using the area under the receiver operating charac-
teristics curve (AUC), sensitivity, specificity, positive predictive value (PPV), and negative
predictive value (NPV). The Spearman correlation was used to calculate the correlation
between the number of voxels per ROI and the corresponding pathological outcome. The
radiomics workflow was evaluated using the radiomics quality score (RQS) [33]. This study
followed the Transparent Reporting of a multivariable prediction model for Individual
Prognosis Or Diagnosis (TRIPOD) guidelines [34].

http//www.r-project.org
http//www.r-project.org
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5. Conclusions

In conclusion, based on our results dedicated axillary MRI-based radiomics with node-
by-node analysis did not contribute to the prediction of axillary lymph node metastasis
based on data where variations in acquisition and reconstruction parameters were not
addressed. Larger datasets combined with MRI phantom data and reproducibility studies
are necessary to determine if further radiomics research using dedicated axillary MR
images for the prediction of axillary lymph node metastasis is of added value.
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