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network is formed. Remarkably, vascularisation occurs without perturbing the intricate architecture of the neu-
rogenic niches or the emerging neural networks. We discuss the mouse hindbrain, forebrain and retina as widely
used models to study developmental angiogenesis in the mammalian CNS and provide an overview of key cellu-
lar and molecular mechanisms regulating the vascularisation of these organs.
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1. Introduction

The vertebrate central nervous system (CNS) is comprised of the
brain, spinal cord and retina. These organs are vascularised early in
their formation to ensure adequate delivery of oxygen and nutrients
to neural progenitors, newly born neurons and their associated glia
(Fig. 1A,B). Vascularisation of the spinal cord and brain is initiated
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prior to birth through the angiogenic sprouting from vessel networks
outside the CNS, in particular, the perineural vascular plexus (PNVP)
(reviewed by Ruhrberg and Bautch, 2013). Within the brain, the blood
vessels then expand into vast networks as the neural tissue grows and
concomitantly remodel into a vascular tree with arterial and venous hi-
erarchy. Ultimately, the vascular plexus in the adult brain receives blood
from two bilateral sets of sources: the two internal carotid arteries and
the two vertebral arteries. The internal carotid arteries then branch to
form the paired anterior, middle and posterior cerebral arteries that
supply the cerebrum. The two vertebral arteries join at the level of the
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Fig. 1. Schematic representation of CNS vascularisation. (A,B) Time course of blood vessel growth in the mouse embryo hindbrain (A) and postnatal retina (B). Neural progenitors are
shown in orange, the non-remodelled vascular plexus in red, arteries in dark red and veins in blue; fibronectin-expressing astrocyte networks are shown in green. (C) Mechanisms
of blood vessel growth in the CNS. Hypoxic neuroglial cells (orange) secrete angiogenic factors and extracellular matrix (ECM), indicated by a grey background gradient and as green
strands, respectively. During angiogenesis, endothelial cells (red) undergo tip cell/stalk cell specialisation; tip cell convergence for vascular circuit formation is assisted by yolk sac-derived
CNS tissue macrophages, also called microglia (blue). Arrows indicate the direction of tip cell migration. PNVP, perineural vascular plexus; SVP, subventricular vascular plexus; a, artery; v,

vein.

pons on the ventral surface of the brainstem to form the midline basilar
artery, from which the pontine, cerebellar arteries and posterior cere-
bral arteries arise to supply the cerebellum and the brain stem. At the
level of the posterior cerebral arteries, the basilar artery connects to
the circulation from the internal carotids to form an arterial ring at the
base of the brain called the circle of Willis, which provides a backup
circulation to the brain if one of the major supply arteries becomes
occluded.

Maturing CNS endothelial cells establish a blood-brain barrier (BBB)
to protect the neural tissue from variations in blood composition, to ex-
clude toxins and to maintain ionic homeostasis (reviewed in Engelhardt
and Liebner, 2014). To form this barrier, the endothelial cells develop
continuous tight junctions that prevent the paracellular movement of
molecules from the blood into the neural parenchyme. Additionally, en-
dothelial cells interact with pericytes embedded in the basal membrane
and with the end feet of astrocytes, which control blood flow, provide
metabolic support and regulate water homeostasis of the brain. The
BBB is present throughout the CNS vasculature, with the notable excep-
tion of blood vessels in the proximity of the ventricular system or in the
choroid plexus, which instead have fenestrae and discontinuous tight
junctions to allow exchange of molecules involved in the hormonal con-
trol and cerebrospinal fluid production, respectively.

Whereas the brain is vascularised by progressive branching of ves-
sels from the PNVP that ingresses into the brain, the retina is initially
supplied by two different vascular systems, both external to the retina:
the choriocapillaris that supplies the outer retina and the hyaloid arteri-
al vasculature that supplies the inner retina and lens (reviewed by
Saint-Geniez and D'Amore, 2004). Whilst the choriocapillaris persists
into adulthood, the hyaloid vasculature degenerates in most mammali-
an species, including mice and humans, concomitantly with the
formation of a complex intraretinal vasculature late in development
(De Schaepdrijver et al., 1989). The retinal vasculature is composed of
a stereotypical arrangement of arteries and veins with intervening cap-
illary beds and a tiered system of vessel beds that supplies the different
layers of the neural retina. The intraretinal vessels establish a blood-ret-
ina barrier (BRB) that fulfils an analogous function to the BBB and is sim-
ilarly composed of endothelium with tight junctions that contacts
pericytes and astrocyte endfeet. In contrast, the choriocapillaris is a fen-
estrated endothelium and is also characterised by high blood flow to fa-
cilitate the efficient exchange of gases, nutrients and catabolites, as it
needs to meet the high metabolic demand of the photoreceptors in the
outer retina. The choriocapillaris is separated from the neural retina by
a layer of retinal pigment epithelium (RPE) and by Bruch's membrane,

which is comprised of basement membrane secreted from both
the choriocapillaris and the RPE. The tight junctions between RPE cells
provide a barrier between the retina and the relatively leaky
choriocapillaris.

In the following sections, we will discuss two popular mammalian
models to study the cellular mechanisms of CNS vascularisation, the
mouse embryo hindbrain and perinatal mouse retina. These models
are particularly useful, because the planar orientation of sprouting
blood vessels and the proximity of the emerging vessel plexus to the
tissue surface allow excellent visualisation of vessel growth after
immunolabelling of vascular cells (e.g. Fantin et al., 2013; Pitulescu
et al,, 2010). Accordingly, these models have contributed vastly to our
understanding of blood vessel growth in the CNS. Indeed, the observa-
tion that growing blood vessel sprouts are organised into tip and stalk
cells with different functional specification (see below) was first de-
scribed in the hindbrain and retina of the mouse (Gerhardt et al.,
2003; Ruhrberg et al., 2002). We will additionally discuss the mouse
embryo and postnatal forebrain as a model to study CNS vascularisation.
We will then focus on several key molecular pathways that are critical
for CNS vascularisation and the cross-talk between the vascular and ner-
vous systems.

2. Models to study vascularisation in the CNS
2.1. The mouse hindbrain as a model to study CNS vascularisation

The vascularisation of the mouse hindbrain is initiated around em-
bryonic day (E) 9.5, when vascular sprouts begin to emerge from the
PNVP and grow in a radial fashion towards the ventricular zone,
where neural progenitors are thought to release vascular growth factors
(Fig. 1A,C) (e.g. Fantin et al., 2010). From around E10.25, these radial
vessels begin to sprout at near right angles and extend parallel to the
hindbrain surface. The subventricular vascular plexus (SVP) is formed
when sprouts from neighbouring radial vessels begin to anastomose
(Fig. 1A) (Fantin et al., 2010, 2013; Ruhrberg et al., 2002). This network-
ing process is promoted by yolk sac-derived tissue macrophages, the
precursors of microglia; these cells interact with endothelial tip cells
and thereby act as cellular chaperones to bridge neighbouring vessel
sprouts during fusion (Fig. 1C) (Fantin et al., 2010; Schmidt and
Carmeliet, 2010). As endothelial cells assemble into sprouts, they also
interact with pericytes, which invest the sprouts almost as soon as
they are formed and provide structural support as well as instructive
cues to the endothelial cells (Gerhardt and Betsholtz, 2003). By E12.5,
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the SVP has formed an extensive vascular network, and sprouting and
fusion moves to deeper brain layers (Fantin et al., 2010; Ruhrberg
et al., 2002).

The hindbrain model has several key advantages to study sprouting
angiogenesis (Fantin et al., 2013). Most notably, this model enables the
analysis of blood vessel growth within a relatively simple multicellular
microenvironment, in which endothelial cells interact with relatively
few non-endothelial cell types. Thus, the angiogenic hindbrain contains,
in addition to vascular cells, the neural progenitors that attract blood
vessels and a few differentiating neurons as well as microglia precur-
sors, but not the complex sets of glia and terminally differentiated neu-
rons that can be found in the angiogenic retina. In addition, the
hindbrain model permits the spatiotemporal analysis of angiogenesis
in mouse strains carrying genetic mutations that compromise viability
after midgestation and, when combined with inducible Cre-LoxP tech-
nology, can even be extended to the study of genes whose constitutive
loss causes pre-midgestation lethality. Finally, and typically of mouse
models, robust methods for wholemount labelling of endothelial cells
and interacting cell types are available and can be combined with
high-resolution imaging for reliable quantitation of angiogenic
sprouting, network density and vessel calibre.

An emerging model of CNS vascularisation is the zebrafish hind-
brain, which is particularly amenable to longitudinal live imaging with
fluorescent genetic reporters (Bussmann et al., 2011; Ulrich et al.,
2011; Umans and Taylor, 2012). Using this model, it was shown that
vessels preferentially enter the hindbrain at rhombomere boundaries
(Ulrich et al., 2011). In this context, it is interesting that rhombomere
boundaries in the chick have been described as extracellular spaces
rich in growth factor-binding proteoglycans (Heyman et al., 1995,
1993). As the hindbrain is the oldest part of the brain, its vascularisation
mechanism may be particularly well conserved amongst vertebrates. In
support of this idea, we recently identified preferential vascularisation
of rhombomere boundaries also in the mouse (Fantin et al., 2015).

2.2. The mouse forebrain as a model to study CNS vascularisation

For mouse embryo forebrain vascularisation, blood vessels begin to
sprout at E9.5 from the PNVP at the level of the presumptive ganglionic
eminence into the ventrolateral brain. Vascularisation of the forebrain
then progresses in a ventrolateral to dorsomedial direction across the en-
tire rostrocaudal axis. By E10, an SVP has formed in the ventral portion of
the forebrain, whilst the dorsal part is still largely avascular. This peculiar-
ity was recently explained by the observation that the vasculature in the
dorsal forebrain does not sprout from the dorsal PNVP, but instead derives
from the SVP of the ventral compartment (Vasudevan et al., 2008). Thus,
explant experiments showed that the dorsal region is progressively
vascularised over a period of 24 h, but only when the ventral portion is in-
cluded in the explants. By E11, an SVP has formed in both the ventral and
dorsal areas and reaches the dorsal medial wall of the forebrain
(Vasudevan et al., 2008).

Recently, angiogenesis has been successfully studied also in the
postnatal forebrain one week after birth, when angiogenesis is associat-
ed with brain growth. In this system, the distinct angiogenic steps of tip
cell selection, vascular sprout migration and lumen formation, as previ-
ously studied extensively in the embryonic brain and postnatal retina,
could be readily detected and quantified (Walchli et al., 2015).

2.3. The mouse retina as a model to study CNS vascularisation

Anatomically, the retina lies outside the brain, but it originates as an
outgrowth of the developing forebrain and is therefore considered part
of the CNS. Being the most accessible part of the CNS, it has become a pop-
ular model for studies of both physiological and pathological angiogene-
sis. Whilst the human retinal vasculature develops before birth, the
mouse retinal vasculature develops postnatally and therefore offers
unique advantage to experimental manipulation (e.g. Fruttiger, 2007;

Pitulescu et al., 2010). The position of the optic nerve head in the centre
of the eyecup lead to radial symmetry of this vascular plexus in mice,
whilst the asymmetric position of the optic nerve head and the avascular
macula result in an asymmetrically branched vasculature in humans.

Retinal vascularisation in the mouse begins on the day of birth, when
vessel sprouts emerge from the optic nerve head and spread radially
over the retina, guided by a template of fibronectin (FN)-expressing as-
trocytes (Fig. 1B) (Fruttiger et al., 1996; Ling and Stone, 1988; West
etal., 2005). During this process of radial expansion, the primary plexus
also undergoes arteriovenous differentiation (Fig. 1B) (reviewed by
Fruttiger, 2007). The setting of concurrent angiogenesis and arteriove-
nous differentiation also distinguishes the retina from the hindbrain
model of CNS vascularisation. Approximately 1 week after birth, the ra-
dially expanding primary, superficial vascular plexus has reached the
retinal periphery. At that time, new vessel sprouts emerge from this
plexus to dive into the outer retinal layers at near right angles to form
first the deep plexus and then the intermediate plexus (reviewed by
Fruttiger, 2007). Whilst it is well established that neural progenitor
cells, retinal ganglion cells and astrocytes play pivotal roles in regulating
the extension of the primary plexus (Fruttiger et al., 1996; Haigh et al.,
2003; Okabe et al., 2014; Sapieha et al., 2008), the cell types that enable
vessel sprouting into the deeper retinal layers are still poorly defined.

Similar to the hindbrain, vascular anastomosis of blood vessels is
promoted by macrophages, also called microglia, in the mouse retina
(Fig. 1C) (Fantin et al., 2010; Kubota et al., 2009; Rymo et al., 2011;
Tammela et al.,, 2011). This function of retinal macrophages, also called
microglia, can be observed in the primary vascular plexus of Csf1°P/°P
mutants with defective macrophage recruitment. In these mutants,
the primary plexus undergoes radial expansion, but has reduced vascu-
lar network complexity compared to wild type littermates (Kubota
et al., 2009; Rymo et al., 2011). However, the essential role of retinal
macrophages in early vascularisation of the retina is no longer recogniz-
able 3 weeks after birth, when Csf1°P’°’ mutants and their wild type lit-
termates appear to have similar vascular density (Kubota et al., 2009).
This may be explained by reduced pruning of vessel segments at later
developmental stages, as this would compensate for the initial decrease
in vascular network complexity in macrophage deficient-mice (Fantin
et al,, 2010). Still, it is not yet resolved whether this compensatory re-
duction in remodelling is an endothelial-intrinsic physiological adapta-
tion, and/or involves reduced macrophage-mediated vascular
remodelling, in analogy to the macrophage-driven remodelling mecha-
nism described for the hyaloid vasculature (Lang and Bishop, 1993;
Lobov et al., 2005).

The retina is a suitable model to study the spatiotemporal progression
of organ vascularisation in mouse strains with genetic mutations that are
viable or live through the perinatal period until weaning. In addition, as
for the hindbrain model, inducible Cre-LoxP technology can be used to en-
able the analysis of retinal angiogenesis in mice with mutations that cause
embryonic or early perinatal lethality when present constitutively. Also
similar to the hindbrain, the analysis of mouse retinal angiogenesis bene-
fits from robust methods for wholemount labelling of endothelial cells
and interacting cell types that can be combined with high-resolution im-
aging. However, it is less suitable to quantify network density and vessel
calibre than the hindbrain due to temporal overlap in sprouting and vas-
cular remodelling during retinal angiogenesis. Yet, this feature allows vi-
sualisation of vessel pruning and arteriovenous differentiation. The
retina is also a particularly well-suited model to study vascular pathology,
in particular with the oxygen-induced retinopathy (OIR) model, which
recapitulates hallmarks of neovascularisation in the human conditions
retinopathy of prematurity and proliferative diabetic retinopathy
(Connor et al.,, 2009; Smith et al., 1994).

3. Cellular behaviours and interactions in CNS vascularisation

Like elsewhere in the body, blood vessels in the CNS are comprised
of endothelial cells that are invested with mural cells. Although
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common to other vascular beds, some of the underlying principles that
govern cellular interactions of endothelial cells amongst each other and
with mural cells were first elucidated using the retina and hindbrain
models, such as the tip cell-stalk cell paradigm (reviewed in Geudens
and Gerhardt, 2011).

Endothelial tip cells respond to signals by initiating migration,
whilst endothelial stalk cells follow behind the tip cell and respond
to signals with proliferation and lumen formation to form the main
body of new vascular sprouts. Initial experiments linked tip cell
and stalk cell behaviour to signalling by the vascular endothelial
growth factor VEGF-A, referred to as VEGF in the remainder of this
review; thus, neuroepithelial cells in the developing brain and astro-
cytes and neurons in the retina secrete VEGF to induce angiogenic
sprouting (Figs. 1,2) (Gerhardt et al., 2003; Ruhrberg et al., 2002).
Subsequent studies showed that VEGF interacts with the notch path-
way to regulate tip cell versus stalk cell number during sprouting
angiogenesis (Hellstrom et al., 2007; Leslie et al., 2007; Suchting
et al., 2007). Studies of chimeric embryoid bodies and developing
retinal vessels further suggested that tip cells and stalk cells do not
remain fixed, but switch phenotypes over time (Jakobsson et al.,
2010). Accordingly, the tip and stalk cell phenotypes are plastic
states of functional specialisation.

Consistent with a key role for VEGF in tip cell induction in the ret-
ina and hindbrain in vivo, high levels of VEGF receptor 2 (VEGFR2)
and low levels of VEGFR1 in tip cells relative to neighbouring stalk
cells promote tip cell-mediated vessel sprouting in chimeric embry-
oid bodies (Jakobsson et al., 2010). Recent work identified additional
regulators of vessel sprouting and tip cell behaviour, such as bone
morphogenetic protein (BMP) signalling (Larrivee et al., 2012;
Moya et al.,, 2012; Wiley et al., 2011) and semaphorin 3E (SEMA3E)
signalling through plexin D1 (PLXND1; discussed in more detail
below) (Kim et al., 2012). Several other tip cell markers have also
been identified via expression analysis, and their function in CNS
angiogenesis is presently being characterised (Del Toro et al., 2010;
Strasser et al., 2010).

neuroglial cell

secreted factors:

e.g. VEGF, SEMA3A, SEMA3E,
SEMA3F, WNT7A, WNT7B, norrin,
SHH, ANG1, ANG2

transmembrane proteins:
e.g. ITGAV, ITGB8, NOGO-A

intracellular mediators:
e.g. HIF1A, sHE

In addition to the general principles of angiogenesis described
above, specialised cellular interactions between endothelial and non-
endothelial CNS cells create a unique structure called the neurovascular
unit. In this structure, endothelial cells form firm junctions with each
other and interact with other cell types, such as pericytes, astrocytes
and microglia, to create the BBB; this barrier maintains CNS homeostasis
and is also thought to regulate CNS blood flow and synaptic activity
(Hall et al., 2014; Lok et al., 2007; McCarty, 2009a). Two genetic studies
in mice showed that loss of pericytes in the CNS elevates endothelial
transcytosis (Armulik et al., 2010; Daneman et al., 2010). Accordingly,
pericyte-endothelial interactions are necessary to maintain BBB func-
tion by preventing molecule exchange across the endothelium,
complementing the barrier role of tight inter-endothelial cell junctions.
The molecular cross-talk amongst the cell types of the neurovascular
unit is only partially characterised, but is regulated by transforming
growth factor beta (TGFb), platelet-derived growth factor (PDGF),
BMP, integrins and their ligands; accordingly, disruption of these signal-
ling pathways perturbs the BBB (e.g. Allinson et al., 2012; Armulik et al.,
2010; Arnold et al., 2012; Daneman et al., 2010; Hirota et al., 2011; Li
et al.,, 2011). Various transporters complement the selectivity of the
neurovascular unit. For example, a hallmark of CNS vessels is the ex-
pression of the glucose transporter GLUT1. Mutations in the GLUT1
gene cause a rare autosomal dominant disorder termed GLUT1 deficien-
cy syndrome, which is characterised by a low cerebrospinal fluid glu-
cose concentration, due to reduced transport across the BBB (Seidner
et al., 1998). Various other transporter proteins ensure efficient efflux
of toxic products from the brain into the blood. For instance, the ATP-
dependent transporter encoded by the multi-drug resistance gene
MDRI is a P-glycoprotein with broad substrate specificity that modu-
lates the pharmacological activity of different drugs in the brain
(Schinkel, 1997). Other P-glycoproteins such as ABCG2 also promote
drug efflux (Terasaki and Ohtsuki, 2005). The physiological roles of
these proteins in the brain vasculature are poorly characterised, but
may include protection against natural toxins as well as hormone and
lipid transport (Schinkel, 1997).

microglia

secreted factors:
e.g. VEGF-C, sVEGFR1

endothelial cells

secreted factors:
e.g. VEGF, sVEGFR1

transmembrane proteins:

e.g. VEGFR1, VEGFR2, VEGFR3,
NRP1, PLXND1, FZ4, LRPS, LRP6,
GPR124, GPR126, CRIM1, TIE2

intracellular mediators:
e.g. ABL, beta-catenin

Fig. 2. Schematic illustration of the interaction between neuroglial cells, microglia and endothelial cells during CNS vascularisation. Below each cell type, we show examples of secreted
factors, their transmembrane receptors and intracellular mediators known to play fundamental roles in neurovascular interactions. The grey box illustrates the relationship of VEGF family

ligands and receptors in CNS angiogenesis.
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4. Key signals regulating CNS angiogenesis

Chick, fish and particularly genetic mouse studies have identified
a large number of signalling molecules that mostly operate in intercon-
nected regulatory networks to modulate CNS angiogenesis (Fig. 2).
Below, we review some of the best-studied pathways, with a focus on
findings obtained through mouse models.

4.1. VEGF and hypoxia inducible factors (HIFs)

Several neural cell types produce VEGF, and neuroglial VEGF is re-
quired for the ingression of blood vessels into the developing neural
tube and retinal vascularisation across different vertebrate species
(Fig. 2; e.g. Bussmann et al., 2011; Haigh et al., 2003; James et al.,
2009; Provis et al., 1997; Raab et al., 2004; Stone et al., 1995). VEGF is
differentially spliced to produce isoforms with a differential affinity for
the surrounding extracellular matrix (ECM) (Park et al., 1993), and
their bioavailability is further regulated by proteolytic mechanisms
(Houck et al., 1992; Lee et al., 2005). The human isoforms are termed
VEGF121, VEGF165 and VEGF189, reflecting the number of amino acid
residues in the mature protein. Amongst these isoforms, VEGF121 is
the most diffusible, VEGF189 binds the matrix most avidly and
VEGF165 has intermediate properties. Cleavage of the VEGF189 isoform
by matrix metalloproteases leads to the generation of VEGF113, which
is released from the matrix. The corresponding mouse isoforms are
one amino acid residue shorter and therefore termed VEGF112,
VEGF120, VEGF164 and VEGF188, respectively. The isoforms differ addi-
tionally in their ability to interact with co-receptors (see below).

Genetic manipulations that force the expression of only a single
VEGF isoform at the expense of the other isoforms do not prevent the in-
gression of vessels into the neural tissue, but affect vessel patterning and
morphogenesis within the CNS. Accordingly, hindbrain and retinal ves-
sels in Vegfa'?%?° mice expressing only the VEGF120 isoform have a
larger calibre and branch infrequently, whilst vessels in Vegfa!85/188
mice expressing only VEGF188 are thin and over-branched (Carmeliet
and Tessier-Lavigne, 2005; Ruhrberg et al., 2002; Stalmans et al.,
2002). In the quail, the localized over-expression of the matrix-
binding VEGF165 or VEGF189 in the neural tube also leads to ectopic
vessel ingression at the site of over-expression, whilst the more diffus-
ible VEGF121 does not have this effect; moreover, local VEGF blockade
prevents vascular ingression (James et al., 2009).

In the neonatal mouse retina, a collection of the three VEGF isoforms
is produced and displayed by an astrocytic network that is located be-
neath the expanding vascular plexus, and also by retinal ganglion cells
and neural cells in the inner nuclear layer (Scott et al., 2010; Stenzel
et al,, 2011; West et al., 2005). Even though astrocytes were initially
thought to provide the main source of VEGF for the developing primary
plexus, the ablation of astrocyte-derived VEGF only mildly decreases en-
dothelial cell proliferation and survival as well as vascular spreading
(Scott et al.,, 2010; Weidemann et al.,, 2010). The heterozygous deletion
of VEGF from the neuroretina also perturbs the formation of the super-
ficial plexus very mildly, in this case by slightly delaying vascular re-
modelling and increasing artery/vein crossings (Haigh et al., 2003;
Okabe et al., 2014). In contrast, deleting one Vegfa allele from the
neuroretina strongly delays the vascularisation of the outer layers of
the retina (Haigh et al., 2003; Raab et al., 2004). The homozygous dele-
tion of VEGF from the neural compartments caused early embryonic
lethality, precluding the study of retinal vascularisation (Haigh et al.,
2003).

In addition to receiving paracrine VEGF signals for angiogenesis, en-
dothelial cells themselves are an important source of VEGF to promote
long-term vascular homeostasis (Choi et al., 2007). VEGF expression in
retinal endothelial cells is induced by the transmembrane protein
cysteine-rich motor neuron 1 (CRIM1) to maintain blood vessel stability
(Fig. 2) (Fan et al., 2014). Endothelium-derived VEGF has also

been shown to enable the development of the correct neuronal
cytoarchitecture in the brain cortex (Li et al., 2013).

In agreement with the finding that astrocytic VEGF is dispensable for
retinal angiogenesis, the astrocyte-specific deletion of the hypoxia-
inducible transcription factors HIF1A and HIF2A, known regulators of
Vegfa transcription, also does not perturb normal retinal vascular devel-
opment (Scott etal.,, 2010; Weidemann et al., 2010). Instead, HIF2A con-
trols the expression of VEGF in astrocytes and Mueller cells to promote
vessel survival and neovascularization in the OIR mouse model
(Weidemann et al., 2010) and in the hypoxic retina with defective
norrin signalling (see below) (Rattner et al,, 2014). Even though astro-
cytic HIF1A is not required for normal retinal angiogenesis, HIF1A is
also expressed abundantly in the neuroretina, especially retinal progen-
itor cells (RPCs), and the deletion of HIF1A from the neuroretina severe-
ly perturbs retinal angiogenesis (Fig. 2) (Caprara et al., 2011;
Nakamura-Ishizu et al., 2012). In these cells, HIF1A does not regulate
VEGF expression; instead, it induces the expression of the astrocyte mi-
togen PDGF-A to promote the formation of the astrocyte template that
then promotes retinal vascularisation (Nakamura-Ishizu et al., 2012).

4.2. VEGF tyrosine kinase receptors

VEGF binds three tyrosine kinase receptors that are all important for
angiogenesis: VEGFR1 (FLT1), VEGFR2 (FLK1, KDR) and VEGFR3 (FLT4)
(Fig. 2). VEGFR2 is the main signal transducing VEGF receptor in endo-
thelial cells in vitro and essential for endothelial cell survival and
blood vessel formation in vivo; accordingly, loss of VEGFR2 causes em-
bryonic lethality at E9.5 in the mouse (reviewed in Koch et al., 2011).
Due to their early embryonic lethality, VEGFR2 knockout mice are not
suitable to study the specific roles of VEGFR2 signalling in CNS vascular
development. However, use of a function-blocking antibody and, more
recently, the selective ablation of VEGFR2 in endothelial cells, revealed
that VEGFR2 is essential for tip cell formation and vascular outgrowth
in the retina (Benedito et al., 2012; Gerhardt et al., 2003; Okabe et al.,
2014; Zarkada et al., 2015). Moreover, Okabe and colleagues recently
showed that retinal neurons express high levels of VEGFR2 to sequester
and titrate VEGF in the retina to limit angiogenesis in the outer retinal
layers, consequently restricting angiogenesis to the inner retinal layer
during primary plexus formation (Okabe et al., 2014).

VEGFR3, best known as a VEGF-C receptor in lymphangiogenesis, is
highly expressed in angiogenic sprouts (Fig. 2), and the genetic
targeting of VEGFR3 is embryonic lethal (E10.5) due to severe cardio-
vascular defects (Dumont et al., 1998). Still, VEGFR3 function in angio-
genesis is not completely understood, which is in part attributable to
its involvement in several different modulatory processes. Function-
blocking antibodies decreased sprouting, vascular density, vessel
branching and endothelial cell proliferation in the mouse retina
(Tammela et al., 2008), similar to the heterozygous deletion of its ligand
VEGF-C (Tammela et al., 2011). However, the genetic deletion of
VEGFR3 in endothelial cells led to excessive angiogenic sprouting and
branching in both the mouse embryonic hindbrain and postnatal retina
(Tammela et al., 2011). Accordingly, it has been proposed that VEGFR3
on the one hand positively regulates angiogenesis induced by VEGF-C,
whilst on the other hand it inhibits excessive angiogenesis by reinforc-
ing notch signalling in response to macrophage-derived VEGF-C, to pro-
mote the fusion and stabilisation of vascular sprouts (Fig. 2) (Tammela
etal, 2011). Endothelial VEGFR?2 is also thought to be a critical mediator
of VEGF-induced DLL4-notch signalling in sprouting retinal vasculature
(Jakobsson et al., 2010). Surprisingly, VEGFR3 was found to compensate
for endothelial VEGFR2 in maintaining DLL4-notch signalling in the ret-
inal vasculature (Benedito et al., 2012), although this finding was re-
cently contested (Zarkada et al,, 2015).

The role of VEGFR1 in angiogenesis is complex, with multiple roles
due to the presence of alternative splicing of the Vegfr1 gene into a
short secreted form termed soluble VEGFR1 (sVEGFR1 or sFLT1) and a
long transmembrane form with a tyrosine kinase domain (Fig. 2)
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(Olsson et al., 2006). Whilst germline Vegfir1 '~ embryos lacking both
splice forms die due to abnormal vascular development caused by ex-
cessive endothelial cell differentiation (Fong et al., 1995), mice lacking
only the intracellular kinase domain appear healthy (Hiratsuka et al.,
1998). These observations are generally thought to indicate an impor-
tant role for sVEGFR1 in modulating VEGF availability to VEGFR2. In
agreement, SVEGFR1 is a negative modulator of vascular sprout forma-
tion and branching morphogenesis in an embryoid body model of an-
giogenesis and during intersomitic vessel sprouting from the dorsal
aorta (Kearney et al., 2004). Moreover, the ubiquitous deletion of
Vegfr1 in postnatal mice increased VEGFR2 accumulation and signalling
and therefore enhanced angiogenesis in a broad range of neonatal and
adult tissues, including the retina and brain (Ho et al., 2012). In addition,
arecent report suggests that retinal myeloid cells suppress angiogenesis
in the outer retina by releasing sVEGFR1 (Fig. 2) (Stefater et al., 2011).

Even though the soluble VEGFR1 isoform inhibits angiogenesis by
sequestering VEGF, an in vitro study suggested that full length VEGFR1
containing the intracellular kinase domain promotes VEGFR1/VEGFR2
heterodimerisation and VEGFR2 transphosphorylation when endotheli-
al cells are co-stimulated with both placental growth factor (PGF) and
VEGF (Autiero et al., 2003). A role for VEGFR1 signalling in endothelial
cells also agrees with the observation that mice genetically engineered
to express only sSVEGFR1 at the expense of the transmembrane isoform
have reduced VEGFR2 signalling, fewer endothelial cells and thinner
vessels (Hiratsuka et al., 2005). Taken together, the findings on
VEGFR1 signalling raise the possibility that vascular phenotypes in full
VEGFR1 knockouts reflect the net outcome of losing a strongly anti-
angiogenic function carried by sSVEGFR1 and a modestly proangiogenic
function of the full length isoform.

4.3. Neuropilins (NRPs), neuropilin-binding VEGF isoforms
and semaphorins

NRP1 is a non-catalytic transmembrane protein shown to be essen-
tial for the vascularisation of the mouse spinal cord (Kawasaki et al.,
1999), hindbrain (Gerhardt et al., 2004), forebrain (Gu et al., 2003)
and retina (Fantin et al., 2014; Gelfand et al., 2014; Raimondi et al.,
2014; Fantin et al., 2015; Aspalter et al., 2015), as well as pathological
retina vascularisation in the OIR model (Raimondi et al., 2014; Rattner
et al., 2014). In contrast, the perisomitic regions, located outside the
CNS, are vascularised well in the absence of NRP1 and the vessels in
these regions have only minor morphological defects (Ruhrberg et al.,
2002). It is not yet known why NRP1 is indispensable for CNS vascular-
isation, but is less important for some other vessel beds.

Initially, NRP1 was initially studied in the nervous system as an ad-
hesion molecule and a receptor for a member of the class 3 semaphorin
family, termed SEMA3A, and later discovered to also act as a VEGF165
receptor (reviewed in Schwarz and Ruhrberg, 2010). Both types of li-
gands have been implicated as modulators of endothelial cell behaviour
through NRP1 binding in vitro and in vivo (see below). VEGF121 can
also bind NRP1 in vitro, although with 50-fold lower affinity than
VEGF165, because it lacks an exon 7-encoded domain that enhances
NRP1 binding (Parker et al., 2012). In agreement with these biochemical
data, we recently used the hindbrain model to show that VEGF121 is not
able to bind NRP1 at detectable levels in vivo (Tillo et al., 2015). More-
over, VEGF121 cannot signal through NRP1 to compensate for loss of
the larger VEGF isoforms, as shown for different types of neurons lack-
ing VEGFR1 or VEGFR2 (Cariboni et al., 2011; Erskine et al., 2011).
Whilst these observations in neural systems suggest that VEGF121 is
also unlikely to signal through NRP1 during vascular patterning
in vivo, it has been difficult to demonstrate this directly due to the pres-
ence of VEGFR1 and VEGFR?2 in endothelial cells. In addition to VEGF165,
VEGF189 can also bind to and signal through NRP1 in vivo; however,
this has so far only been shown in neurons of VEGF164-deficient mice
(Tillo et al., 2015).

The analysis of mouse knockouts lacking SEMA3A revealed that this
NRP1 ligand is dispensable for brain vascularisation and blood vessel
formation elsewhere in the developing mouse (Bouvree et al., 2012;
Vieira et al.,, 2007). In agreement, inactivation of semaphorin binding
to NRP1 does not affect brain angiogenesis or vascular development in
the early mouse embryo, even if the related neuropilin NRP2 is also ab-
lated (Gu et al., 2005; Vieira et al., 2007). Yet, in a mouse model of
oxygen-induced retinopathy, in which retinal vessels grow abnormally
into the vitreous, SEMA3A secreted by ischemic neurons (Fig. 2) acts as
a vasorepulsive force that misdirects new vessels towards the vitreous
(Joyal et al., 2011). Accordingly, SEMA3A administration into the vitre-
ous normalises VEGF-induced pathological vessel growth in mice (Yu
etal., 2013).

Interestingly, the related molecule SEMA3F has also been described
to possess vasorepulsive activity during physiological angiogenesis in
the retina (Buehler et al., 2013). Whilst SEMA3A expression was exclu-
sively seen in the inner retina, SEMA3F expression was observed pre-
dominantly in the outer retina (Fig. 2) and in the RPE, where it
inhibited sprouting angiogenesis of both retinal and choroidal endothe-
lial cells to maintain the physiologic avascularity of the outer retina
(Buehler et al., 2013). Whether NRP2, a receptor for SEMA3F, is involved
in this process remains to be elucidated.

High concentrations of SEMA3A increase vascular leak in the skin of
adult mice via NRP1 (Acevedo et al., 2008). More recently, SEMA3A was
also shown to induce vascular hyperpermeability in the CNS. SEMA3A
expression is upregulated in the neural retina during the early
hyperglycaemic phase of diabetes, when it instigates retinal vascular
leak via NRP1 (Fig. 2) (Cerani et al.,, 2013). SEMA3A also functions as a
vascular permeability factor in the mouse brain, where it contributes
to brain damage caused by cerebral ischemia (Hou et al., 2015). Based
on work with cultured brain endothelial cells, this study also suggested
that SEMA3A decreases endothelial barrier function through NRP2/
VEGFR1 receptor complexes, independently of NRP1 (Hou et al.,
2015). Therefore, the relative importance of NRP1 versus NRP2 for
SEMA3A-induced vascular hyperpermeability in the CNS remains to
be investigated further. In conclusion, SEMA3A appears to play pivotal
roles in the CNS vasculature in pathological settings, but not during
physiological CNS vascularisation.

As semaphorin signalling through NRP1 does not impair physiolog-
ical brain vascularisation, but loss of NRP1 from endothelial cells causes
vascular brain defects similar to those caused by loss of NRP1 in all cells,
it was originally proposed that the vascular phenotype of mice lacking
NRP1 in endothelial cells is explained by defective VEGF signalling
through NRP1 (Gu et al., 2003). Yet, Vegfa'?%'2% mice lacking heparin/
neuropilin binding VEGF isoforms have milder CNS vascular defects
than mice lacking NRP1 (Gerhardt et al., 2004; Ruhrberg et al., 2002).
Moreover, mice with a mutation in the VEGF-binding pocket that abro-
gates VEGF164 binding have milder defects in CNS angiogenesis than
Nrp1-null or endothelial-specific Nrp1-null mice (Fantin et al., 2014;
Gelfand et al., 2014). In particular, two different mouse mutants have
been generated that carry point mutations in the VEGF-binding domain
of NRP1, Y297A (Fantin et al., 2014) and D320K (Gelfand et al., 2014),
with the former also resulting in the downregulation of overall NRP1
levels. Whilst the hypomorphic Y297A mutation caused minor defects
in hindbrain vascular complexity, the D320K mutation did not affect
vascularisation of either the embryonic or the postnatal forebrain
(Fantin et al., 2014; Gelfand et al., 2014). However, both mutants
showed similarly reduced vascular extension and reduced artery/vein
formation in the retinal primary plexus (Fantin et al., 2014; Gelfand
et al,, 2014), in agreement with the previously reported phenotype of
Vegfa'2%/12% mice that lack the NRP1-binding VEGF isoform VEGF164
(Stalmans et al., 2002).

Together, the observation of only mild disruption of vessel growth in
VEGF-binding deficient NRP1 mutants raises the possibility that NRP1
promotes CNS angiogenesis through additional, semaphorin- and
VEGF-independent signalling mechanisms. In agreement, we have
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recently shown that NRP1 enables CNS angiogenesis by promoting ECM
signalling (Raimondi et al., 2014). In particular, we found that the ECM
component FN induces paxillin phosphorylation and actin remodelling
in cultured endothelial cells through a pathway that depends on the in-
teraction of NRP1 with the non-receptor tyrosine kinase ABL1 and the
small RHO-GTPase CDC42, two proteins that regulate actin cytoskeleton
remodelling (Fantin et al., 2015; Raimondi et al., 2014). We further
found that the NRP1-driven pathways via ABL1 and CDC42 are active
during retinal angiogenesis, when FN is deposited ahead of the vascular
front by astrocytes and around growing blood vessels. Thus, pharmaco-
logical inhibition of ABL kinases activity or CDC42 activation in the post-
natal retina perturbed vessel sprouting and branching similarly to the
genetic targeting of NRP1 in retinal endothelial cells (Fantin et al.,
2015; Raimondi et al., 2014). However, which specific ECM components
bind NRP1 during angiogenesis remains to be identified. NRP1 has also
been implicated as an effector of notch activation to modulate TGFb sig-
nalling for tip-stalk cell specialisation during retinal angiogenesis
(Aspalter et al., 2015).

SEMASE is the only class 3 semaphorin that does not bind to a
neuropilin receptor, but instead binds directly to the plexin PLXND1
(Gu et al., 2005). In the developing mouse retinal vasculature, high
VEGF levels emanating from the avascular retinal periphery induce
PLXND1 expression in endothelial cells at the vascular front in a
VEGFR2-dependent manner (Kim et al., 2011). Loss of function studies
in the mouse further demonstrated that neuroretinal SEMA3E signals
to endothelial PLXND1 to upregulate DLL4 expression at the vascular
front, whereby the resulting increase in endothelial notch signalling im-
pairs the formation of tip cells and tip cell filopodia (Fig. 2) (Kim et al.,
2011). Even though SEMA3E does not directly bind to NRP1, NRP1 can
convert SEMA3E/PLXND1-mediated axonal repulsion into attraction in
CNS neurons (Chauvet et al., 2007). Whether similar mechanisms oper-
ate in endothelial cells to modulate SEMA3E signalling is not known. Re-
markably, as observed for SEMA3A, the intravitreal administration of
SEMA3E can normalise VEGF-induced pathological vessel growth in
the mouse model of OIR (Fukushima et al., 2011), raising the possibility
that SEMA3E could be used as a potential therapeutic tool to fine tune
VEGF-induced vessel growth in the ischemic nervous system.

4.4. WNT signalling

A growing body of evidence implicates WNT signalling in vascular
development of the brain and retina. During canonical WNT signalling,
extracellular WNT proteins bind a 7-transmembrane (7-TM) receptor
of the frizzled (FZ) family, often referred to as the G protein-coupled re-
ceptor (GPCR) family. FZ receptors function together with a co-receptor
of the low-density lipoprotein receptor-related protein (LRP) family,
LRP5 or LRP6, to activate transcription via the cadherin-associated pro-
tein beta 1 (beta-catenin, CTNNB1). Specifically, the activated receptor
complex recruits dishevelled (DSH), which inhibits a destruction com-
plex that otherwise ubiquitinates cytoplasmic beta-catenin. When its
degradation is prevented, beta-catenin translocates to and accumulates
in the nucleus to regulate the transcription of WNT target genes. In the
CNS of developing mice, the genetic loss of WNT7B, in particular in the
context of additional WNT7A loss, or the vascular-specific loss of beta-
catenin reduce neural tube vascularisation (Fig. 1) (Daneman et al.,
2009; Stenman et al., 2008). Moreover, the vessels that do ingress are
dilated and haemorrhagic (Daneman et al., 2009; Stenman et al.,
2008). WNT signals from the neuroepithelium (Ma et al., 2013) also sta-
bilise the nascent BBB by promoting the expression of GLUT1 and tight
junction genes of the claudin family in vascular endothelium (Daneman
et al,, 2009; Liebner et al., 2008; Stenman et al., 2008; Zhou et al., 2014).

In congenital Norrie disease, loss of the non-WNT FZ4 ligand norrin
impairs retinal vascularisation and thereby causes blindness; norrin ac-
tivates the beta-catenin pathway through its receptor FZ4 and LRP5,
akin to the canonical WNT signalling pathway (Fig. 2) (Xu et al.,
2004). A similar receptor complex operates in the neural tube, although,

unlike in the retina, LRP6 can compensate for LRP5 (Fig. 2) (Wang et al.,
2012; Ye et al., 2009; Zhou et al., 2014). In genetically mosaic retinal
vessels, wild type endothelial cells initially protect Fz4~~ endothelial
cells, but the Fz4~/~ endothelial cells are progressively eliminated
(Wang et al.,, 2012). This finding suggests a quality control mechanism
that removes endothelial cells defective in WNT signalling, perhaps to
protect BRB integrity (Wang et al., 2012). Effectors of this pathway
may include the receptors DR6 and TROY, because they are transcrip-
tional targets of beta catenin and required for both proper brain angio-
genesis and BBB formation (Tam et al., 2012). However, the ligand that
activates the DR6 and TROY receptors has not yet been identified.

4.5. Orphan 7-TM receptors

Other 7-TM receptors, whose endogenous ligands have not yet been
identified and are therefore commonly referred to as orphan GPCR pro-
teins, also promote CNS angiogenesis (Fig. 2). For example, it was re-
cently shown that the orphan 7-TM receptor GPR126 promotes
endothelial cell proliferation, migration and tube formation, as well as
mouse retinal angiogenesis, by stimulating VEGFR2 expression through
STAT5/GATA2-mediated transcription (Cui et al,, 2014). GPR124 is an-
other orphan 7-TM receptor that is essential for proper neural tube vas-
cularisation (Anderson et al., 2011; Cullen et al., 2011; Kuhnert et al.,
2010). Global loss of GPR124 in mice delays blood vessel ingression
into the developing neural tube; moreover, vessels that eventually pop-
ulate the neural tube form abnormal glomeruloid tufts that are prone to
haemorrhages despite pericyte recruitment (Daneman et al., 2010;
Kuhnert et al, 2010). Conversely, gain-of-function experiments
demonstrated that endothelial GPR124 overexpression causes
hypervascularisation of the adult neocortex (Kuhnert et al., 2010).

GPR124 does not promote endothelial cell proliferation, but instead
enhances directional vessel sprouting towards unidentified forebrain-
derived signals in vitro by activating CDC42 to remodel the actin cyto-
skeleton (Kuhnert et al., 2010). Additionally, GPR124 may modulate
CNS angiogenesis by regulating DLL4, TGFb and/or WNT1 signalling
(Anderson et al., 2011). A microarray gene expression study of forebrain
endothelium indicated increased DLL4 expression and hyperactivation
of the TGFb pathway in Gpr124~~ mutants (Anderson et al., 2011),
and GPR124 was also reported to modulate TGFb1 signalling in
human umbilical vein endothelial cells (Nguyen et al.,, 2011). However,
it is not presently known if this cross-regulation is relevant to CNS vas-
cularisation in vivo. In contrast, the role of GPR124 as a coactivator of ca-
nonical WNT signalling has been examined in more detail for CNS
angiogenesis (Zhou and Nathans, 2014). GPR124 genetically interacts
with WNT7A and WNT7B and enhances WNT signalling through FZ1
or FZ4 together with LRP5 or LRP6 (Posokhova et al., 2015; Zhou and
Nathans, 2014). In agreement with an important role for GPR124 in
beta-catenin activation during CNS angiogenesis in vivo, loss of
GPR124 leads to a severely malformed vasculature in the medial gangli-
onic eminence, and this defect could be rescued through forced
stabilisation of beta-catenin (Zhou and Nathans, 2014). In contrast,
norrin appears to be more important in canonical WNT signalling via
FZ4 and LRP5 in the hindbrain and spinal cord, explaining why hind-
brain angiogenesis is only mildly affected in Gpri24-null mutants.
Norrin is not expressed in the forebrain (Ye et al,, 2011). Interestingly,
however, forced norrin expression in the forebrain can rescue angiogen-
esis defects in Gpr124~~ mutants (Zhou and Nathans, 2014), suggest-
ing that CNS vascular patterning relies on the correct spatiotemporal
expression pattern of these ligands, rather than a specific property of
WNT7A/B versus norrin signalling.

4.6. Other mechanisms
In addition to the molecules described in the previous sections, a

number of other signalling pathways dependent on neurovascular in-
teractions contribute to CNS angiogenesis. For example, various
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integrins have been implicated in neurovascular cell adhesion during
brain and retinal angiogenesis (McCarty, 2009b). In particular, neurogli-
al expression of ITGAV and ITGBS is required for both brain and retinal
angiogenesis, as well as vascular stability (Fig. 2) (Arnold et al., 2012;
Arnold et al., 2014; Hirota et al., 2011; McCarty et al., 2005, 2002; Zhu
et al., 2002).

In the developing mouse, angiopoietin 1 (ANG1) is abundantly
expressed in motor neurons at a time when its main receptor TIE2 is
expressed in endothelial cells within the neural tube (Fig. 2) (Nagase
et al., 2005). Furthermore, vessel sprouting from the PNVP into the
trunk neural tube is impaired in Tie2-null embryos (Sato et al., 1995),
and PNVP vessels are mispatterned in both Ang1 and Tie2 knockouts
(Sato et al., 1995; Suri et al., 1996). In the developing retina, ANG1 can
activate integrin signalling in astrocytes in a TIE2-independent fashion
to augment fibronectin synthesis and enhance endothelial migration
along fibronectin scaffolds (Lee et al.,, 2013). The alternative TIE2 ligand
angiopoietin 2 (ANG2) is not detected in the embryonic spinal cord
(Nagase et al., 2005). In contrast, ANG2 is constitutively expressed in
retinal neurons, blood vessels and pericytes after birth (Fig. 2)
(Hackett et al., 2000; Lee et al., 2013; Park et al., 2003) and regulates an-
giogenic remodelling and vascular regression in the postnatal eye. Thus,
the hyaloid vasculature does not regress after birth in Ang2 knockout
mice, resulting in a phenotype akin to that observed in infants with per-
sistent foetal vasculature (PFV); moreover, Ang2 deficient mice showed
delayed and incomplete development of the superficial vascular bed of
the retina (Gale et al.,, 2002). ANG2 also promotes retinal neovasculari-
zation, but not oxygen-induced vascular regression in the OIR model
(Hackett et al., 2002).

The vascularisation of the developing brain also requires hedgehog
signalling to modulate angiogenic sprouting and subsequent BBB estab-
lishment. The pharmacological inhibition of sonic hedgehog (SHH) im-
pairs vessel ingression by blocking induction of motor neurons in the
neural tube (Nagase et al., 2005). As neural tube motor neurons secrete
the angiogenic factor ANG1, SHH signalling is indirectly required for
CNS angiogenesis by establishing the necessary neuronal populations
that guide sprouting vessels (Nagase et al., 2005). Furthermore, SHH
signalling stabilises the nascent BBB through two distinct, yet compli-
mentary mechanisms. First, hedgehog signalling from BBB-associated
astrocytes reduces vascular permeability by initiating junctional protein
expression in BBB endothelial cells (Alvarez et al., 2011). Secondly,
hedgehog signalling limits chemokine secretion from endothelium
and thus prevents the autoimmune attacks observed in some
neuroinflammatory conditions (Alvarez et al.,, 2011).

Soluble epoxide hydrolase in Muller glia converts docosahexenoic
acid into 19,20-dihydroxydocosapentaenoic acid, which inhibits y-
secretase to suppress endothelial notch signalling (Fig. 2) (Hu et al.,
2014). This in turn enhances tip cell formation and filopodia extension
and therefore vascular growth in the postnatal retina (Hu et al., 2014).
The genetic, viral or antibody-based inhibition of NOGO-A dramatically
increased angiogenesis in the postnatal forebrain and retina, which was
explained by a role for neuron-derived NOGO-A in inducing the retrac-
tion of endothelial lamellipodia and filopodia (Fig. 2) (Walchli et al.,
2013). How these pathways cooperate with those described above
will undoubtedly be an important focus of future research for
neurovascular biologists.

5. Conclusions and unanswered questions

The cellular interactions and molecular signals critical for CNS vascu-
larisation and the formation of the neurovascular unit are being eluci-
dated at an accelerating speed, and we are beginning to appreciate the
significance of defective vascular development in the emergence of
CNS pathologies. Yet, it is likely that additional signalling mechanisms
and interactions remain to be identified before we will fully understand
how the cross-talk of neural and vascular cells regulates blood vessel in-
gression into the CNS and the formation of a fully functional BBB.

Ultimately, understanding these signalling pathways will reveal how a
defective neurovascular unit impacts on CNS function during aging
and in neurological disease. It will also benefit the development of
new therapeutic strategies aimed at delivering drugs through the BBB,
as well as restoring or improving vascular supply to ischemic retina
and brain in diseases such as diabetic retinopathy, age-related neurode-
generation and stroke. In the mature brain, neuronal activity stimulates
changes in blood flow that can be measured by fMRI, but how this flow
information is sensed and leads to structural changes in blood vessels is
largely unknown and therefore requires further research. Finally, the
specific features of the tumour microenvironment that promote the dif-
ferentiation of tumour cells into endothelium, and the functional conse-
quence of this transdifferentiation for glioblastoma remain to be
determined.
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