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Structural variants (SVs) are an important source of human genome diversity, but their functional effects are poorly un-

derstood. We mapped 61,668 SVs in 613 individuals from the GTEx project and measured their effects on gene expression.

We estimate that common SVs are causal at 2.66% of eQTLs, a 10.5-fold enrichment relative to their abundance in the ge-

nome. Duplications and deletions were the most impactful variant types, whereas the contribution of mobile element inser-

tions was small (0.12% of eQTLs, 1.9-fold enriched). Multitissue analysis of eQTLs revealed that gene-altering SVs show

more constitutive effects than other variant types, with 62.09% of coding SV-eQTLs active in all tissues with eQTL activity

compared with 23.08% of coding SNV- and indel-eQTLs. Noncoding SVs, SNVs and indels show broadly similar patterns.

We also identified 539 rare SVs associated with nearby gene expression outliers. Of these, 62.34% are noncoding SVs that

affect gene expression but have modest enrichment at regulatory elements, showing that rare noncoding SVs are a major

source of gene expression differences but remain difficult to predict from current annotations. Both common and rare SVs

often affect the expression of multiple genes: SV-eQTLs affect an average of 1.82 nearby genes, whereas SNV- and indel-

eQTLs affect an average of 1.09 genes, and 21.34% of rare expression-altering SVs show effects on two to nine different

genes. We also observe significant effects on rare gene expression changes extending 1 Mb from the SV. This provides a

mechanism by which individual SVs may have strong or pleiotropic effects on phenotypic variation.

[Supplemental material is available for this article.]

Structural variants (SVs) are a diverse class of genetic variation that
include copy number variants (CNVs), mobile element insertions
(MEIs), and balanced rearrangements at least 50 bp in length.
Although SVs are relatively rare compared with single-nucleotide
variants (SNVs) and small insertion or deletion (indel) variants,
their size and diversity mean that SVs can disrupt protein-coding
genes and genomic regulatory elements through diverse mecha-
nisms. Furthermore, SVs often have more severe consequences
compared with smaller variants, and previous studies have found
that SVs have an outsized impact on human gene expression com-
pared with their relative abundance in the genome (Stranger et al.
2007; Sudmant et al. 2015; Chiang et al. 2017). SVs have also been
implicated in the biology of human diseases such as autism spec-
trum disorder (Sebat et al. 2007; Weiss et al. 2008; Turner et al.
2017; Brandler et al. 2018) and schizophrenia (International
Schizophrenia Consortium 2008; Walsh et al. 2008; McCarthy
et al. 2009; Marshall et al. 2017). However, SVs are difficult to
detect from short-read DNA sequencing data and are often exclud-
ed from complex trait association studies.

Advances in high-throughput sequencing technologies that
have allowed for widespread use of whole-genome sequencing
(WGS), combined with advances in scaling SV detection algo-
rithms, mean that comprehensive studies of all forms of genetic
variation are now possible for large human cohorts. Recent studies
of SV in large, deeply sequenced human cohorts have found that

SVs account for 4.0%–11.2% of rare high-impact coding alleles
(Abel et al. 2020) and are responsible for 25%–29% of rare pro-
tein-truncating events per genome (Collins et al. 2020). However,
few studies to date have examined the functional effects of SV on
gene expression, and these studies are limited to relatively small
cohort sizes or only a few tissue types with available gene expres-
sion data (Sudmant et al. 2015; Chiang et al. 2017; Han et al.
2020; Jakubosky et al. 2020).

Here, we use deepWGS data and multitissue RNA-seq expres-
sion data from 613 individuals in the Genotype-Tissue Expression
(GTEx) project to comprehensively map SVs and to evaluate their
impact on both common and rare gene expression changes in up
to 48 tissue types (Supplemental Table S1). This study expands on
our prior analysis of SV in 147 human samples from the GTEx co-
hort with RNA-seq expression data from 13 different tissues
(Chiang et al. 2017) and is the most comprehensive study of SV-
eQTLs to date. The expanded cohort size provides greater power
to evaluate the impact and mechanisms of SV-associated gene ex-
pression changes, particularly for rare SVs.

Results

Variant calling

Wemapped SVs in 613 individuals from the GTEx v7 release using
LUMPY (Layer et al. 2014; Chiang et al. 2015), svtools (Larson et al.
2019), GenomeSTRiP (Handsaker et al. 2011, 2015), and the
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Mobile Element Locator Tool (MELT; see Methods) (Gardner et al.
2017). Variant calls were filtered and merged using the same ap-
proach as in our previous GTEx study (Chiang et al. 2017; Li
et al. 2017), resulting in a total of 61,668 “high-confidence” SVs
that are the basis for all subsequent analyses (Table 1). SNVs and
small insertion deletion (indel) variants were mapped using
GATK (McKenna et al. 2010) as part of the official v7 release
from the GTEx Consortium.

Effects of common SVs

We performed cis-eQTL mapping of common variants (MAF≥
0.01) using a permutation-based mapping approach with
FastQTL (Ongen et al. 2016), limiting comparisons to variants
within 1 Mb of the transcription start site (TSS) of each gene. We
performed eQTL analyses in each of the 48 tissues for which
expression data were available for at least 70 individuals
(Supplemental Table S1), and defined an eQTL as an eVariant/
eGene pair detected in a given tissue. We performed a “joint”
eQTL mapping analysis in which SVs, SNVs, and indels were
simultaneously queried for eQTL status, allowing for direct com-
parisons between their properties and identification of a likely
causal variant. An SV was the lead marker in 2.66% (7960/
299,187) of eQTLs (Supplemental Table S2), although this is likely
an underestimate of SV causality owing to inferior genotyping ac-
curacy for SVs, which biases eQTL fine-mapping analyses against
SVs. Although this estimate of the contribution of SVs is relatively
small, it represents a 10.5-fold enrichment over the abundance of
SVs in the genome. This result is consistent with our prior analysis
of the initial 147 individuals from the GTEx cohort (Chiang et al.
2017). In the same 13 tissues evaluated in this previous study, the
increased sample size used here allowed us to identify 617 genes
with SV-eQTLs that were not identified in the smaller study, al-
though 57 genes from the initial study are no longer SV-eQTLs.
As expected, many eSVs are large, although we observe smaller
eSVs as well (Fig. 1A). Furthermore, 71.82% (5717/7960) of all
SV-eQTLs identified in this study are noncoding (Supplemental
Fig. S1), meaning the SV does not intersect with any exons of its
associated eGene. This figure is even more striking when eQTLs
are collapsed across tissues, where 1907/2318 (82.27%) of unique
eGene/eSV pairs are noncoding. This also suggests that coding
SV-eQTLs are more constitutive as more of them are identified in
multiple tissues.

A novel aspect of this study is that we usedMELT to sensitive-
ly map MEI variants, including nonreference insertions that were
not detected in our prior GTEx study. It has been proposed that
MEIs may have broad effects on gene expression owing to their
ability to disrupt genes, promote epigenetic gene silencing, and
serve as alternate promoters (Chuong et al. 2017; Payer and
Burns 2019); however, there has been scant data in humans to ad-
dress these hypotheses. We found that only 0.12% (353/299,187)
of eQTLs had anMEI as the leadmarker. Although this is a 1.9-fold
enrichment of predicted causal MEIs relative to their abundance
(0.06% of common variants), MEIs were far less likely than other
SV types to be the lead marker (e.g., mCNVs are enriched 45-
fold, duplications 38-fold, and deletions 3.3-fold). It is unlikely
that this relative depletion results simply from the small size of
MEIs, as a size-matched analysis of MEIs and LUMPY deletions
showed that only 2.74% of MEIs are eQTLs compared with 3.5%
of deletions. When including LUMPY deletions of all sizes, 4.8%
of deletions are eQTLs. This result is also unlikely to be explained
by poor sensitivity or genotyping accuracy at MEIs considering
that we detected slightly more MEIs per genome than a recent
comprehensive long-read read study (Ebert et al. 2021)—with a
mean of 1961 MEIs per genome versus 1637—and the linkage dis-
equilibrium (LD) patterns at MEIs relative to nearby SNVs mirror
that of LUMPY deletions (Supplemental Note; Supplemental Fig.
S2). Thus, despite compellingmolecular evidence for the function-
al potential of MEIs, our results suggest that they are only slightly
enriched as causal eQTL variants relative to SNVs and indels and
are depleted relative to other SVs, on average.

We found that not only do SVs have larger effect sizes com-
pared to SNPs and indels, as noted in previous studies
(Supplemental Fig. S1; Jakubosky et al. 2020; Chiang et al. 2017),
they are also more likely to alter the expression of multiple nearby
genes. Each eSV affects an average of 1.82 unique eGenes, whereas
SNVs and indels affect an average of 1.09 unique eGenes. Although
this effect is partially explained by large SVs that alter the copy
number of multiple adjacent genes, there is also a significant dif-
ference for genes affected by noncoding eVariants: On average,
eSVs affect 1.50 unique eGenes for which they do not intersect
any exons of the eGene compared with an average of 1.04 unique
eGenes for SNVs and indels (P=1.02×10−55, one-sided Mann–
WhitneyU test) (Fig. 1B–D). These noncoding effects aremost pro-
nounced for duplications (P=6.10×10−53) and mCNVs (P=4.75×
10−56), which are the only two categories of noncoding SVs that

Table 1. Summary of variant types and eQTL mapping

Detection method No. of variants Median size (bp) No. of common variants eVariants

SNV GATK 37,087,030 1 9,609,545 178,000
Indel GATK 3,081,270 3 818,401 16,460
Deletion (DEL) BP 20,954 1311 4385 210

RD 10,252 2151 8166 66
Duplication (DUP) BP 3388 2632 1090 64

RD 1598 6891 896 233
Multiallelic CNV (mCNV) RD 4365 3602 3238 460
Inversion BP 295 1054 96 2
Reference mobile element insertion (MEI-del) BP 2681 306 2026 88
Nonreference mobile element insertion (MEI-ins) BP 13,066 280 4496 91
Other (BND) BP 5069 — 2010 57
All SVs — 61,668 — 26,409 1271
All variants — 40,229,968 — 10,454,355 195,731

SVs were detected based on breakpoint evidence (BP) or read-depth evidence (RD). SNVs and indels were called using the Genome Analysis Toolkit
(GATK). Common variants (MAF≥0.01) were used to map cis-eQTLs.
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affect significantlymore eGenes than point variants. This result in-
dicates that causal SVs are generally more impactful than causal
point variants, in terms of both their per-gene effect sizes and their
potential to affect multiple genes. These results also suggest that
SVs are more likely to disrupt key regulatory elements and/or alter
higher-order genome architecture, allowing individual variants to
affect multiple genes.

To investigate the functional mechanisms of expression-al-
tering SVs, we defined a set of putative causal SVs using a score gen-
erated by taking the product of the causal probability calculated
using CAVIAR (Hormozdiari et al. 2014) and the fraction of herita-
bility attributed to the SV calculated using GCTA (Supplemental
Table S3; Yang et al. 2011), as described previously (Chiang et al.
2017). At each eGene, we selected the SV within the cis-region
that had the strongest association with the eGene’s expression
and allocated these 10,911 unique SVs into six bins on the basis
of causality score quantiles, with the least-causal bin containing
the 50% of SVs with the lowest scores. Next, we measured the en-
richment of SVs in each causality bin at a diverse set of genomic
annotations and in the core 15 chromatin segmentation states
from the Roadmap Epigenomics Project using a permutation test
based on shuffled genomic positions (seeMethods) (Supplemental
Figs. S3, S4). SVs in the most causal quantiles were strongly en-
riched in the exons of their associated eGenes, which is expected

and confirms that our causality score is
informative. We also observed an enrich-
ment of causal SVs in the 10-kb regions
upstream of the TSS and downstream
from the 3′ UTR of the associated eGene.
Additionally, there is a small enrichment
of the causal SVs in segmental duplica-
tions, which is likely driven by large
mCNVs at multicopy genes. However,
predicted causal SVs were not enriched
in any other genomic features tested,
which suggests that although eSVs are
generally found relatively close to their
eGenes, they may be altering expression
through diverse mechanisms, and our
study is underpowered to identify en-
richments in specific regulatory element
classes. Alternatively, existing annota-
tions may be insufficiently informative
to detect functional enrichments for the
variants and tissues analyzed here.

The number and diversity of tissues
with available expression data allow us to
evaluate the tissue specificity of eQTLs.
We hypothesized that SVs might have
more ubiquitous effects on gene expres-
sion than point variants owing to consti-
tutively acting dosage changes or owing
to complete deletion or duplication of
regulatory elements rather than more
subtle effects, for example, on transcrip-
tion factor binding. To allow for facile
comparisons between variant types, we
limited this analysis to variant-gene pairs
with a significant association in our
eQTL analysis for which expression data
were available across all 48 tissues. We
used METASOFT (Han and Eskin 2011)

to evaluate eQTL activity across all tissues and limited this analysis
to eQTLs for which active (m>0.9) or inactive (m<0.1) status
could be determined in at least 43 tissues. We found that coding
SV-eQTLs are more constitutive than other eQTL classes, showing
activity across a larger proportion of tissues compared with SNV-
and indel-eQTLs (Fig. 1E). Whereas 92.16% of coding SV-eQTLs
are constitutively active—defined here as active in >75% of tissues
with known status—only 74.12% of coding SNV- and indel-QTLs
are constitutive. However, the result at noncoding eQTLs is less
clear: 74.86% of noncoding SV-eQTLs are constitutively active as
defined above, and 74.12% of noncoding SNV- and indel-eQTLs
are constitutive, which suggests that there are not significant dif-
ferences between these variant categories. However, when we ex-
amine noncoding eQTLs that are active in 100% of tissues with
known activity, 44.44% of noncoding SV-eQTLs are active in all
known tissues compared with 26.23% of noncoding SNV- and
indel-eQTLs (Supplemental Fig. S5). Overall, this analysis shows
that coding SVs typically impact expression across many tissues,
whereas smaller and noncoding variants tend to affect gene ex-
pression on a more tissue-specific basis. In contrast to coding SV-
eQTLs, noncoding SV-eQTLs show similar patterns of tissue specif-
icity to noncoding SNV- and indel-eQTLs, indicating that these
variant types are likely to function through similar mechanisms.
However, it is important to note that noncoding SV-eQTL activity

E
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Figure 1. Features of SV-eQTLs. (A) Size distribution of eSVs compared with all common SVs. (B)
Distribution of the number of eGenes per eVariant for SVs compared with SNVs and indels. “Coding”
eGenes refer to eGenes whose exons are intersected by the associated eVariant, and “noncoding”
eGenes are not intersected by the associated eVariant. Counts are shown for every eVariant; thus,
eVariants with zero coding or zero noncoding eGenes are included in the distributions. (C,D) The number
of eVariants, as shown by dot size and color, with the indicated combination of coding and noncoding
eGenes, as defined above. Shown for SVs (C) and SNV/indels (D), with histograms showing the total
number of eVariants, with the indicated number of associated coding or noncoding eGenes above the
y- and x-axes, respectively. (E) Distribution of tissue specificity of eQTLs across tissues as evaluated by
METASOFT, separated into the lowest quartile, middle two quartiles, and top quartile, for eQTLs in which
the activity status is known in at least 43 of 48 evaluated tissues. The points indicate the fraction of SV-
eQTLs or SNV- and indel-eQTLs that are active (m>0.9) in the proportion of tissues indicated on the x-
axis.

SVs have broad regional effects in humans
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could not be determined by METASOFT in many tissues
(Supplemental Fig. S6), so it is possible that the true tissue specific-
ity of noncoding SVs may differ from noncoding SNVs and indels.
This appears to be the result of relatively large effect-size standard
errors for SV-eQTLs that result from genotyping inaccuracies.
Although METASOFT can determine cross-tissue eQTL activity
when effect sizes are large despite large standard errors, as seen
in coding SV-eQTLs, when effect sizes are small but effect size er-
rors are large, the algorithm often cannot confidently judge activ-
ity (Supplemental Fig. S7).

Effects of rare SVs

Rare SVs are enriched near genes with highly aberrant expression
(Chiang et al. 2017) and are more likely to have large effect sizes
compared with other variant types (Li et al. 2017). To assess the ef-
fects of rare SVs on gene expression, we identified genes in which
individuals displayed highly aberrant gene expression levels com-
pared with the data set as a whole. We limited this analysis to the
513 individuals of European descent to reduce the effects of popu-
lation stratification and limited our analyses to the 47 tissues for
which data were available for at least 70 European individuals
(Supplemental Table S1). We defined 26,289 autosomal multitis-
sue gene expression outliers (median |Z|≥2 across all tissues in
an individual) and 173,061 autosomal “tissue-restricted” outliers
with highly aberrant expression (|Z|≥4) in two or more tissues in
the same individual. Next, we identified 13,768 “singleton” SVs
no larger than 1 Mb in size that were positively genotyped in

one individual. These rare SVs are strongly enriched within the
gene body and flanking sequence of multitissue gene expression
outliers compared with the null expectation in 1000 random per-
mutations of the outlier sample names, with enrichment decreas-
ing as flanking distance increases (Supplemental Fig. S8). The
enrichment of rare SVs in close proximity (14.1-fold enriched
within 5 kb; 95% confidence interval [CI], 8.7–25.1; P<0.001) to
multitissue gene expression outliers is consistent with our prior
work (Chiang et al. 2017), but the increased power in this study al-
lows us to observe enrichment at greater distances as well. At flank-
ing distances as large as 50 kb, we observe a 6.4-fold enrichment
(95% CI 4.9–8.8; P<0.001) of rare SVs aroundmultitissue outliers,
suggesting that rare SVs contribute to rare expression differences
even from relatively large genomic distances. Importantly, because
gene expression values can only decrease to zero, a conservative
Z-score limit such as the one used for tissue-restricted outliers fa-
vors gene expression outliers with increased expression, thus lim-
iting our ability to detect SVs associated with decreased expression
(Supplemental Fig. S9). However, these conservative outlier defini-
tions, combined with the above enrichment results, provide con-
fidence in the set of outlier-associated SVs.

A total of 539 unique outlier-associated SVs are located in the
gene body and 50-kb flanking region of gene expression outliers
(Fig. 2A; Supplemental Table S4). A majority of these (62.34%;
336/539) are noncoding SVs that donot affect the coding sequence
of one or more expression outliers. This contradicts the general as-
sumption that rare SVs typically act through gene dosage effects. In
total, 16.92% (31,978/188,988) of expression outliers are associat-

ed with a rare SV, although outliers can
also arise via nongenetic mechanisms.
To evaluate the relative potential of dif-
ferent SV types or sizes to cause expres-
sion outliers, we calculated the odds
ratio (OR) of being outlier-associated for
the SV category of interest compared
with all other SVs. Duplications (OR
4.07) andmCNVs (OR1.87) aremost like-
ly tobeassociatedwithanexpressionout-
lier, MEIs are least likely (OR 0.25) (Fig.
2B), and larger SVs are more likely to be
outlier-associated regardless of type (Fig.
2C). However, many outlier-associated
SVs are smaller in size (Fig. 2D). For exam-
ple, 13.33% (50/375) of SVs associated
with tissue-restricted outliers are <1 kb,
and nearly half (49.33%; 185/375) are
<10 kb. Multitissue outlier-associated
SVs tend to be slightly larger, with only
4.98% (12/241) <1 kb and 35.27% (85/
241) <10 kb. These results provide further
evidence that rare SVs often affect
gene expression through more complex
mechanisms than large, dosage-altering
events.

We next sought to determine if rare
outlier-associated SVs are enriched in
annotated genomic features. Although
there was little signal in our enrichment
analysis of common SVs, as described
above, rare variants typically have larger
effect sizes and are more likely to be del-
eterious. For this analysis, we defined a

B C

A D

Figure 2. Features of outlier-associated SVs. (A) Location of outlier-associated SVs relative to their asso-
ciated outlier gene and the number of SV/outlier gene associations identified in each category.
Percentages indicate the fraction of outlier/SV pairs found at each relative location compared with the
total number of SV/outlier gene associations. Note that this definition allows one SV to be associated
with multiple outlier genes, and thus, the SV is counted in multiple categories. Gene diagrams provide
examples of possible SV location, shown in red, relative to the outlier gene. (B,C ) Odds ratio (OR) of being
outlier-associated by SV type (B) and SV size (C) for the SV category of interest compared with all other
SVs. Note that BNDs were excluded from the size OR calculations owing to their ambiguous nature and
thus size. (D) Distribution of SV sizes for singleton SVs <1 Mb identified in European individuals that were
used in outlier analyses. Panels depict size distributions for all European-cohort singletons, control-asso-
ciated singletons, multitissue outlier-associated singletons, and tissue-restricted outlier-associated
singletons.
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set of “control” SVs that are located with-
in or near genes but do not show ex-
pression effects. We identified 1405
singleton SVs (1327 noncoding) located
within 50 kb of autosomal genes that
showed consistent expression levels (|Z|
< 1) across all tissues in an individual. Al-
though this is not an ideal set of control
SVs considering that some may in fact
alter gene expression in tissues or at
developmental time points for which
expression was not measured, it is none-
theless a relatively conservative set of
likely-nonfunctional SVs that can be
used for comparison to outlier-associated
SVs. We examined the overlap of both
outlier- and control-associated noncod-
ing SVs with annotated genomic features
and with segmentation states from the
Roadmap Epigenomics Project core 15-
state model (Fig. 3A).We observed signif-
icant enrichment of outlier-associated
SVs in 5 of the 34 evaluated features
and chromatin states (Fisher’s exact test;
Bonferroni P<0.05).Most of these signif-
icant associations are in Roadmap Epige-
nomics Project segmentation states in
close proximity to transcribed genes,
including transcription at the 5′ and
3′ end of genes showing both promoter
and enhancer signatures, active TSSs,
and regions flanking active TSSs. We
also observed significant enrichment in the Roadmap Epigenom-
ics Project segmentation state associated with zinc finger protein
genes and in enhancer annotations fromGeneHancer. It is impor-
tant to note, however, that the number of overlaps observed in this
analysis is small and that increased power might change these re-
sults. Thus, although rare SVs appear to have large effects on gene
expression, most existing functional annotations are not very in-
formative. Consistent with this, the distribution of SV impact
scores (Ganel et al. 2017) is not significantly different between ex-
pression-altering SVs and control SVs (Supplemental Fig. S10).

We found that 115 (21.34%) outlier-associated SVs are associ-
ated withmore than one expression outlier and that eight (1.48%)
are associated with five to nine expression outliers, suggesting that
many rare SVsmay have regional effects. To evaluate these broader
regional effects of rare expression-altering SVs, we relaxed the def-
inition for aberrant expression to generate a set of “secondary” ex-
pression outliers in which the tissue-restricted (“primary”) outlier
absolute Z-score cutoff was reduced to three in at least two tissues.
We found significantly more primary and secondary outliers with-
in 1 Mb of the 469 tissue-restricted outlier-associated SVs com-
pared with the 1405 control-associated SVs and with a null
distribution in which we randomly shuffled the sample names of
outlier-associated SVs 1000 times and calculated themedian num-
ber of associated outlier genes (Fig. 3B,C). This increase is especial-
ly pronounced for secondary outliers whose coding regions do not
overlap with the associated SV. We observe that noncoding outli-
er-associated SVs are associated with an average of 1.44 primary
outliers (|Z|≥4) compared with an average of 0.02 associated
primary outliers surrounding the shuffled null SVs (P-value=
2.78×10−106; one-sided Mann–Whitney U test). These differences

remain for secondary outliers, with an average of 3.34 secondary
outliers found in the expanded region surrounding noncod-
ing outlier-associated SVs compared with an average of 0.54
secondary outliers for the shuffled null (P-value= 4.94× 10−76;
one-sided Mann–Whitney U test). These results suggest that rare
SVs have far-reaching effects on gene expression and that these ef-
fects are primarily driven by noncoding regulatory mechanisms
rather than by changes to gene copy number.

Discussion

We have comprehensively mapped SVs fromWGS data in 613 in-
dividuals from the GTEx data set and analyzed the impact of both
common and rare SVs on human gene expression. Our findings
confirm results from previous analyses that SVs make an outsized
contribution to common gene expression changes compared with
their abundance in the genome and play an important role in rare
gene expression differences (Chiang et al. 2017). A novel aspect of
this study is the inclusion of a comprehensive set of MEI inser-
tions, including those present in the GTEx samples but not the ref-
erence genome. We observed that MEIs do not play an especially
important role in determining gene expression differences. In con-
trast, we found that mCNVs play an extremely impactful role, be-
ing 45-fold enriched among eQTL lead markers compared with
their abundance in the genome and beingmore likely to be associ-
ated with gene expression outliers (OR=1.88). mCNVswere found
to give rise to most human variation in gene dosage (Handsaker
et al. 2015), but our findings indicate that noncoding functional
mCNVs are also abundant in the human genome.

B C

A

Figure 3. Mechanistic insights into outlier-associated SVs. (A) Enrichment of outlier-associated SVs in
functional genomic annotations compared with control-associated SVs. Asterisks indicate statistical sig-
nificance based on a Fisher’s exact test with Bonferroni correction for multiple testing. (B,C ) The distribu-
tion of the number of noncoding primary (B) and secondary (C) outliers found within 1Mb of the region
surrounding tissue-restricted outlier-associated SVs, control-associated SVs, and a shuffled null.
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One of the major motivators for studies such as this one is to
understand the role of genetic variation in affecting gene transcrip-
tion. Expression-altering SVs were not well correlated with any
specific functional annotations other than proximity to genes,
and thus, existing annotations are unlikely to be informative for
modeling functional variant effects. This may simply be owing
to a lack of power given that SVs are such a diverse class of variants
that can affect large genomic segments and have the potential to
affect gene expression through diverse mechanisms, and our sam-
ple size is limited to 11,026 common SVs and 539 rare SVs predict-
ed to be functional. Alternatively, the annotations currently
available may be inadequate.

Nonetheless, it is clear that SVs have broad regional impacts
on human gene expression, with individual variants frequently af-
fecting multiple genes. These effects are not driven by large CNVs
that alter the dosage of multiple coding sequences, as one might
naively expect, but are most commonly observed for noncoding
variants: Common noncoding eSVs affect an average of 1.50
unique genes, and rare noncoding SVs are associated with an aver-
age of 1.44 primary expression outlier genes. This observation sug-
gests amechanismbywhich rare noncoding SVsmay be especially
deleterious, and may help explain why prior work has estimated
that a large number of rare noncoding deletions—an average of
19.1 per individual—appear to be under strong purifying selection
(Abel et al. 2020). Furthermore, the burden of de novo CNVs has
been associated with autism spectrum disorder, including for non-
coding variants (Turner et al. 2017; Turner and Eichler 2019). Our
results provide amechanism throughwhich individual noncoding
SVs can have strong and potentially pleiotropic effects and thus a
higher potential to contribute to disease.

Although this study represents themost comprehensive anal-
ysis of the impact of SVs on human gene expression to date, our
call set is missing some of the most repetitive classes of SV, such
as short tandem repeats. As long-read sequencing and variant call-
ing methods improve, we will be able to gain additional insights
into repetitive variants in the most complex regions of the ge-
nome. Despite the limitations of short-read sequencing data, this
study shows the importance of comprehensive variant detection
when evaluating genomic variants that contribute to gene expres-
sion and disease. SVs have a disproportionately large effect on
common and rare gene expression changes and often affect multi-
ple genes. Our findings reinforce the importance of comprehen-
sive variant detection in the design of future traitmapping studies.

Methods

Call set generation

We obtained 613 WGS BAM files from the GTEx v7 release (NCBI
database of Genotypes and Phenotypes [dbGaP; https://www.ncbi
.nlm.nih.gov/gap/] accession phs000424.v7.p2, accessed June 1,
2016). These data were aligned to GRCh37, and we did not realign
to GRCh38 for this analysis to allow for comparison between SVs
and the SNV and indel data available for this GTEx release. Our
use of GRCh37 rather than the newer GRCh38 will not signifi-
cantly affect the results or conclusions of this study, considering
that the vast majority of loci have similar sequence content and
structure; however, we note that CNV calls at specific structurally
complex loci can vary somewhat between references. SV calls were
generated using both the SpeedSeq v0.1.1 pipeline (Chiang et al.
2015), which performs sample-level breakpoint detection via
LUMPY v.0.2.13 (Layer et al. 2014) followed by population-scale
merging and genotyping of SV calls via svtools v0.3.1 (Larson

et al. 2019), and the GenomeSTRiP v2.00.1636 read-depth analysis
pipeline (Handsaker et al. 2011), as described in our preliminary
GTEx study (Chiang et al. 2017). The GenomeSTRiP false-dis-
covery rate (FDR) was evaluated based on available Illumina
Human Omni 5M gene expression array data (n=161) using
the GenomeSTRiP IntensityRankSumAnnotator. We limited
GSCNQUAL to one or more for GenomeSTRiP deletions and to
eight or more for multiallelic CNVs, corresponding to an FDR of
10%. The GSCNQUAL cutoff for GenomeSTRiP duplications was
set at 17 or more, the point at which the FDR plateaued at 15.1%
and did not fluctuatemore than ±1% for over 50 steps of increasing
GSCNQUAL score. Redundant LUMPY and GenomeSTRiP calls
were merged as previously described (Chiang et al. 2017).
Additionally, we ran MELT v2.1.4 using MELT-SPLIT to identify
Alu, SVA, and LINE-1 insertions into the test genomes (Gardner
et al. 2017). We retained MELT calls categorized as “PASS” in the
VCF info field that had an ASSESS score of three or more and SR
count of three or more. Genome Analysis Toolkit (GATK)
HaplotypeCaller v3.4 (McKenna et al. 2010) SNV and indel calls
were obtained from the GTEx Consortium (dbGaP accession
phs000424.v7.p2, accessed June 1, 2016). We use allele balance in-
stead of genotype for the analyses described in this paper because it
is tolerant to alignment inefficiencies for the alternate SV allele. For
MEIs identified by MELT, we converted generated genotypes (0/0,
0/1, 1/1) to integer values (0, 1, 2) that were used as a proxy for allele
balance to allow for comparable analyses on these variants.

Common eQTL mapping

We mapped cis-eQTLs in each of the 48 tissues for which both
WGS data and RNA-seq data were available in 70 or more individ-
uals. Available tissues and those used in each analysis are listed in
Supplemental Table S1. We refer to EBV-transformed lympho-
cytes and transformed fibroblasts as tissue types throughout
this study for convenience. Biospecimen collection, RNA-seq
data alignment, RPKM calculations, and data normalization
were previously described (Lappalainen et al. 2013; Chiang
et al. 2017).

We selected common genetic markers, defined as having
MAF≥0.01, for eQTL mapping. We performed a joint cis-eQTL
analysis that included 26,409 common SVs, as well as 9,609,545
common SNVs and 818,401 common indels detected using
GATK, to allow for a fair comparison of the contribution of differ-
ent variant types. We used FastQTL v2.184 (Ongen et al. 2016) to
perform cis-eQTL mapping, customized to accommodate the
unique architecture of SVs (Chiang et al. 2017), using a ciswindow
of 1 Mb on either side of the TSSs of autosomal and X
Chromosome genes with a permutation analysis to identify the
most significant marker for each gene. For each tissue, we applied
the same covariates described by Chiang et al. (2017). We correct-
ed for multiple testing at the gene level using the Benjamini–
Hochberg method with a 10% FDR.

To evaluate the quality of our MEI-eQTLs, we performed a
size-matched analysis by randomly selecting 286 LUMPYdeletions
tomatch the size distribution,measured in 50-bp bins, of the 6458
MEIs included in this study. We then calculated the percentage of
selected LUMPY deletions that cause an eQTL compared with the
number of MEI-eQTLs. We only used deletions detected by
LUMPY for this analysis because they are mapped to high resolu-
tion and because we can be confident of their size. However, there
are few deletions as small as MEIs, and thus, only a small subset of
deletions was selected in order to match the two size distributions.

We calculated R2 between each SV and its best tagging SNV
using the GenomeSTRiP TagVariantsAnnotator (Handsaker et al.
2015).
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Feature enrichment

To evaluate whether SVs that cause common gene expression
changes are enriched in particular genomic features, we calculated
a previously described causality score (Chiang et al. 2017) generat-
ed by taking the product of the SV heritability fraction obtained
fromGCTA (Yang et al. 2011) and the causal probability generated
by CAVIAR (Hormozdiari et al. 2014) for the strongest-associated
SV within the cis region of each eGene. No associated SVs were
identified in 199 eQTLs owing to the subset of samples with avail-
able data in the relevant tissue and thus were not included in en-
richment analyses. GCTA heritability estimates could not be
calculated for a small number of eQTLs (6146/299,187) owing to
nonpositive definite matrices, likely resulting from small sample
sizes, and these loci were excluded from feature enrichment anal-
yses. For SVs that were associated withmultiple eQTLs or the same
eQTL in multiple tissues, we selected the eQTL (tissue/gene pair)
for which the SV had the highest causality score. SVs were allocat-
ed into bins based on causality score quantiles, with the first bin
consisting of SVs in the bottom 50% of causality scores and the
other five consisting of deciles of the top 50% of scores.

Next, we counted the number of SVs in each bin that inter-
sected with various genomic annotations. We allowed 1 kb of
flanking distance surrounding all annotations with the following
exceptions: GENCODE exons, no flanking distance; proximity to
TSS and 3′ gene end, 10 kb of directional flanking distance; topo-
logically associated domain boundaries, 5 kb of flaking distance;
and Roadmap Epigenomics segmentation states, no flanking dis-
tance. SVs associated with multiple eGenes were considered to
touch an eGene if they overlapped with the exons of any associat-
ed gene. SVs that touched an exon of an associated eGene were ex-
cluded from all feature enrichment analyses except for the
enrichment of affected eGene exons. To generate a shuffled null
for comparison, SVs within each causality bin were shuffled with
BEDTools v2.23.0 (Quinlan and Hall 2010) into nongapped re-
gions of the genome within 1 Mb of the TSS of a gene. We did
not allow shuffled SVs to intersect any exons of their new eGene
for all feature enrichment analyses, except for the enrichment of
affected eGene exons. We calculated the fold enrichment of the
number of SVs that intersect with each genomic feature compared
with the median number of intersections observed for 100 ran-
domly shuffled sets within each causality bin. These shuffled sets
were also used to empirically derive the 95% confidence intervals.

The flanking distances indicated above were included to be
consistent with our prior publication (Chiang et al. 2017), in
which we observed that the enrichments were notably stronger
for certain annotations with imprecise boundaries when we in-
cluded the padding. However, we repeated the enrichment analy-
sis for this studywithout the padding approach and found that the
results look very similar to the results with padding and do not al-
ter our conclusions (Supplemental Fig. S11).

Regions 10 kb upstream of TSSs and downstream from 3′ gene
ends were defined based on GENCODE v19 gene positions. DNase
I hypersensitive regions and enhancer regions with a minimum
support of two were obtained from the Dragon ENhancers data-
base (DENdb) (Ashoor et al. 2015). We downloaded FunSeq 2.1.0
(Fu et al. 2014) regions and topologically associated domain
boundaries from human embryonic stem cells from investigator
websites (http://archive.gersteinlab.org/funseq2.1.0_data/ and
http://compbio.med.harvard.edu/modencode/webpage/hic/
hESC_domains_hg19.bed). GeneHancer (Fishilevich et al. 2017)
enhancer regions for b38 were downloaded from the UCSC
Genome Browser (Kent et al. 2002) and lifted over to b37 using
CrossMap v0.2.6 (Zhao et al. 2014). Regions defined by the
ENCODE Project (The ENCODE Project Consortium 2012) were

downloaded from the UCSC Genome Browser. To evaluate the in-
tersection with the chromatin segmentation state annotations
from the Roadmap Epigenomics Project (Roadmap Epigenomics
Consortium et al. 2015), we downloaded the core 15-state
model annotations for all 127 available epigenomes (https://egg2
.wustl.edu/roadmap/data/byFileType/chromhmmSegmentations/
ChmmModels/coreMarks/jointModel/final). We used BEDTools
multiIntersectBed (Quinlan andHall 2010) to identify genomic in-
tervals where each of the 15 annotations is found in at least 10 of
the 127 available epigenomes, andwe used these collapsed regions
as the annotation intervals for SV intersections.

eQTL tissue specificity

We selected significant gene-variant pairs identified in eQTLmap-
pingwith available expression data available across all 48 tissues in
which the eQTL analyses were performed. These pairs were only
required to have a significant eQTL in one tissue. We used
METASOFT v2.0.0 (Han and Eskin 2011) to perform a meta-analy-
sis of the selected eQTL effect sizes and their standard errors across
all 48 tissues. METASOFT uses a mixed effects model (RE2) to gen-
erate a posterior probability that an effect exists in each tissue (m-
value) (Han and Eskin 2012). To allow computational feasibility
with the relatively large number of tissues sampled, the Markov
chain Monte Carlo (MCMC) method was used to approximate
these values. The m-values generated indicate whether a tested
eQTL is active (m>0.9), is inactive (m<0.1), or has ambiguous ac-
tivity (0.1≤m≤0.9). Only eQTLs with at least 43 tissues having
known (active or inactive) activity were included in analyses.
eQTLs with active status in at least 75% of tissues with known ac-
tivity were defined as “constitutively active.”

Identification of expression outliers

We limited outlier analyses to the 513 European individuals, the
largest subpopulation in the cohort, who had available WGS
data. We performed Z-transformation of PEER-corrected expres-
sion values without quantile normalization across the 47 tissues
for which RNA-seq data were available from the GTEx
Consortium for at least 70 European individuals (Supplemental
Table S1). We defined two sets of gene expression outliers (gene/
sample pairs) among these individuals: “multitissue” expression
outliers in which an individual’s absolute median Z-score of a
gene’s expression across all available tissues was two or more, as
previously described (Chiang et al. 2017), and “tissue-restricted”
outliers in which an individual’s absolute Z-score for a gene’s ex-
pression was four or more in at least two different tissues. The
two-tissue requirement was necessary to eliminate false-positive
expression outliers resulting from individual tissues with system-
atically aberrant gene expression profiles for an individual.
Additionally, we defined a set of control gene/sample pairs in
which an individual’s absolute Z-score of a gene’s expression was
less than one across all tissues for which RNA-seq data were avail-
able. For all definitions, we limited to gene/sample pairs with data
available in at least five tissues. We removed one individual
(GTEX-14753) from this analysis owing to an excessive number
of expression outliers.

Rare variant association with expression outliers

We identified 13,769 SVs that were positively genotyped in no
more than one individual in the European cohort. Because large
rare SVs tend to affect gene expression through dosage changes,
we removed 12 variants >1Mb in size from this analysis.We calcu-
lated the enrichment of singleton SVs overlapping with multi-
tissue outlier transcripts and the flanking 5-kb sequence by
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randomly shuffling the outlier individual names 1000 times to
determine the median number of times a rare variant randomly
co-occurred with an outlier, as described previously (Chiang
et al. 2017). We also performed the reciprocal analysis, counting
the number of outliers that co-occurred within 5 kb of a rare SV.
We repeated these calculations for increased outlier-flanking re-
gions of 10 kb, 25 kb, 50 kb, and 100 kb. We calculated the OR
of being outlier-associated by dividing the ratio of outlier-associat-
ed SVs to non-outlier-associated SVs in a category of interest (SV
type or size) by the ratio of outlier-associated SVs to non-outlier-as-
sociated SVs for all SVs not included in the category.

Feature enrichment for outlier-associated SVs

We performed intersections between the 373 noncoding outlier-
associated SVs and the same genomic features and chromatin seg-
mentation states evaluated for eSVs. The above intersections were
repeated for the 1327 noncoding control-associated SVs.We calcu-
lated the fold enrichment of outlier-associated SVs in each feature
comparedwith control-associated SVs, and determined significant
enrichments using a Fisher’s exact test with Bonferroni correction
for multiple testing.

Regional effects of rare SVs

To evaluate the broader regional effects of rare, gene expression-al-
tering SVs, we counted the number of tissue-restricted outlier
genes, referred to as “primary” outliers, located in the spanning re-
gion and 1 Mb of flanking sequence both upstream of and down-
stream from the 469 SVs previously identified as being associated
with a tissue-restricted expression outlier. We repeated this analy-
sis with a relaxed definition of tissue-restricted expression outliers,
referred to as “secondary” outliers, in which the absolute Z-score
cutoff was reduced from |Z|≥4 to |Z|≥3. We compared the num-
ber of primary and secondary outliers found in the expanded re-
gion surrounding outlier-associated SVs to the expanded region
surrounding the 1405 control-associated SVs. Finally, because
the controls defined above do not represent a null expectation,
we performed 1000 randompermutations of the outlier-associated
SV sample names and calculated themedian number of associated
primary and secondary outliers for each SV in order to determine
how frequently rare expression-altering SVs co-occurred with pri-
mary and secondary outliers in random individuals.

Data access

The SV genotype data generated in this study have been submitted
to AnVIL and can be downloaded from the GTEx v7 workspace
(https://app.terra.bio/#workspaces/anvil-datastorage/
AnVIL_GTEx_V7_hg19). A VCF file containing all SV calls and ge-
notypes, including non-PASS variants that failed quality filters
(GTEx_v7.sv.low_pass.vcf), and an accompanying README file
(GTEx_v7_SV_README.txt) are available in this workspace. A
Terra account and dbGaP access to GTEx (accession number
phs000424) are required.
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