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Abstract: Keratinization is a tissue adaptation, but aberrant keratinization is associated with skin
disorders such as ichthyoses, atopic dermatitis, psoriasis, and acne. The disease phenotype stems from
the interaction between genes and the environment; therefore, an understanding of the adaptation
machinery may lead to a new appreciation of pathomechanisms. The KEAP1/NRF2 signaling
pathway mediates the environmental responses of squamous epithelial tissue. The unpredicted
outcome of the Keap1-null mutation in mice allowed us to revisit the basic principle of the biological
process of keratinization: sulfur metabolism establishes unparalleled cytoprotection in the body
wall of terrestrial mammals. We summarize the recent understanding of the KEAP1/NRF2 signaling
pathway, which is a thiol-based sensor-effector apparatus, with particular focuses on epidermal
differentiation in the context of the gene-environment interaction, the structure/function principles
involved in KEAP1/NRF2 signaling, lessons from mouse models, and their pathological implications.
This synthesis may provide insights into keratinization, which provides physical insulation and
constitutes an essential innate integumentary defense system.
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1. Introduction and Overview

Keratinization as an Environmental Response: Beneficial or Detrimental

“The stratum corneum (SC) is a magnificent example of the successful adaptation of a tissue.
Its efficient function is a prerequisite for life itself. We depend on its control of the movement of
water through the skin and on its protective role in the prevention of penetration by pathogens
or harmful substances. Apart from its functional importance, there is no escaping the fact that the
most common skin disorders (psoriasis, eczema, inherited disorders of keratinization, acne) are
characterized by abnormal keratinization and/or scaliness.” This quotation appears in the preface of
the book titled “Stratum Corneum,” which was initially published in 1982 [1]. The SC functions as a
specialized insulation barrier that gives rise to unparalleled mechanical resilience and impermeability [2].
The functional and structural analogy is the “bricks and mortar” model; bricks correspond to corneocytes
(terminally differentiated keratinocytes), and mortar represents lipid bilayers provided from the lamellar
granule secretory system located in the uppermost living layer, the stratum granulosum (SG) [2].
Over the last four decades, medical genetics has identified a range of predisposing factors that shape
disease phenotypes. The prime example would be autosomal recessive congenital ichthyosis (ARCI),
which is caused by inborn errors in the formation/function of the SC lipid permeability barrier [3].
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The genotype-phenotype correlation in ARCI unequivocally suggested that the functional “mortar”
is mandatory for desiccation tolerance. Although the degrees of severity may vary among afflicted
individuals, the universal phenotype is hyperkeratosis; however, it should be noted that dry, scaly skin
is a consequence of biological responses to a breach of the SC permeability barrier, rather than a
functional deficit [4–6]. Similarly, autosomal dominant ichthyosis vulgaris (IV; common dry skin)
requires factors other than filaggrin (Flg)-null variants [7] to manifest as atopic dermatitis (AD;
eczema) or other allergic conditions [8]. Therefore, as Marks and Plewig noted [1], keratinization
and its disorders encompass essential environmental responses, the product of a gene-environment
interaction [9].

Because the epidermis comprises a frontline defense system and interacts with the external
environment, it is not surprising that xenobiotic keratinocyte responses affect keratinization,
which involves both phase I [10] and phase II metabolism [11]. However, the profound relationship
between keratinization and the Kelch-like erythroid cell-derived protein with the cap ’n’ collar
homology-associated protein 1 (KEAP1)/NFE2-related factor 2 (NRF2) signaling pathway, demonstrated
in KEAP1-deficient mice [11], was unexpected at the beginning of the twenty-first century, even for
keratinocyte biologists [12].

The KEAP1/NRF2 signaling pathway, a thiol-based sensor-effector apparatus [13], promptly
responds to the redox environment and acclimates the organism to the ever-changing external
environment. Although redox-based regulation of gene expression maintains tissue homeostasis by
promoting epidermal barrier repair [14,15], it is becoming increasingly apparent that aberrant activation
of NRF2 signaling could be detrimental and could lead to a plethora of skin diseases [11,16–18].
This review aims to discuss the KEAP1/NRF2 signaling pathway’s function with a particular focus
on epidermal homeostasis and disease as a successful adaptation [1,2] or a gene-environment
mismatch [9], respectively.

2. Keratinization at a Glance

Epidermal Differentiation; a Search for the Thiol-Rich Protein

Since the early twentieth century, it has been commonly understood that epidermal differentiation
involves sulfur metabolism; thiol (-SH) groups of the proliferative layer are converted to covalent
disulfide (-S-S-) bridges of the keratin molecule [19]. This simple concept remains central to our
understanding of the most critical epidermal terminal differentiation process, keratinization. Although
it had long been known that keratinized materials, such as the callus, are markedly insoluble against
alkaline cleavage of disulfides [20], the other crucial biochemical property of keratinization remained
an enigma. In the 1970s, it was found that membrane-like insoluble materials, i.e., cornified cell
envelopes (CEs), are a mixture of proteins bound together via ε-(γ-glutamyl) lysine cross-linkages [21].
Later, using keratinocytes cultured under submerged conditions, involucrin (IVL) was identified as a
soluble cell envelope precursor [22]. However, “true” keratinization is promoted by the ambient air
that oxidizes thiols [20], and a thiol-rich major CE precursor was hypothesized [19,23–26]; this was
confirmed with its actual discovery in 1990 when Mehrel and Roop et al. cloned and characterized the
long-sought sulfur-rich CE precursor loricrin (LOR) [27].

In the epidermis, keratinocytes that exit from the proliferative basal layer migrate upward through
the SG, which is the last living layer [28]. Before being completely enucleated and flattened [29],
long-chainω-hydroxyceramides are covalently attached to CE scaffolds, such as IVL, on the corneocyte
cell surface, via ester cross-linkage [2,30]. Subsequently, cytoskeletal proteins are further condensed via
ε-(γ-glutamyl) lysine [20] and disulfide cross-linkages [19], leading to a CE formation that is observed as
electron-dense deposits that replace the keratinocyte cell membrane. This critical differentiation process
mostly occurs in the SG and allows keratinocytes to withstand the harsh, arid external environment [2]
(Figure 1). This differentiation process may be analogous to vertebrate evolution, given that terrestrial
hominins are considered to have emerged from aquatic ancestors [31]. Along the same line of reasoning,
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a recent piece of phylogenic evidence suggests that only the amniotes (birds, reptiles, and mammals),
but not fish or amphibians, have the gene cluster known as the epidermal differentiation complex
(EDC) [32]. The SG is rich in keratohyalin granules that come in two flavors: the histidine-rich F-granule
and the sulfur-rich L-granule [33]. Keratohyalin granules thus harbor distinct gene products derived
from the epidermal differentiation complex [33]; the F-granule contains a cationic protein that aggregates
the keratin intermediate filament, filaggrin (FLG) [34], while the L-granule contains a sulfur-rich
protein LOR [27]. The insolubility of corneocytes is primarily attributable to the ε-(γ-glutamyl) lysine
cross-linkage formed between LOR and other prospective cross-linkage partners, keratins K1/K10
or FLG [35,36]. Thus, LOR organizes the higher-order structure of corneocytes [37]. Upon exposure
to ambient air, LOR stabilizes corneocytes via extensive disulfide (-S-S-) cross-linkage formation,
and possibly auto-oxidation [27,37], thus completing epidermal differentiation.
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Figure 1. Keratinization at a glance. A thiol (-SH) gradient through the epidermis provides unparalleled
cytoprotection. Following a microenvironmental rise in Ca2+, TGMs catalyze ε-(γ-glutamyl) lysine
(protein-protein) cross-linkages and ester (lipid-protein) cross-linkages above the SS. Upon exposure to
the ambient air, the keratinocyte cytoskeleton undergoes extensive disulfide formation in the SG and
stabilizes corneocytes.

3. The KEAP1/NRF2 Signaling Pathway and the EDC

Gene-environment interaction is a core concept of Darwinian evolution and can be applied
universally to a myriad of biological phenomena [38]. Every gene strategically undergoes adaptive
changes, such as duplication or deletion, in response to selective pressure from a given environment
and results in functional specialization and diversification [39]. However, because generations of
recombination events are required to ensure efficient passage of germline mutations to progeny on a
large enough scale, we are also equipped with another, rapid mode of adaptive responses: regulation
of gene expression.

3.1. The Evolution of the EDC Gene Cluster; Analogy to the β-globin Gene Cluster

The “β-like-globin” genes (hemoglobin β-chain gene cluster) are a classic example of
gene-environment interaction. Living organisms have acquired multitiered adaptive strategies
and adapted to variable degrees of oxygen demand, such as development/growth [40], hypoxic
environments [41], or endemic malaria [42]. The recognition and characterization of the locus control
region for transcriptional regulation accelerated the investigation of the cis-acting element located in
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the 5′ region of the β-globin gene cluster, leading to the identification of transcription factors (TFs)
such as GATA-binding protein 1 (GATA1), nuclear factor erythroid 2 (NFE2), and NFE2-related factor 2
(NRF2) [43,44]. It was assumed that basic leucine zipper (bZIP) TFs specifically regulate erythropoiesis;
however, in contrast to germline deletion of Gata1 [45] or Nfe2 [46], Nrf2-deficient mice exhibited
normal erythropoiesis [47]. Rather, the tissue distribution of NRF2 is ubiquitous, and the NRF2-binding
sequence resembles antioxidant response elements (AREs) [13], which are the cis-acting elements
for phase II detoxifying enzyme expression. This reasoning by Ito et al. led to the conclusion that
NRF2 is a general regulator of phase II detoxification [48] and the characterization of the KEAP1/NRF2
signaling pathway. Cysteine residues of KEAP1 act as sensors for electrophilic assault and NRF2 is
the effector [13,49]. The thiol-rich protein KEAP1 subjects NRF2 to ubiquitin-mediated proteasomal
degradation in the cytosol and represses NRF2 in steady-state [13]. The nucleophilic KEAP1 residues
sense various electrophilic assaults, and then NRF2 coordinately induces a battery of cytoprotective
genes [13].

Epithelial tissues constantly undergo detoxification [48]. Indeed, NRF2-deficient mice are
susceptible to chemical carcinogens [50–52] that activate phase II detoxification. However,
the consequence of the loss of the cytosolic NRF2 inhibitor KEAP1 (thus also known as INRF2)
was unexpected; constitutive activation of NRF2 signaling leads to postnatal lethality [11]. Although
Keap1-deficient mice exhibit signs of robust phase II detoxification, uncontrolled orthokeratinization
obstructs the esophagus/forestomach and leads to malnutrition [11]. This unexpected phenotype
remains a very important lesson for keratinocyte biologists [12]; however, the forced epidermal
expression of the mutant Nrf2 that lacks the KEAP1-interacting domain (∆Neh2-Nrf2) [53] did not
reproduce the stenosis of the upper digestive tract [17,53]. In contrast to humans, mice have a
well-developed forestomach covered with keratinizing stratified squamous epithelium [54]. Despite
being at the inner wet surface, the murine forestomach expresses LOR and could mimic the
epidermis [55]. The evidence thus leads to the following conclusions: (i) The KEAP1/NRF2 signaling
pathway does not affect keratinocyte differentiation but primarily alters adaptive responses following
epidermal development [17,53]; (ii) ARCI-like hyperkeratosis likely reflects excessive antioxidative
responses that produce thiol-rich proteins, which are then subjected to autooxidation upon exposure
to ambient air in the SG [11,17,53,56,57]; (iii) Because NRF2 protects against hemodynamic shear
stress [58], the keratinized obstruction of the digestive tract could be a consequence of peristaltic
movement, which produces intermittent mechanical loads that could be sensed by cysteine residues
on KEAP1 [11,12].

Having defined the KEAP1/NRF2 signaling pathway as a regulator of keratinization, we will now
discuss the EDC gene cluster, which spans 1.6 Mb of human chromosome 1q21 (mouse 3q) (Figure 2) [59].
The EDC contains three gene clusters encoding (i) CE precursor proteins IVL, LOR, small proline-rich
proteins (SPRRs), and the late cornified envelope (LCE); (ii) S100 calcium-binding proteins containing
EF-hand domains; (iii) and the “fused gene” proteins [S100 fused type proteins (SFTP)], such as FLG,
hornerin, and repetin that evolved from (i) and (ii) [60]. Analogous to the β-globin gene cluster [61],
CE precursor genes are considered to have evolved from common ancestors [62]. The major CE
precursors Ivl and Lor share structural similarities. The C- and N-terminal domains of the EDC gene
products have characteristic arrangements of glutamine and lysine residues, which are required for
the formation of powerful ε-(γ-glutamyl) lysine covalent cross-linkages in the CE [62]. In contrast
to the conserved terminal domain features, internal domains constitute the modern fragments and
thus reflect adaptive gene evolution [62–64]. For instance, the bulk sequence of Lor harbors many
tandem peptide quasi-repeats of aliphatic (glycine/serine/cysteine)n, which differ markedly in size and
sequence between the mouse and human homologs (Figure 3a) [37]. Similar genetic divergences are
noted in Ivl, which shows substantial variance even among the hominoids, such as the human and
the gorilla [61]. Finally, recent phylogenetic evidence suggests that: (i) Lor emerged from a common
ancestor of modern amniotes during the acquisition of a fully terrestrial lifestyle [32] and (ii) cetaceans
such as whales or dolphins lost Flg [65] or caspase 14 [66], an FLG-degrading enzyme that produces
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the natural moisturizing factors in the corneocyte [67]. These deletions were likely advantageous to
adapt the skin to an aquatic lifestyle. This evidence corroborates the notion that the EDC gene cluster
is one of the most rapidly evolving genetic loci among terrestrial vertebrates [68]. Therefore, analogous
to the β-globin gene cluster [61], to learn the evolution of the EDC gene cluster is to acknowledge the
history of repeated attempts of environmental adaptation in the animal kingdom [39].
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Figure 3. (a) The primary structure of murine LOR, SPRR2, and LCE1. LOR is a major CE component
that contains high amounts of glycine (G; 55%), serine (S; 22%), and cysteine (C; 7%) arranged in tandem
peptide quasi-repeats. These repeats are separated by highly conserved lysine (K) and glutamine
(Q) residues that are substrates for transglutaminase-mediated ε-(γ-glutamyl) lysine cross-linkage.
The consensus sequence of the SPRR2 family comprises almost entirely of proline (P), Q, K, and C.
The consensus sequence of the LCE1 family suggests high amounts of P (~12%), as well as G (~20%)
and S (~25%), suggesting that LCE1s have evolved as hybrids between LOR and SPRR2s. The H/R-rich
region is reminiscent of FLG, which provides the precursor of natural moisturizing factors. (b) Schematic
representation of altered redox homeostasis in LKO epidermis.

3.2. Lessons from Lor-Deficient Mice: Quasi-Normalcy is not Synonymous with Normalcy

The development of the SC permeability barrier is a highly ordered and patterned process [2].
The mammalian epidermal permeability barrier develops in the dorsal-to-ventral direction and
coincides with LOR expression [69,70], suggesting that LOR is a vital SC component. However,
Lor-knockout (LKO) mice exhibit a very mild phenotype [71], which was rather unexpected at that
time [72]. Although corneocyte maturation (cytoskeletal cross-linkage; the brick) is impaired [36,71,73],
loss of the major CE protein does not cause desiccation (caused by a leaky “mortar”) or adaptive
hyperkeratosis that is the hallmark feature of a defective barrier, i.e., a cracked “mortar” [4,6,74].
Instead, simply stated, the absence of a heavily thiolated epidermal component in the uppermost
living layer presumably causes redox imbalance and activates the KEAP1/NRF2 signaling pathway
(Figure 3b) [14,15].

Overexpressed Lor in Keap1-null mice led us to investigate the upstream 5’ regions of CE
precursor genes [11], and functional AREs were found in the putative promoter regions [11,14,15].
The NRF2-mediated adaptive stress response upregulates Sprr2s [14,71] and Lce1s [14], which are
structurally related to LOR in terms of amino acid composition or predicted protein structure
(Figure 3a) [14]. These “alternative” CE precursors are small in terms of molecular weight
(around 10 kDa) and they are robustly induced during stress conditions such as ultraviolet (UV) B
irradiation [75,76], wound healing [77], or tape-stripping [78]. Thus, LKO SC, in which these kinds of
LOR “mimicry” are abundant [14,15,55,71], appears to be under a kind of constitutive oxidative injury,
and the KEAP1/NRF2 signaling pathway is major backup machinery [14,15] behind the very mild,
“quasi-normal” [55] skin phenotype.

Experiments in LKO mice have led to the following three conclusions [20]:
(i) LOR is dispensable for the lipid-based epidermal permeability barrier [69,71], in contrast to the

earlier CE components [79].
(ii) LOR serves as an adapter that organizes substrates for ε-(γ-glutamyl) lysine cross-linkages in

the CE [35,36].
(iii) LOR expression appears to constitute a major epidermal antioxidative response that protects

against a range of xenobiotic insults [20].
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4. The KEAP1/NRF2 Signaling Pathway and Epidermal Homeostasis

Other than the phase II detoxification [48] or keratinization [11], the KEAP1/NRF2 signaling
pathway contributes to a myriad of environmental responses [13]. Although no apparent developmental
defects have been noted in association with germline Nrf2-null mutations in mice [48] or humans
(OMIM *600492), Nrf2-null mice remain an attractive mouse model to understand the NRF2-mediated
biological responses [48]. Conversely, it is becoming clear that aberrantly activated NRF2 signaling
pathway can also be toxic to humans [80], and particular attention has been paid in the field of cancer
research [81]. Moreover, Cre-mediated gene deletion in mice enabled us and others to circumvent the
lethal phenotype resulting from the germline Keap1-null mutation [11,82] and dissect the consequence
of the NRF2 activation in a cell lineage-specific manner [83]. Here we (i) summarize the structural and
functional basis of the KEAP1/NRF2 signaling pathway [13]; (ii) revisit the principle of keratinization
focusing on sulfhydryl (-SH) and disulfide (-S-S-) [19], in connection with the thiol-based sensor-effector
apparatus [13]; (iii) review the findings from mouse models in which the KEAP1/NRF2 signaling
pathway is genetically manipulated with a particular focus on the epidermis.

4.1. Structural and Functional Basis of the KEAP1/NRF2 System: Form Follows Function

In the late 1990s, Ito et al. noticed that the canonical binding sequences of bZIP TFs were somewhat
similar to the antioxidant responsive element (ARE) (also termed the electrophile response element,
EpRE) [84,85], which is a critical cis-element of phase II detoxifying gene expression regulation [48].
This deduction led to the landmark discovery of KEAP1, which specifically binds with NRF2 and acts
as a cytoplasmic inhibitor [50]. In steady-state conditions, NRF2 is constitutively poly-ubiquitinated
by the cullin 3 (CUL3)-KEAP1 E3 ubiquitin ligase complex and subjected to proteasome-mediated
degradation [13]. Electrophilic assaults or other redox-disruptive stimuli cause conformational changes
in KEAP1, thus blocking the breakdown of NRF2 (Figure 4A) [13,49].
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Figure 4. The structural and functional basis of the KEAP1/NRF2 signaling pathway. (a) The basics
of the KEAP1/NRF2 signaling pathway. In the basal state, NRF2 is subjected to constant
ubiquitin-proteasome-mediated proteolysis. NRF2 forms a cytosolic complex with KEAP1 via the
DLG and ETGE motifs. In the induced state, modification of cysteine residues in KEAP1 causes a
conformational change and liberates NRF2 from constant degradation, leading to nuclear accumulation
and transactivation. (b) Schematic representation of the primary structure of NRF2 and KEAP1.
Representative functions are indicated.
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4.1.1. Structural Basis of NRF2

The TF NRF2 is a member of the cap´n´collar (CNC) family. Initially, Ito et al. characterized six
conserved domains with distinctive functions, Nrf2-erythroid cell-derived protein with CNC homology
1 (Neh1) to Neh6 in 1999 [49] (Figure 4B). Neh1 is the DNA-binding domain that interacts with the MAF
bZIP TF, a heterodimerization partner of NRF2 [13]. The C-terminal Neh3 interacts with chromodomain
helicase DNA-binding protein 6 and enhances the expression of a prototypical NRF2 target gene
NAD(P)H quinone dehydrogenase 1 (NQO1) [86]. The Neh4/Neh5 complex interacts with CREB binding
protein [87] or ectodermal-neural cortex 1 [88] and cooperatively transactivates NRF2 target genes.
Conversely, the newly described Neh7, which abuts Neh5, directly interacts with retinoid X receptor
alpha and negatively regulates ARE-mediated NRF2 target gene transcription [89]. The Neh2 and
Neh6 domains are degrons that regulate proteasomal degradation of NRF2 protein [90]. Neh2 directly
interacts with the KEAP1-double glycine repeat (DGR) and subjects NRF2 to proteasome-mediated
degradation [13,49], while Neh6 mediates KEAP1-independent NRF2 degradation [90]. Glycogen
synthase kinase 3 beta-mediated phosphorylation causes S-phase kinase-associated protein 1-cullin
1-ring-box 1 (SCF complex)-mediated proteasomal degradation of NRF2, thus attenuating excessive
KEAP1/NRF2 signaling [91].

4.1.2. Structural Basis of KEAP1

In the late 1990s, Ito et al. searched for a negative effector of NRF2 that specifically interacts
with the Neh2 domain by using the yeast two-hybrid system [49]. Having screened 300 recovered
clones, they identified a single protein with two evolutionarily conserved canonical protein interaction
motifs, BTB (for the Broad-complex, Tramtrack, and Bric-à-brac) and the DGR. Since this motif
combination is a characteristic feature of Drosophila cytoskeleton binding protein KELCH, they named
the protein KEAP1 (Kelch-like erythroid cell-derived protein with CNC homology-associated
protein 1) [49]. Because electrophilic stimuli disrupt the KEAP1-NRF2 interaction and activate phase
II detoxification [49] an in-depth analysis of the signaling pathway could uncover the long-sought
mechanism of the environmental response: the electrophilic counterattack response [92].

What serves as the molecular sensor of the electrophilic attack? In the early 2000s,
Dinkova-Kostova et al. analyzed the structural and biochemical bases of KEAP1 in detail [93].
They looked for nucleophilic cysteine residues in the amino acid sequence of the NRF2 protein.
However, the KEAP1-interacting Neh2 domain does not contain cysteine residues, and the NRF2
cysteine residues could not mediate the electrophile-induced signaling [93]. Murine KEAP1 contains
25 cysteines that are conserved in human and rat homologs [49] and encompasses five distinctive
domains: the N-terminal region, the BTB, the intervening region (IVR), the DGR (also known as
the Kelch repeat), and the C-terminal region [93], the latter two of which are called the KEAP1-DC
complex [94] (Figure 4b). Although the initial attempt to purify KEAP1 protein resulted in the
formation of disulfide cross-linked insoluble inclusion bodies, the most reactive cysteine residues
were eventually mapped by electrophilic modification and mass spectrometric analysis of tryptic
peptides [94]. After that, the substrate specificity of critical KEAP1 cysteine residues was identified as
Cys151 in the BTB and Cys273/Cys288 in the IVR [13]. According to Dinkova-Kostova et al., there are
three primary reactions: (i) The reaction of a single inducer molecule with two cysteine residues that
are in spatial proximity. (ii) The reaction of a disulfide with a single cysteine, followed by an attack of
another cysteine thiolate ion to form a disulfide bridge. Direct oxidation may have the same outcome.
(iii) Irreversible reaction with an inducer leading to cysteine alkylation. These cysteine modifications
cause conformational changes in KEAP1, resulting in partial dissociation of the KEAP1-NRF2 complex
in the cytosol [93]. KEAP1/NRF2 signaling primarily mediates keratinization, as the thiol-rich KEAP1
protein senses the external oxidative milieu [49] and may inhibit keratinization [11].

KEAP1 forms a complex with the CUL3-rinx-box 1 holoenzyme through the BTB domain and
thus serves as a substrate adaptor for the E3 ubiquitin ligase [13,95]. The BTB domain is required for
KEAP1 homodimerization analogously to other proteins with the BTB motif, which led to the proposal
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of a two-site interaction model for the NRF2-KEAP1 complex [96–98]. Later, single-particle electron
microscopy revealed two large spheres attached by short linker arms to the sides of a small forked-stem
structure that resembles a cherry-bob, further supporting the model [99] (Figure 4a).

4.1.3. Functional Basis of the KEAP1/NRF2 Signaling Pathway: Principles of Action

The constant mechanical load in the squamous epithelium and the disrupted NRF2-KEAP1
complex likely lead to excessive hyperkeratosis in Keap1-deficient mice [11,12,58]. Given that the
mechanical stress perturbs cytoskeletal integrity, the KEAP1 protein, which is laden with labile thiol
residues, may serve as a sensor for cytoskeletal dysregulation by internal or external causes [100]. At the
same time, innate immunity may be inherently promiscuous [101]; the pattern recognition receptors
not only recognize microorganismal components (such as nucleic acids, polysaccharides, or heat-shock
proteins) but also respond to damaged, phylogenetically conserved “self” elements (damage-associated
molecular patterns) [102,103]. Therefore, it would be tempting to speculate that, even more than
the electrophilic counterattack response [92], the KEAP1/NRF2 signaling system evolved to facilitate
various forms of prompt tissue responses. Thus, lethal hyperkeratosis in Keap1-deficient mice [11] or
Nrf2-mediated epidermal barrier repair in LKO mice [14,15] are important examples of such adaptive
responses in the epidermis. The functional understanding of KEAP1/NRF2 signaling in comparison
with other gene expression regulation systems reveals the particularly “sensitive” nature of the
thiol-based sensor-effector apparatus [13].

The above theoretical framework leads to important questions regarding the regulation of the onset
and intensity of gene expression regulation. Changes in subcellular compartmentalization, i.e., from the
cytosol to the nucleus, warrant subsequent transcriptional activation. One of the historic biochemical
discoveries regarding the subcellular compartmentalization is the cytosolic complex of nuclear factor
κB (NF-κB) and its inhibitor NF-κB inhibitor alpha (IκBα). In the late 1980s, cell fractionalization
by Baltimore et al. revealed that cytosolic NF-κB possesses DNA-binding activity [104]. Analogous
to the NRF2/KEAP1 complex, the dissociation of cytoplasmic NF-kB-IκBα complex liberates NF-kB
DNA-binding activity [105]. Like other TFs, the effector protein NRF2 is primed in the cytosol,
thus facilitating a prompt cellular response.

Under stressed conditions, NRF2 itself undergoes autoregulation through an ARE in its
promoter and is thereby primed for further cellular distress [106]. However, as observed in the
cell cycle, the phytochrome, and cell surface receptors, post-transcriptional regulation, such as
phosphorylation or proteolysis, is common for TF-driven environmental responses in tissue. Protein
kinase C-mediated phosphorylation of NRF2 is involved in ARE-mediated transactivation of phase II
detoxifying enzyme NQO1 [107,108]. However, as exemplified by other gene expression regulation
systems, ubiquitin-proteasome proteolysis dominates the regulation of both TFs and their trans-acting
factors [109], such as hypoxia-inducible factor 1 alpha (HIF-1α) [110] or tumor protein p53 (TP53) [111],
and NFκB inhibitor IκBα [105]. The ubiquitin-proteasome proteolytic pathway constitutes the core
element that facilitates successful TF-mediated tissue responses [109].

In steady-state conditions, NRF2 undergoes rapid turnover, while an oxidative milieu disrupts
the interaction with KEAP1 and stabilizes NRF2 [112,113] (Figure 4a). This redox control of proteolysis
and cytoplasmic-nuclear shuttling of the NRF2 protein depends on direct interaction with the
KEAP1-DC [13]. The Neh2 domain contains two distinct conserved motifs: ETGE [114] and DLG [115]
(Figure 4B). As in the two-site interaction models [96,97,116], ETGE and DLG each interact with one
of the two KEAP1-DC domains in homodimerized KEAP1 protein [114,115]. Isothermal calorimetry
revealed that compared with DLG, ETGE possesses a stronger binding affinity for KEAP1-DC [97,98].
In addition, DLG interacts rather loosely with KEAP1-DC and enables fast-on and fast-off binding,
while the interaction of ETGE with KEAP1-DC better fits the two-state reaction model and ensures
a tight binding that could facilitate the adaptor function of KEAP1 to the E3 ubiquitin ligase [117].
The DLG motif in the Neh2 degron may constitute an efficient sensor machinery that easily dissociates
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from KEAP1-DC [13,117]. Altogether, this evidence could explain why ETGE and DLG serve as “the
hinge and the latch,” respectively [97,98].

4.1.4. What Makes the KEAP1/NRF2 Signaling Pathway Sensitive and Efficient?

(i) A phylogenetically conserved interaction between KEAP1-DC and NRF2-Neh2 characterizes
the essential nature of the KEAP1/NRF2 signaling pathway [49,114,115].

(ii) KEAP1 is the adaptor for the CUL3-based E3 ubiquitin ligase and subjects NRF2 to steady-state
proteasomal degradation [95,112,113,118].

(iii) Conformational changes in the thiol-rich KEAP1 protein in response to redox-disruptive
stimuli inhibit cytosolic NRF2 proteolysis and subsequently promote NRF2 shuttling to the nucleus [93,
96,97,116].

(iv) For transcriptional activation, other proteasomal substrates such as IκBα [105] or HIF-1α [110],
require IκB kinase-mediated phosphorylation [119] and O2-regulated proline hydroxylation [120],
respectively. However, the proteasomal substrate NRF2 does not require such posttranslational
modification but exclusively depends on the protein-protein interaction [98].

These characteristics likely allow the KEAP1/NRF2 signaling pathway to achieve incomparably
sensitive and efficient environmental responses in multiple organ systems.

4.2. Nrf2 and Epidermal Barrier Function: Maintaining Epidermal Redox Balance

Normal keratinization requires the major thiol-rich CE protein LOR, which stabilizes corneocytes
and protects against redox-disruptive assaults, such as UVB [73] or 7,12- dimethylbenz(a)anthracene
(DMBA) [121]. Loss of LOR evokes NRF2-mediated adaptive stress responses, and LKO corneocytes are
abundant in keratinocyte antioxidant SPRR2s [14,15] (Figure 3b). Because the extrusion of LG-derived
lipid bilayers precedes LOR cross-linking into the CE in epidermal barrier development [69], it appears
that the presence or absence of LOR does not interfere with the development of the lipid-based SC
permeability barrier [69]. Therefore, it would be reasonable to formulate that LOR is indispensable for
corneocyte maturation but dispensable for the lipid permeability barrier [71]. Thus, we now revisit the
thiol (-SH)-disulfide (-S-S-) exchange in keratinization [19], which is the essential biochemical property
that stabilizes the “brick” corneocyte [2].

It has been long known that the uptake of radiolabeled cystine (disulfide cross-linked cysteine)
in the SG is near twice as much as that in the basal or the spinous layer [23,24]. Likewise, although
urea-soluble living layer keratinocytes undergo a robust turnover of exogenous cystine, urea-insoluble
terminally differentiated keratinocytes exhibit durable incorporation [25], thus demonstrating
“enrichment in sulfur” in keratinization [19]. These classic observations may be analogous to the
regulation of NRF2 activity: interaction with the KEAP1-DC through the Neh2 degron permits a
rapid turnover, while the disulfide-mediated conformational change in the cytosol allows NRF2
transactivation and promotes keratinization [11,13].

4.2.1. Keap1-Deficient Mice: the Epidermal “Keaper” and Striker

KEAP1 acts as a cytoplasmic molecular gatekeeper for NRF2 (Figure 4A); therefore, the absence of
KEAP1 reduces the turnover of NRF2 protein and allows durable and potent cellular antioxidative
responses [11]. Although Nrf2-deficient mice exhibit impaired induction of phase II detoxifying
enzymes [48], it was surprising to witness the postnatal lethality of Keap1-deficient mice apparently
caused by excessive keratinization of the esophagus/forestomach [11]. Hyperkeratinization of the
inner squamous epithelium generated a large mass in the lumen that was palpable even from outside,
and beneath the obstructing keratinizing mass was ulceration and inflammatory cell infiltrates [11].
Importantly, the proliferation of the squamous epithelium, as determined by the expression levels of
proliferating cell nuclear antigen, was not affected, suggesting that Keap1-deficiency mediated NRF2
activation does not affect epidermal proliferation per se (Figure 5).
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Figure 5. Why are Keap1 deficiency and Neh2 deficiency phenotypically different? Left: As with phase I
detoxification, epidermal keratinocytes exhibit an incremented expression pattern of the KEAP1/NRF2
system that correlates with the degree of terminal differentiation. Middle: Absence of KEAP1 not only
exaggerates the NRF2 expression gradient but also makes keratinocytes susceptible to cytoskeletal
dysregulation (non-specific stimuli). Right: The overexpressed NRF2 that lacks the Neh2 degron
augments NRF2 signaling in the presence of the inhibitor KEAP1. The disturbance in graded expression
pattern in the epidermis mimics pathological conditions, such as ARCI or MADISH.

4.2.2. Neh2-Nrf2 Mice: A Model of Gene-Environment Mismatch?

Schäfer and Werner et al. elaborated a series of mouse models in which Nrf2 lacking the Nhe2
domain (∆Neh2-Nrf2) is overexpressed in a tissue-specific manner [53]. This approach theoretically
overcomes steady-state KEAP1-mediated NRF2 degradation and thus achieves constitutively activated
NRF2 signaling [11,49]. After the development of the K5-cre recombinase-mediated overexpression
model, they engineered the cytomegalovirus (CMV) enhancer/K5-cre-mediated overexpression
model to examine if the ARCI-like phenotype [11,17] was NRF2 dose-dependent [17]. Indeed,
the CMV/K5-cre-driven ∆Neh2-Nrf2 (CMV/K5-∆Neh2-Nrf2) overexpression reproduced the ARCI-like
phenotype similar to Keap1-deficient mice [11,17], and topical application of tert-butylhydroquinone or
sulforaphane phenocopied the skin manifestations [17].

Interestingly, aged CMV/K5-∆Neh2-Nrf2 mice exhibit multiple infundibular cysts highly
reminiscent of chloracne/metabolizing acquired dioxin-induced skin hamartomas (MADISH) [18,53].
Because the polyaromatic hydrocarbon 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) activates the phase
I xenometabolism, cystic hamartomas from MADISH patients express cytochrome P450 family 1
subfamily A member 1 (CYP1A1) [122] This critical clinical observation favors the notion that the
MADISH is a consequence of persistent in situ activation of phase I detoxification [122], downstream
of which is the KEAP1/NRF2 signaling [123]. Therefore, CMV/K5-∆Neh2-Nrf2 mice may indicate
that locally activated xenobiotic metabolism underlies MADISH pathology [18]. Like other common
ailments, gene-environment interaction [9] plays a significant role in acne vulgaris [124], which is caused
by aberrant infundibular keratinization and sebum production [18,125]. Therefore, the observations
from CMV/K5-∆Neh2-Nrf2 mice may support the notion that endogenous susceptibility factors [124],
rather than exogenous disease modifiers, such as the cutaneous microbiome [126], can dominate the
pathogenesis of common skin disorders.

4.2.3. Summary: Why are Keap1 and Neh2 Deficiencies Phenotypically Different?

Having summarized mouse models in which the KEAP1/NRF2 signaling pathway is activated
either by deleting the sensor [11] or by boosting the effector [53], we conclude that the differences
between Keap1 deficiency [11] and Neh2 deficiency [53] would be attributable to (i) the exceptional
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efficiency of the thiol-rich sensor protein KEAP1, (ii) the ambient air-modification of keratinization,
and (iii) the structural differences among thiol-rich CE precursors.

KEAP1 efficiency may be directly attributable to the phylogenetically conserved interaction
between KEAP1-DC and NRF2-Neh2 [49,114,115]. The KEAP1/NRF2 signaling pathway does not
require post-transcriptional modification but depends on labile cysteine residues, which would
be suitable for detecting a myriad of non-specific stimuli, including biomechanical stresses [11,58]
(Figure 5). Because the sensor is functional and serves as a gatekeeper in the ∆Neh2 models, the inner
squamous epithelia are not affected, while epidermal hyperkeratosis is ubiquitous [11,16–18]. Epidermal
hyperplasia [16–18] observed in the CMV/K5-∆Neh2-Nrf2 model could probably be attributable to NRF2
accumulation that overcame KEAP1-independent, phosphodegron Neh6/SCF-mediated proteasomal
degradation [90,91], which theoretically affects cycling basal keratinocytes [127]. The perturbed NRF2
expression gradient may have led to delayed cell cycle exit and impaired disulfide cross-linkage
formation [17] (Figure 5).

Although the inner squamous epithelia express LOR and thus mimic the process of epidermal
differentiation, the keratinization of the inner epithelia appears very different from that in the epidermis.
Keratinized materials in the wet surface squamous epithelium are exposed to oxidants, such as ozone
or pollutants, to a much smaller degree than in the dry surface one. Exposure to the ambient air
facilitates cross-linking while promoting keratin degradation induced by oxidants or UV [128,129]
(Figure 1). Perhaps most importantly, as Steinert has put it, continued cross-linking in the SC can lead
to the masking of the C-terminal peptide epitopes recognized by antibodies [34]. Indeed, LOR staining
in the obstructed forestomach in Keap1-deficient mice looks retained even in the uppermost keratinized
layer [11], while that in the SC decreases in the upper level, presumably in association with epitope
masking [37]. In a similar vein, as Yoneda and Steinert et al. demonstrated earlier, human Lor
overexpression in mice does not cause overt phenotypes, including in the esophagus/forestomach [130].

Given that the precipitation of thiolated proteins characterizes keratinization [19,23–26],
the expression of NRF2 is probably hardwired into the epidermal differentiation program [53], and so
is the thiol-rich protein KEAP1. This intrinsic gradient of KEAP1/NRF2 signaling not only facilitates
keratinization but also may regulate uncontrolled hyperkeratinization, which altogether contributes
to successful adaptation to the external environment [11]. Indeed, we recently found that high Ca2+

induces KEAP1 expression in keratinocytes (Ogawa et al. manuscript submitted). In the differentiated
layer, exposure to ambient air probably oxidizes cysteine residues and promotes the inhibition of
Neh2-mediated NRF2 degradation, which further activates NRF2 signaling [11,17]. In the basal
cycling layer, the Neh6 phosphodegron negatively regulates the intensity of NRF2 activation through
SCF-mediated proteasomal degradation [90,91] primarily in the basal cycling keratinocytes [127].

Although ARE-mediated overexpression of Lor may be a cause of the luminal stenosis observed
in Keap1-deficient mice [11], neither the ∆Neh2 mutation [17] nor tape-stripping [131,132] increased
Lor expression levels in the epidermis. Thus, other contributing factors need to be considered [11,17].
Specifically, Sprr2s are keratinocyte antioxidants [77,133] downstream of NRF2 [15] that are also
abundant in LKO cornified envelopes [15,71]. These kinds of LOR “mimicry” that cross-bridge
various CE precursors [134] presumably compensate for the decreased cytoskeletal stability [135]
or cytoskeletal redox imbalance [15] (Figure 3), both of which could be detected by the cytoplasmic
sensor KEAP1. In this regard, Vermeij and Backendorf et al. elaborated on the superiority of SPRRs
as antioxidants [77,133]. Nucleophilic cysteine residues characterize the antioxidative potential.
However, as in the case of KEAP1 [93], due to the abundance of cysteines [27], the primary protein
structure of LOR favors intra-/inter-molecular disulfide cross-linkages ex vivo [27,37] and hampers
purification of crude LOR protein in an exogenous gene expression system [133]. In contrast, a sonicated
CE, which is enriched in unlinked CE precursors such as SPRRs, rather than LOR [71], efficiently
quenches reactive oxygen species [133]. Although this experimental setting may not be sufficient to
assess the true antioxidative function of the SC in situ, the results indicate that the primary protein
structure, irrespective of net cysteine content, determines the nucleophilic potential of thiol-rich CE
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precursors [133]. These crucial differences in the structure probably allow thiol-rich SPRR2 to remain
nucleophilic in the ambient air, while LOR favors the inclusion/aggregation of the cellular content
upon exposure to the ambient air [37], as was the case with KEAP1 [93]. In broad terms, the group
of proteins with repetitive proline-rich sequences encompass salivary proline-rich proteins (PRPs)
that efficiently bind polyphenols [136]. Therefore, the KEAP1/NRF2 signaling-mediated induction of
SPRRs not only serves as a thiol-rich nucleophile [133] but may also take advantage of the adsorptive
capacity of PRPs [137]. Binding of polyphenols to PRPs may further enhance antioxidative/detoxifying
responses in the barrier tissue. However, as observed in LKO mice [71], the inherent reductive property
of SPRR2s hampers disulfide cross-linkages and may have resulted in the accumulation of keratinized
material on the inner surface [11], instead of thiol oxidation and disulfide cross-linkage-mediated
stabilization [37]. Thus, the Keap1-deficient mouse phenotype may be regarded as an exaggerated
form of reductive stress or maladaptation of the squamous epithelia [1,11]. Some have speculated that
amniotes acquired LOR exclusively on the air-liquid interface to improve the fitness of the epidermal
tissue because secreting antioxidative/detoxifying PRPs carries a high biological cost [15].

4.3. Epidermal Barrier Repair in LKO Mice

NRF2 mediates adaptive stress responses and upregulates “alternative” CE precursors,
Sprr2s [15,71], or Lce1s [14], presumably in response to redox imbalance in the upper epidermis
(Figure 3b). However, Lor/Nrf2 double knockout mice do not show overt phenotypes, possibly due
to the presence of other CNC family members, such as NRF1/NRF3 [138,139] or other trans-acting
elements [140]. Therefore, we took a dominant-negative approach to overcome the compensation [138].
Specifically, we employed a transgenic mouse model that expresses dominant-negative Nrf2 (dnNrf2)
under the control of the Lor promoter [15]. Introducing the transgene into LKO mice abrogated the
compensatory response in utero and caused a delay in the formation of the permeability barrier as
determined by a dye penetration assay [15,71]. An in vitro colorimetric reporter assay [15] showed that
the increased electrophilic potential of amniotic fluid during the late gestational phases (embryonic
day (E)14.5 vs. E16.5) serves as an environmental cue that activates the KEAP1/NRF2 signaling
pathway [15]. These findings suggest that disulfide cross-linkage formation, which depends on
the external oxidative milieu, is delayed in the absence of LOR. The “alternative” CE constituents,
albeit potent nucleophiles [133], do not appear to stabilize the SC as efficiently as LOR [27,37].
Thiol oxidation in the SG promotes keratinization and thereby recovery of the epidermal permeability
barrier when the living layer is exposed to the air-liquid interface [20]. In response to the external
oxidative milieu, LOR mediates the formation of disulfide cross-linkages and may expedite the
cooperative process of cytoskeletal cross-linkage (the brick) and the outside attachment of lipids
(the mortar) to the outer surface of CEs [2,30].

4.4. NRF2 Activation and Epidermal Carcinogenesis: Friend or Foe?

Darwinian evolution embraces the core concept of gene-environment interaction, which can
be applied to many biological behaviors [40], and carcinogenesis appears to be no exception [141].
In various cancers, somatic mutations in the NRF2-interacting KEAP1-DC [94] or the degron Neh2 [142]
have been reported. These NRF2-activating mutations likely allow tumor cells to escape from the
selective pressure in the microenvironment [141], presumably through increasing viability and
reinforcing fitness.

Experimental evidence in the two-stage chemically-induced carcinogenesis setting could
corroborate the above notion. The polyaromatic hydrocarbon DMBA undergoes CYP1A1/CYP1B1-
mediated metabolic conversion that yields the ultimate mutagenic carcinogen DMBA-3,4-diol-1,
2-epoxide (DMBADE) [143]. The “hard” electrophile DMBADE forms adducts with genomic DNA,
while the cytosolic sensor protein KEAP1 activates the cytoprotective phase II detoxification
pathway [13]. Thus, Nrf2-deficient mice were susceptible to chemically induced carcinogenesis, and the
electrophilic counterattack response [92] requires the effector NRF2 [50]. Werner et al. demonstrated that
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the K14-dnNrf2 mice were less protected against chemically-induced carcinogenesis [138]. This study
suggests that the cancer-protective effect of the KEAP1/NRF2 system is non-redundant [138]. Moreover,
it is noteworthy that despite increased tumor burden, inhibition of NRF2-mediated gene expression
does not largely affect the ensuing malignant conversion [papilloma to invasive squamous cell
carcinoma (SCC)] [138]. Conversely, through the ∆Neh2-Nrf2 transgenic approach [53], Schäfer et al.
further elaborated on the keratinocyte NRF2 activation, which can be detrimental to the host [94],
in two different cutaneous carcinogenesis settings. As expected, the keratinocyte-specific expression of
the ∆Neh2-Nrf2 protected against chemically induced carcinogenesis with reduced incidence rates
of SCCs [16]. By contrast, when skin tumorigenesis was induced without exogenous carcinogen,
∆Neh2-Nrf2 mice exhibited a tumor-promoting phenotype. Keratinocyte expression of early genes
of human papillomavirus type 8 [144] along with the NRF2-activating mutation promoted skin
tumorigenesis [16]. These lines of evidence suggest that constitutive activation of the KEAP1/NRF2
signaling pathway can permit tumor cells to withstand a harsh oxidative external microenvironment,
delineating the “double-edged sword” aspect of the KEAP1/NRF2 signaling pathway [81]. This “dark
side” of the cytoprotection machinery described as “NRF2 addiction” [145] may be analogous to
what is caused by gain-of-function TP53 mutations [146] in that the guardians of cellular fitness fuel
malignant characteristics in tumor cells [147].

5. Concluding Remarks

We have reviewed the KEAP1/NRF2 signaling pathway with a special focus on the epidermis.
As Marks and Plewig put it, the formation of the SC barrier is regarded as the successful adaptation of
the epidermal tissue [1]. As observed in LKO mice [15] or psoriatic epidermis [56], proper activation
of NRF2 signaling promotes the recovery of the epidermal permeability barrier, and regulates
concurrent inflammatory responses (Figure 6). However, improper activation of the epidermal
antioxidative responses leads to various kinds of skin disorders, such as acne [18] or AD [148]
(Figure 6). Therefore, the thiol-based sensor-effector apparatus [13] constitutes an essential gatekeeper
of epidermal homeostasis. Intriguingly, the autophagy cargo receptor sequestosome 1 (SQSTM1 or p62)
directly interacts with KEAP1 and competitively inhibits its interaction with NRF2 at the DLG [149],
which constitutes the “loose end” in the two-site KEAP1-NRF2 interaction model [96–98]. Indeed, in a
manner analogous to the KEAP1-NRF2 interaction [49,114,115], the autophagy machinery is regarded
as an evolutionally conserved stress response that allows unicellular eukaryotic organisms to survive
during harsh conditions through recycling energy [150]. As morphological observations by Lavker
and Matoltsy indicated half a century ago, keratinocyte transition from the SG to the SC involves
lysosomal degradation of organelles [29], suggesting that autophagy is involved in keratinization [151].
Furthermore, p62 targets intracellular bacteria/viruses [152], but impaired autophagic clearance of
pathogens, i.e., xenophagy [150], leads to cytoplasmic inclusion bodies [153]. This suggests that
common viral infections of the skin, such as herpes simplex or molluscum contagiosum, may be
associated with local deregulation of xenophagy [149,152]. Conversely, AD pathology involves broad
defects in epidermal differentiation [153] and frequent skin infections by intracellular pathogens [154].
As indicated by the immunogenicity of the SC [155,156], homeostatic keratinization not only provides
physical insulation but may also constitute an innate immune defense. Therefore, investigating the
p62-KEAP1-mediated activation of NRF2 signaling [149] in the epidermis may uncover previously
unappreciated aspects of keratinization and inflammatory/infectious skin conditions. Intensive
investigation of this attractive research field may pave a way to mechanism-based and target-selective
therapeutic measures in dermatology.
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Figure 6. The KEAP1/NRF2 signaling pathway in keratinization and related skin diseases.
(a) Phenotypes of the cornified cell envelope (CE). The oxidized status preferentially stabilizes
the CE, and loricrin (LOR) promotes cytoskeletal cross-linkage. NRF2 repairs a defective barrier,
probably in response to a perturbed redox balance, whereas persistent NRF2 activation hampers
the formation of disulfide cross-linkage and makes the CE fragile. (b) Keratinization and disease
phenotypes. An oxidative environment favors retention keratosis, which can lead to common dry skin
conditions such as atopic dermatitis (AD) (clinically non-inflamed skin), or comedo (occluded hair
follicle due to infundibular keratinization). On the other hand, strong and persistent NRF2 activation
may be associated with autosomal recessive congenital ichthyosis (ARCI) or metabolizing acquired
dioxin-induced skin hamartomas (MADISH).
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AD atopic dermatitis
ARCI autosomal recessive congenital ichthyosis
ARE antioxidant response element
ARE antioxidant responsive element
BTB broad-complex, tramtrack, and bric-à-brac
bZIP basic leucine zipper
CE cornified cell envelope
CMV cytomegalovirus
CNC cap ´n´ collar
CTR C-terminal region
CUL3 cullin 3
CYP1A1 cytochrome P450 family 1 subfamily A member 1
DGR double glycine repeat
DMBA 7,12- dimethylbenz(a)anthracene
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DMBADE DMBA-3,4-diol-1,2-epoxide
∆Neh2-Nrf2 Nrf2 that lacks KEAP1-interacting domain
dnNrf2 dominant-negative Nrf2
E embryonic day
EDC epidermal differentiation complex
EpRE electrophile response element
FLG filaggrin
GATA1 GATA protein binding protein 1
HIF-1α hypoxia inducible factor 1 alpha
IκBα NF-κB inhibitor alpha
IVL involucrin
KEAP1 Kelch-like erythroid cell-derived protein with cap´n´collar homology-associated protein 1
KEAP1-DC KEAP1 double glycine repeat and the C-terminal region
LCE late cornified envelope
LG lamellar granules
LKO Lor-knockout (LKO)
LOR loricrin
MADISH metabolizing acquired dioxin-induced skin hamartomas
Neh Nrf2-erythroid cell-derived protein with CNC homology
NF-κB nuclear factor κB
NFE2 nuclear factor erythroid 2
NQO1 NAD(P)H quinone dehydrogenase 1
NRF2 NFE2-related factor 2
PRP proline-rich proteins
S100 S100 calcium-binding proteins
SC stratum corneum
SCC squamous cell carcinoma
SCF complex S-phase kinase associated protein 1-cullin 1-ring-box 1
SG stratum granulosum
SPRR small proline-rich protein
SQSTM1 sequestosome 1
TCDD 2,3,7,8-tetrachlorodibenzo-p-dioxin
TF transcription factor
TP53 tumor protein p53
UV ultraviolet
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