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Abstract: The subcellular locations of proteins are closely related to their functions. In the past few
decades, the application of machine learning algorithms to predict protein subcellular locations has
been an important topic in proteomics. However, most studies in this field used only amino acid
sequences as the data source. Only a few works focused on other protein data types. For example,
three-dimensional structures, which contain far more functional protein information than sequences,
remain to be explored. In this work, we extracted various handcrafted features to describe the protein
structures from physical, chemical, and topological aspects, as well as the learned features obtained
by deep neural networks. We then used these features to classify the protein subcellular locations.
Our experimental results demonstrated that some of these structural features have a certain effect on
the protein location classification, and can help improve the performance of sequence-based location
predictors. Our method provides a new view for the analysis of protein spatial distribution, and is
anticipated to be used in revealing the relationships between protein structures and functions.

Keywords: subcellular location prediction; protein structure; deep learning; graph neural network;
protein data bank

1. Introduction

Given that subcellular/organelle structures in cells provide specific physiological
and functional environments, the determination of the subcellular locations of proteins
is believed to be an important aspect of the understanding of their functions [1,2]. In the
past decades, automated bioinformatics algorithms have gained popularity in location
determination tasks.

Most of the methods that were developed for the prediction of protein subcellular
localizations employed amino acid sequences as the information source because the protein
sequence data are abundant and easy to access [3]. The theoretical basis of the predictions
is that one protein is transported into specific subcellular structure(s) according to its signal
peptide, which is a short segment buried in the amino acid sequence. Some prediction
methods, such as Hum-mPLoc 3.0 [4] and SCLpred [5], constructed sequence features
through a target signal search, motif analysis, or homology transfer, while some works in
recent years, like DeepLoc [6] and HumDLoc [7], employed deep learning models to learn
the protein features automatically.

Three-dimensional (3D) protein structures, as a complex representation of proteins,
contain spatial folding information (such as secondary structure elements, topological
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domains, and the protein surface) that largely manipulate biological functions, such as
binding specificity and signal transduction. Given that the 3D structures stored in the
protein data bank (PDB) database [8,9] are increasingly intensive, some studies have begun
to use these 3D structures as source data to predict protein topological domains [10–12],
molecule interpretation [13], the amino acid environment [14], enzyme types [15,16], and
protein functions [17,18].

Signal patches in the tertiary structures can be indicators for subcellular location [19–21].
A signal patch is a specific 3D arrangement on the surface of a folded protein, and can
be discontiguous, in contrast to signal peptides. To date, few works have attempted
to incorporate protein structure information into a location analysis. The description
of structures include the amino acid composition of secondary structures (α-helix, β-
strand, and loop) [22,23], the amino acid composition of surface residues [24], and the
average chemical shift related to secondary structures [25]. These features can aid location
classification models, but all of them are manually defined and only focus on single aspects,
which are too simple to sufficiently grasp global structural information.

In this paper, we seek to construct a comprehensive representation for 3D protein
structures, which can perform well in the classification of protein subcellular locations.
These features are designed or have learned to describe information underlying the 3D
structures in terms of the topological structures, arrangement, and physicochemical prop-
erties of atoms and other organelle-related characteristics. According to our experimental
results, some of the structural features were demonstrated to be effective in protein location
prediction, and can increase the classification performance when combined with sequence
features. This work provides a new perspective on protein subcellular location research.

2. Materials and Methods
2.1. Dataset

In this study, we constructed a new protein structure benchmark dataset from the PDB
database (https://www.rcsb.org, accessed on 28 October 2021), which stores hundreds of
thousands of biological macromolecules obtained through experimental methods, such as
X-ray crystallography, nuclear magnetic resonance spectroscopy, and electron microscopy.
The dataset was generated by applying PISCES (Dunbrack Lab, Philadelphia, PA, USA) [26]
with an identity cutoff of 25% to a previous dataset [27] in order to remove redundant
protein sequences. The final benchmark dataset has 1052 proteins. Each of the proteins has
a PDB file, containing the primary and secondary structures of the protein, an atom list
and the residues they belong to, and atomic 3D coordinates. It is noted that most of the
protein structures in the PDB are fragments that do not cover the entire amino acid chains.
In our dataset, about 15% of the proteins have complete structures (covering over 99% of
the amino acid chain). Detailed information is shown in Supplementary Table S1.

These proteins localize specifically to one of four major subcellular locations, namely
the nucleoplasm, plasma membrane, cytosol, and mitochondria. The subcellular loca-
tions were derived from the Swiss-Prot database (https://www.uniprot.org, accessed on
28 October 2021), a widely used protein sequence database [28]. In order to ensure the
quality of the data, we only considered the subcellular locations labeled with ECO: 0000269,
which indicates that the locations are supported by experimental evidence. The number of
proteins in each subcellular location is shown in Table 1.

Table 1. Number of proteins in our dataset.

Subcellular Location Number of Proteins

Nucleoplasm 385
Plasma membrane 281

Cytosol 275
Mitochondria 111

Total 1052

https://www.rcsb.org
https://www.uniprot.org
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2.2. Protein Structural Features

A robust feature description of 3D protein structures is important for effective protein
classification. In this paper, we tested eight handcrafted and learned descriptors for
proteins, and all of them can ensure invariance to structure rotation. Table 2 summarizes
the descriptors, which were divided into four categories, namely physical features, chemical
features, topological features, and deep learning features. The features are described below,
individually.

Table 2. Summary of the feature types.

Feature Category Descriptor Brief Description Feature Dimension

Physical features

Contact matrix Statistics of distances between amino acid
pairs 1680

Dihedral angle features
Frequency domain and wavelet transform

features extracted from dihedral angle
curves along protein chain

30

Sub-structure frequency Frequencies of small sub-structures of one
protein in clusters 184

Chemical features Chemical features Composition and chemical properties of
surface amino acids 42

Topological features
Gauss integrals Type and number of crossings in planar

projections of protein curve 31

Persistent homology Features extracted from persistent barcodes
of topological objects in protein structure 34

Deep learning features

Convolutional neural
network features

Features learned by a convolutional neural
network with contact distances and

dihedral angles as input
1000

Graph convolutional
neural network features

Features learned by a graph convolutional
network with attention layers 84

2.2.1. Physical Features

The spatial position of each amino acid in the protein chain determines the protein’s
3D shape [29]. Here, we understood the shape of the proteins at the atomic level and
extracted the relevant features. We used three physical descriptors, namely the contact
matrix, dihedral angle features, and sub-structure frequency features.

Contact Matrix

For each protein, we constructed a contact matrix to describe the spatial distances
among the amino acids [15]. In order to calculate the precise distances, each amino
acid was represented by its unique Cα atom, which is a carbon atom connected to the
functional group in the amino acid backbone (Figure 1a). All of the distance values
were measured among the Cα atoms. For each amino acid pair, the distribution of the
distances was divided into eight bins ranging from 0 to 64 Å (Figure 1b). Thus, we
constructed an 8 × 20 × 20 contact matrix for each protein. Considering that the distance
matrix is symmetrical, we removed the repeated elements, and the dimensionality became
1680 (8 × 210). In order to reduce feature redundancy, we used stepwise discriminant
analysis [30] to select the most informative features, and this led to a 216–256 dimensional
feature vector for each protein (which varies in 10-fold cross validation).
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Figure 1. Illustration of the structural protein features. (a) Definition of the Cα atom and dihedral angles φ and ψ. A pair 
of amino acids are shown, and the two brown circles represent side-chain functional groups. (b) Distance matrix calculated 
for the protein C1-THF synthase (PDB id: 1a4i). The enlarged bar chart of alanine–alanine is given. (c) Curves of dihedral 
angles. The horizontal axis represents the chain of protein 1a4i. (d) Process of detecting globally representative sub-struc-
tures for frequency feature extraction. Sub-structures were selected and used in a two-step clustering step to obtain rep-
resentative patterns. Here, the sub-structures of all of the proteins in our dataset were visualized by t-SNE. Different colors 
represent different clusters, and some of the most representative sub-structures were shown. (e) Definition of the surface 
amino acids. If an amino acid has neighbors at all of its 12 spatial areas, it is not a surface amino acid; otherwise, it is. (f) 
Barcodes of the persistent homology of protein 1a4i. 
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Dihedral angles describe the deflection of adjacent amino acids in the protein back-
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Figure 1. Illustration of the structural protein features. (a) Definition of the Cα atom and dihedral angles ϕ and ψ. A pair of
amino acids are shown, and the two brown circles represent side-chain functional groups. (b) Distance matrix calculated for
the protein C1-THF synthase (PDB id: 1a4i). The enlarged bar chart of alanine–alanine is given. (c) Curves of dihedral angles.
The horizontal axis represents the chain of protein 1a4i. (d) Process of detecting globally representative sub-structures for
frequency feature extraction. Sub-structures were selected and used in a two-step clustering step to obtain representative
patterns. Here, the sub-structures of all of the proteins in our dataset were visualized by t-SNE. Different colors represent
different clusters, and some of the most representative sub-structures were shown. (e) Definition of the surface amino acids.
If an amino acid has neighbors at all of its 12 spatial areas, it is not a surface amino acid; otherwise, it is. (f) Barcodes of the
persistent homology of protein 1a4i.
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Dihedral Angle Features

Dihedral angles describe the deflection of adjacent amino acids in the protein back-
bone. The dihedral angles are highly correlated with the secondary structures of proteins,
providing important information about local tertiary structures [31]. Each amino acid link
has two dihedral angles, namely ϕ and ψ (Figure 1a). ϕ is determined by Cα-N-C-Cα,
and is the angle between the Cα-N-C plane and the N-C-Cα plane. ψ is determined by
N-C-Cα-N, and is the angle between the N-C-Cα plane and the C-Cα-N plane. The two
angles used the N-C-Cα plane as a base, and the values of the two dihedral angles are
between −180◦ and 180◦. We firstly drew two curves of dihedral angles for each protein
chain (Figure 1c) and then extracted 15 frequency domain and wavelet transform features
(Supplementary Table S2) from each curve as the protein features.

Sub-Structure Frequency

Some specific sub-structure components of the 3D structures dominate the protein
functions [32], so we proposed to use the frequencies of compact sub-structures to represent
the protein (Figure 1d). First, we detected compact sub-structures based on the distance
matrices. The size of each distance matrix was the length of the protein chain, and the
elements were the spatial distances of the corresponding amino acid pairs. Each matrix
was walked through by a sub-matrix window of size 10 × 10, with a step size of 5. The sub-
structures that have an average distance less than 15 Å were selected as tightly connected
structures. Some selected sub-structures were composed of discontiguous amino acids.

After extracting the compact sub-structures of all of the proteins, we tried to cluster
the sub-structures. Each sub-structure was represented by the 100-dimensional expanded
distance matrix elements and 20-dimensional amino acid composition (AAC) features. The
total number of sub-structures was over one million, and the large number of sub-structures
hindered the implementation of direct clustering, so we used a two-step clustering method.
In the first step, hierarchical clustering was performed on each protein individually, and
the clustering centroids of the sub-structures for each protein were obtained. The local
clustering centroids were believed to be representative of the source proteins. The second
step performed a hierarchical clustering on only the local clustering centroids of all of the
proteins, and obtained the global clustering centroids. The distance thresholds of the two
hierarchical clusterings were determined by a grid search.

Finally, the sub-structure frequency features were constructed by assigning each sub-
structure to the closest cluster centroid and counting the proportion of sub-structures of
one protein across the clusters.

2.2.2. Chemical Features

The chemical properties of the surfaces of protein molecules determine the interaction
between the proteins and the outside world [33]. As such, this study attempted to use the
composition and chemical properties of the protein surface to represent the proteins.

The surface amino acids of a protein are defined by measuring whether the amino acid
is fully surrounded. We took the Cα atom of each amino acid as the center of gravity, and
constructed a spherical coordinate system (Figure 1e). The spherical coordinate system was
then divided into 12 spatial areas equally. If at least one area does not have any neighbor
Cα atoms, then the center amino acid was regarded as a surface one.

The 20-dimensional AAC features of the surface amino acids were calculated. In
addition, according to the chemical properties of the amino acid [17] (Supplementary
Table S3), we calculated 22 chemical features, such as chargeability, polarity, hydrophobicity,
and hydrophilicity. For each protein, the chemical features were defined by the expectations
of amino acid properties:

f (i) =
n

∑
j=1

(
αj × p(i)j

)
(1)
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where f (i) represents the i-th chemical feature, n is the number of amino acids (n = 20), αj is

the proportion of the j-th amino acid, and p(i)j is the value of the i-th chemical property of
the j-th amino acid in Supplementary Table S3.

2.2.3. Topological Features

The topology of a protein structure is a simplified description of its fold, including
the amino acid nodes and their relative positions and links [34]. Here, we constructed the
protein features by analyzing the 3D structures in terms of the positional relationship of
the topological structures.

Gauss Integrals

The Gauss integrals’ features were obtained using Gauss integrals (SourceForge,
San Diego, CA, USA) to calculate the global writhe of the space curve [35]. We used
it to describe the degree of twisting of the 3D structures of the proteins. The protein
backbones were represented as space curves connecting the Cα atoms. A set of defined
quantitative features describing crossings in the planar projections of the protein curves
were extracted [36]. The dimensionality of the Gauss integral descriptor was 31.

Persistent Homology

Persistent homology features [37] show the persistence of topological components in
different scale spaces. Persistent homology involves two concepts, namely the homology
group and connectivity number [38]. The process of calculating persistent homology
features began by regarding each amino acid as a 3D ball centered at the Cα atom. When
increasing the radii of these balls, the boundary of one ball would include the center of
another Cα, and the two amino acids would be considered as being linked. With increasing
radii, topological objects—such as links, rings, and cavities—continuously appear over
a range of spatial scales. The appearance and disappearance of these topological objects
were recorded as barcodes. An example of the barcodes of one protein is shown in Figure
1f, where each barcode panel represents a specific topology type. In this process, the
homology group and connectivity number of the amino acids would be changed. We used
34-dimensional features—including the number of the barcodes, the number of starting
and ending points of the barcodes in a certain radius range, the minimum starting points,
and the maximum ending points—to describe the barcodes and represent the proteins.

2.2.4. Deep Learning Features

Compared with the manually designed features, deep learning methods can automat-
ically extract intrinsic information from the 3D protein structures. Here, we used deep
convolutional neural networks (CNNs) and graph convolutional neural networks (GCNs)
to learn the structural features.

CNN Features

Given that some CNN architectures have been demonstrated to be effective in extract-
ing protein structure information, we used transfer learning based on a previous CNN
network of protein function classification [15]. The input of the network was a set of
two-dimensional feature maps constructed by the contact distances between the amino
acids and dihedral angles. The network architecture employed three computational blocks
of consecutive convolutional, batch normalization, rectified linear unit activation, dropout
and max-pooling layers, and a fully connected layer. Based on the pre-trained network,
we replaced the output layer, froze the parameters of the previous layers, and used our
training data to fine-tune the parameters of the last two layers. The Softmax loss function
was employed, and stochastic gradient descent was used for the parameter optimization.
After the fine-tuning, we used the feature map of the penultimate layer as the protein
features. The dimension of the extracted CNN features was 1000, and was reduced to
108~151 (which varies in 10-fold cross validation) by using stepwise discriminant analysis.
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GCN Features

One alternative way to show the 3D structure of a protein is a graph; as such, we
attempted to use the GCN model [39] to create protein representations (Figure 2). In
order to convert each protein into a graph, we used compact sub-structures as nodes,
and considered the close sub-structures as connected. The selection of the sub-structures
used the same method as that in the sub-structure frequency feature extraction. The only
difference was that the threshold of the average inner distance for the screening of compact
sub-structures was set as 10 Å to ensure sufficient sub-structures. Two sub-structures
were connected with an edge if the distance between them was less than 10 Å, where
each centroid was the average coordinate of all of the Cα atoms in one sub-structure. On
average, one protein graph has 118 nodes and 1907 edges.
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importance of node j to node i, Ni represents the neighborhood of node i, (hi || hj) represents the concatenation of hi and hj,
and u and W represent the weights to transform features into higher-level features, and would be optimized in the training
phase. The function softmax of Ni represents the normalizing of the attention coefficients across all of the neighbors of node
i, and σ(.) is a nonlinearity function (here, we used ReLU).

The architecture of the graph neural network is illustrated in Figure 2. In order to
construct the network inputs, each sub-structure node was encoded by the 20-dimensional
AAC features and 22-dimensional chemical property features, as described previously. The
network has three graph attention layers in series [40]. These layers enable the calculation
of different weights for different nodes in a neighborhood in the graph convolution, and
have been demonstrated to be effective in graph classification [41,42]. In order to aggregate
all of the nodes in one graph, the features were then averaged across all of the nodes, and
the maximum of each dimension of the features was retained and concatenated with the
average feature vector. The following was the output classification layer. The weights in the
network were optimized using the ADAM method, based on the training data. After the
optimization, 84 features from the aggregation layer were extracted as the protein features.

3. Results and Discussion
3.1. Classification Results of Single Descriptors

In order to test the ability of the above descriptors to distinguish protein subcellular
locations, we used t-distributed stochastic neighbor embedding (t-SNE) to visualize the
dimension reduction projection of the handcrafted descriptors (Figure 3). The cytosol and
mitochondria were severely mixed, and some descriptors such as sub-structure frequency
and Gauss integrals can discriminate the plasma membrane and nucleoplasm relatively
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well. The visualization results indicated that the protein structure information, to some
extent, can distinguish different protein subcellular location patterns.
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In addition, we employed a support vector machine (SVM) and random forest (RF) to
build protein location classifiers for these handcrafted descriptors. Libsvm-3.24 was used
to build the SVM models [43]. The model parameters including g and c in the SVMs, and
number of trees in the RFs was determined by a grid search. A 10-fold cross validation
was employed, in which the protein dataset was randomly partitioned into 10 equally
sized subsets. Of the 10 subsets, a single subset was retained as the validation set, and the
remaining nine subsets were used as training data. The process was repeated 10 times,
with each of the subsets being used once as the validation set. We used the accuracies and
F1 scores obtained by the 10-fold cross validation to evaluate the model performance.

Figure 4a shows the classification results of the handcrafted features, as well as the
deep neural network results. On one hand, the RFs slightly outperformed the SVM models,
and all of the features of the four aspects showed some discriminative ability. The Gauss
integral descriptor with the RF achieved the best performance, with an accuracy of 60.16%
and an F1 score of 0.54. Meanwhile, the designed sub-structure frequency features obtained
a promising result. Both of the Gauss integrals and the sub-structure frequency features
attempted to describe structural components, indicating that this aspect could be effective
in protein subcellular location classification. On the other hand, the deep neural networks
did not achieve the expected high performance. One possible reason is that the amount of
training data was limited, which suggests that we need to collect a large number of protein
structures for training in future works.

3.2. Results of Fusing Different Descriptors

In order to build an efficient feature set of protein structures for location analysis, we
performed feature fusing and tested whether multiple descriptors can yield better results.
Two fusion methods, namely feature concatenating and decision voting, were used. The
first method concatenated the feature vectors after the feature selection, and then fed them
into classification models, while the second method averaged the output scores from the
models trained on individual descriptors. Here, the derived CNN and GCN features were
also used in the feature fusion. The heat maps in Figure 4b show the F1 scores obtained by
combining each two of the descriptors. The decision voting led to higher performance than
the feature concatenating overall. For the combination performance, the best combination
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is sub-structure frequency combined with Gauss integrals’ features, and the comparison
results are shown in Figure 4a.
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and network models. NU: nucleoplasm; PM: plasma membrane; CY: cytosol; MI: mitochondria. ‘+’ represents the fusion of
two feature sets. (b). The F1 scores obtained by the SVM models of the fusing descriptors.

Furthermore, we tested the combinations of three or four descriptors. The combi-
nation of the sub-structure frequency, Gauss integrals, and chemical features was the
best-performing, and can achieve improvements of 3.27% accuracy and 0.028 F1 score
compared to the best single descriptor (Figure 4a). The confusion matrices shown indi-
cate that the combined models could enhance the prediction and alleviate the impact of
data imbalance. The combinations of more than three descriptors cannot achieve better
performance, which is likely because of information redundancy. Thus, the constructed
optimal feature set for the protein structure would contain three descriptors, namely the
sub-structure frequency, Gauss integrals, and chemical features. The features describe the
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protein structures from different views, such that their heterogeneity and complementarity
help to enhance the accuracy of the combined models.

3.3. Improvements by the Incorporation of Sequence Features

We also investigated the improvements achieved when incorporating the structure
information with protein sequence features. Here, two sequence-based predictors of
protein subcellular location, namely, Hum-mPLoc 3.0 [4] and DeepLoc [6], were utilized.
The former proposed a multi-view feature set, including residue statistical features, gene
ontology annotation correlation features, and peptide-based functional domain features,
while the latter derived features from a well-trained deep learning model that utilized a
recurrent neural network to process the sequences. We combined the optimal structure
feature set (containing the sub-structure frequency, Gauss integrals, and chemical features)
with these sequence-based models at the feature and decision levels, respectively. The
feature-level fusion employed multiple kernels for the SVMs [44] and performed feature
concatenating for the RF models, while the decision level used weighted fusion according
to the model performance [45]. Compared with feature concatenating, the multi-kernel
learning allowed us to adjust the weighting between the sequence and structure features,
and can achieve a higher incorporation performance (Supplementary Figure S1).

The results of the 10-fold cross validation are presented in Figure 5. Three observations
can be found. First, incorporating the structure features achieved a better performance than
the sequence-based models. A paired t-test was conducted on the output probability scores
to measure whether the differences between the models before and after incorporating
the structure features are significant. Most of the cases obtained a p-value of <0.001. This
finding demonstrated that feature extraction from 3D protein structures could capture a
large amount of information that cannot be learned from sequences. Second, the fusion
at the feature level achieved a better performance than that at the decision level, as the
multi-kernel mechanism can work well in feature fusion. Third, the kernel weights which
searched for Hum-mPLoc 3.0 and the structure features were 0.83 and 0.17, respectively,
while those for DeepLoc and structure features were 0.57 and 0.43, respectively. This
finding indicated that the two parts of the information played important roles in the
protein location classification.
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In order to obtain an intuitional observation of the predictions, we also listed some
specific protein structures in Figure 6. For each of the four subcellular locations, the top
three structures that had the highest prediction scores from the best-performing combined
model are shown. It can be seen that the listed plasma membrane structures are related to
soluble fragments of the proteins, rather than the fragments embedded in membranes like
transmembrane regions. The reason was that only 20 membrane proteins in our dataset
have structures covering the transmembrane regions, and the classification models are
likely to be manipulated by the features of the non-membrane regions. The structures in
our dataset were released in PDB between 1992 and 2020, and most of them were resolved
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by X-ray diffraction or nuclear magnetic resonance. It is challenging for these methods to
resolve membrane proteins because of their large size and poor crystallization. Although
the use of cryo-electron tomography (cryo-EM) increased the number of membrane protein
structures in recent years, the proportion was still relatively small. In our dataset, there
are only nine proteins, of which five are membrane proteins, as solved by the cryo-EM
method. It is anticipated that more complete structures of membrane proteins could be
resolved in the future, and the characteristics which differentiate them from non-membrane
proteins could be extracted and used in the classification. In addition, the protein examples
of cytosol and mitochondria seemed quite similar in their structures, which might be the
reason why the two classes were indistinguishable in our experiments. We also provided
one example structure for each subcellular location in Figure 6b, where the prediction
classes of these example structures were corrected after incorporating the structure features,
showing that the structure information played quite an effective role in their location
classification.
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Figure 6. Protein structure examples of different subcellular locations. (a) The top three structures with the highest predicted
probabilities for each subcellular locations are listed. The predicted probabilities are from the model that combined Hum-
mPLoc 3.0 and the structure information at the feature level. (b) Structure examples that were wrongly predicted by
sequence based predictors but received correct predictions from the incorporated models.
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4. Conclusions

In this work, we constructed a multi-view representation for 3D protein structures
and demonstrated its utility for protein subcellular location analysis. This work has two
main contributions. First, this study built a structure representation from a wide variety
of perspectives, which facilitated the search of location-related information in the protein
structures. Some approaches, including the calculation of sub-structure frequency and the
GCN framework, were designed and first used in profiling the protein localization. Our
experimental results suggest that some methods can achieve promising results. Second,
this study demonstrated that incorporating 3D structure information can improve the
performance of protein subcellular localization classification. Hence, protein structures
might contain some location-related information (like signal patches) that do not exist in
amino acid sequences.

Currently, the discovery of the relationship between 3D protein structures and subcel-
lular locations is still in its infancy stage. Our future work will search for more effective
structure descriptors and further explore the use of deep neural networks in this field.
Although the performance of the current neural networks is not good, the models are
likely to benefit from more structure data in future works. The predictions of the entire
human proteome by AlphaFold, which is a state-of-the-art machine learning model for
protein structure prediction, have been made freely and openly available very recently [46],
giving an abundant data source for the improvement of our network models. Other efforts
to enhance the network performance can be made in terms of graph construction, node
representation, network architecture, and more skills for model training. The attention
mechanism and gradient-weighted class activation map in the network model can help
detect dominant and informative sub-structures for the elaboration of their functions in
protein localization in the future.
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