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Simple Summary: Melanoma is an aggressively growing form of skin cancer. It has a high metastatic
potential, and the liver is one of the most common sites for visceral metastasis. Patients with
hepatic metastases have a very poor prognosis, and effective forms of treatment are urgently needed.
Xanthohumol is a natural compound of the hop plant with a wide range of beneficial health effects. In
the present study, we show in cell culture experiments with human melanoma cells that xanthohumol
inhibits several pro-tumorigenic mechanisms that are critical for melanoma metastasis. Furthermore,
we analyzed the effect of xanthohumol application in a mouse model of melanoma metastasis and
found that xanthohumol significantly inhibited the growth of melanoma metastases in the liver.
Together with previous studies indicating that xanthohumol application is well tolerated, our present
findings point to this natural compound as a promising novel treatment of melanoma patients with
liver metastases.

Abstract: Melanoma is one of the most aggressive and lethal cancers worldwide. Despite recent
progress in melanoma therapy, the prognosis for metastasized melanoma continues to be poor. Xan-
thohumol (XN), a prenylated chalcone derived from hop cones, is known to possess a broad spectrum
of chemopreventive and anticancer activities. However, few studies have analyzed functional XN
effects on melanoma cells and there have been no previous in vivo studies of its effects on metastasis.
The aim of this study was to investigate the impact of XN on the tumorigenic and liver metastatic
activity of melanoma cells. XN exhibited dose-dependent cytotoxic effects on human melanoma
cell lines (Mel Ju; Mel Im) in vitro. Functional analysis in the subtoxic dose-range revealed that XN
dose-dependently inhibited proliferation, colony formation, and migratory activity of melanoma
cells. Subtoxic XN doses also induced markers of endoplasmic reticulum stress but inhibited the
phosphorylation of the protumorigenic c-Jun N-terminal kinases (JNK). Furthermore, XN effects
on hepatic metastasis were analyzed in a syngeneic murine model (splenic injection of murine
B16 melanoma cells in C57/BL6 mice). Here, XN significantly reduced the formation of hepatic
metastasis. Metastases formed in the liver of XN-treated mice revealed significantly larger areas of
central necrosis and lower Ki67 expression scores compared to that of control mice. In conclusion,
XN inhibits tumorigenicity of melanoma cells in vitro and significantly reduced hepatic metastasis
of melanoma cells in mice. These data, in conjunction with an excellent safety profile that has been
confirmed in previous studies, indicate XN as a promising novel agent for the treatment of hepatic
(melanoma) metastasis.
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1. Introduction

Melanoma is the tumor entity with the fastest rising incidence rates [1]. It accounts for
the vast majority of skin cancer-related deaths [2], which are caused by its high metastatic
potential. Although the majority of melanoma patients can undergo initially curative
local resection of the primary tumor, around 30% of patients will recur with metastatic
disease [3].

Melanoma has the propensity to metastasize to almost any organ, with the liver being
one of the most common sites for visceral metastasis [4]. Hepatic metastasis of malignant
melanoma has a very poor prognosis, with a median overall survival of 4–12 months
in patients not undergoing liver metastasectomy and 14–41 months following liver re-
section [5]. Therefore, effective management of (hepatic) metastasis represents a critical
clinical challenge.

Development of an immune checkpoint blockade and highly effective targeted thera-
pies (BRAF and MEK inhibition) extended the treatment options for patients with distant
metastases [6]. However, the prognosis for metastasized melanoma continues to be poor,
underscoring the need for novel therapies [7].

Considerable interest is growing in the anti-tumorigenic effects of xanthohumol
(3′-[3,3-dimethyl allyl]-2′,4′,4-trihydroxy-6′-methoxychalcone), the principal prenylated
flavonoid of the hop plant (Humulus lupulus L.). Xanthohumol (XN) has been claimed to ex-
ert a broad range of biological activities, including anti-angiogenic [8,9], anti-oxidative [10,11],
and chemopreventive properties [10]. In particular, XN attracted attention for its effi-
cacy against several types of cancer, e.g., hepatocellular carcinoma [12–14], prostate can-
cer [15–18], and breast cancer [16,19–21]. As an antitumor agent, XN has been widely
studied for its anti-inflammatory effects [14,22].

Although XN is known as a broad-spectrum chemotherapeutic agent, only one study
has analyzed anti-tumorigenic effects of XN on murine melanoma cells in vitro [23] and no
in vivo studies of XN effects on metastasis of any tumor entity exist.

Therefore, the aim of this study was to analyze the functional effects of XN on
melanoma cells in vitro and in a syngeneic in vivo model of hepatic metastasis.

2. Results
2.1. Effects of Xanthohumol on Viability of Melanoma Cells

Initially, we determined the range of toxicity of xanthohumol (XN) in the two human
melanoma cell lines Mel Ju and Mel Im. Analysis of lactate dehydrogenase (LDH) levels
in the supernatant and microscopic analysis revealed that XN exhibited dose-dependent
cytotoxic effects on both melanoma cell lines beginning in the dose range of 40–60 µM
(Figure 1A,B, Figure S1). Consistent with this, Annexin V-FITC flow cytometric analysis
showed that viability of cells was only slightly impaired following incubation with XN up
to 40 µM for 24 h (Figure 1C). Incubation with 40 µM XN resulted in only a slight increase
of apoptotic cells (Annexin V positive cells) (Figure 1C), and no significant propidium
iodide (PI) incorporation was observed at any XN concentration up to 30 µM (data not
shown). In contrast and in line with previous reports [14], XN doses up to 100 µM did
not cause any signs of toxicity in primary human hepatocytes (Figure 1D,E). These data
indicated the vulnerability of malignant melanoma cells to XN treatment compared to
non-malignant liver cells.
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Figure 1. Effect of xanthohumol (XN) on viability of melanoma cells and primary human hepatocytes. (A) Quantification 
of lactate dehydrogenase (LDH) release into the supernatant and (B) representative microscopic images of human mela-
noma cells (Mel Ju) treated with different doses of XN for 48 h. (C) Flow cytometric analysis of Annexin V-FITC and 
propidium iodide (PI)-stained Mel Ju cells following treatment with indicated XN concentrations for 24 h. Proportion of 
viable cells (middle panel), apoptotic cells (right panel), and representative dot plots (left panel) are shown. (D) Quantifi-
cation of LDH release into the supernatant of primary human hepatocytes following treatment with 100 µM XN for 48 h 
and (E) representative microscopic images. (*: p < 0.05 compared with ctr.). 

2.2. Xanthohumol Effects on Growth and Migration of Melanoma Cells In Vitro 
To further characterize the effect of XN on melanoma cells, we performed functional 

in vitro assays with both melanoma cell lines treated with non-toxic XN concentrations 
(up to 30 µM). A fluorescence-based DNA quantification assay revealed that proliferation 
of Mel Ju and Mel Im cells declined progressively with increasing concentrations of XN 
(Figure 2A, Figure S2A). Microscopic imaging also showed a dose-dependent decrease in 
melanoma cell number following incubation with XN for 24 h (Figure 2B, Figure S2B). In 
line with this, XN treatment led to a dose-dependent reduction in mitochondrial activity 
of melanoma cells (Figure 2C, Figure S2C left panel), which was determined by analysis 
of the reduction of XTT (sodium 3′-[1-(phenylaminocarbonyl)-3,4-tetrazolium]-bis (4-
methoxy6-nitro) benzene sulfonic acid hydrate). Previous studies have shown in other 
cancer cell types, such as colon and breast cancer cells [24,25], that XN exhibits parts of its 
anti-tumorigenic effects via impairment of mitochondria. Here, we analyzed the effect of 
XN on mitochondrial activity in primary human hepatocytes (PHHs) by applying the 
XTT-assay. We found that mitochondrial activity was not reduced but even slightly 
increased in XN-treated compared with control PHHs (Figure S2C right panel). 

Figure 1. Effect of xanthohumol (XN) on viability of melanoma cells and primary human hepatocytes. (A) Quantification of
lactate dehydrogenase (LDH) release into the supernatant and (B) representative microscopic images of human melanoma
cells (Mel Ju) treated with different doses of XN for 48 h. (C) Flow cytometric analysis of Annexin V-FITC and propidium
iodide (PI)-stained Mel Ju cells following treatment with indicated XN concentrations for 24 h. Proportion of viable cells
(middle panel), apoptotic cells (right panel), and representative dot plots (left panel) are shown. (D) Quantification of
LDH release into the supernatant of primary human hepatocytes following treatment with 100 µM XN for 48 h and (E)
representative microscopic images. (*: p < 0.05 compared with ctr.).

2.2. Xanthohumol Effects on Growth and Migration of Melanoma Cells In Vitro

To further characterize the effect of XN on melanoma cells, we performed functional
in vitro assays with both melanoma cell lines treated with non-toxic XN concentrations
(up to 30 µM). A fluorescence-based DNA quantification assay revealed that proliferation
of Mel Ju and Mel Im cells declined progressively with increasing concentrations of XN
(Figure 2A, Figure S2A). Microscopic imaging also showed a dose-dependent decrease in
melanoma cell number following incubation with XN for 24 h (Figure 2B, Figure S2B). In
line with this, XN treatment led to a dose-dependent reduction in mitochondrial activity of
melanoma cells (Figure 2C, Figure S2C left panel), which was determined by analysis of the
reduction of XTT (sodium 3′-[1-(phenylaminocarbonyl)-3,4-tetrazolium]-bis (4-methoxy6-
nitro) benzene sulfonic acid hydrate). Previous studies have shown in other cancer cell
types, such as colon and breast cancer cells [24,25], that XN exhibits parts of its anti-
tumorigenic effects via impairment of mitochondria. Here, we analyzed the effect of XN
on mitochondrial activity in primary human hepatocytes (PHHs) by applying the XTT-
assay. We found that mitochondrial activity was not reduced but even slightly increased in
XN-treated compared with control PHHs (Figure S2C right panel).
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Figure 2. Functional effects of xanthohumol (XN) on melanoma cells in vitro. (A) Proliferation, (B) representative micro-
scopic images, and (C) mitochondrial activity of Mel Ju cells following treatment with subtoxic doses of XN. (D) Quanti-
fication of colony number (right panel) and representative images (left panel) in anchorage-dependent clonogenic assays 
with Mel Ju cells treated without (ctr) or with XN. (E) Migratory activity of Mel Ju cells following 4 h treatment with 
indicated doses of XN (left panel) and representative images of Boyden chamber filters (right panel). Arrowheads indicate 
migrated cells. (F) CHOP and (G) HSPA5 mRNA expression levels in Mel Ju cells treated without (ctr) or with XN. Western 
blot analysis of (H) phosphorylated JNK1/2 and (I) p38 in XN-treated and control (ctr) Mel Ju cells (representative images 
(left panels) and densitometric quantification (right panels)). (*: p < 0.05 compared with ctr.). 

Next, we assessed the impact of XN on melanoma cells in clonogenicity assays. This 
assay analyzes stem cell properties, anchorage-dependent colony formation, and growth 
of cancer cells. We found that XN significantly reduced the colony number as well as the 

Figure 2. Functional effects of xanthohumol (XN) on melanoma cells in vitro. (A) Proliferation, (B) representative mi-
croscopic images, and (C) mitochondrial activity of Mel Ju cells following treatment with subtoxic doses of XN. (D)
Quantification of colony number (right panel) and representative images (left panel) in anchorage-dependent clonogenic
assays with Mel Ju cells treated without (ctr) or with XN. (E) Migratory activity of Mel Ju cells following 4 h treatment with
indicated doses of XN (left panel) and representative images of Boyden chamber filters (right panel). Arrowheads indicate
migrated cells. (F) CHOP and (G) HSPA5 mRNA expression levels in Mel Ju cells treated without (ctr) or with XN. Western
blot analysis of (H) phosphorylated JNK1/2 and (I) p38 in XN-treated and control (ctr) Mel Ju cells (representative images
(left panels) and densitometric quantification (right panels)). (*: p < 0.05 compared with ctr.).

Next, we assessed the impact of XN on melanoma cells in clonogenicity assays. This
assay analyzes stem cell properties, anchorage-dependent colony formation, and growth
of cancer cells. We found that XN significantly reduced the colony number as well as the
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colony size of both melanoma cell lines. Colony formation was almost completely inhibited
with XN concentrations as low as 10 µM (Figure 2D, Figure S2D).

Next, we analyzed XN effects on the migration capability of melanoma cells using a
Boyden chamber assay. Migration was analyzed after only 4 h of incubation to exclude
anti-proliferative effects of XN. We observed that the migratory activity of XN-treated
melanoma cells was significantly reduced compared to that of control cells (Figure 2E,
Figure S2E). Together, these data showed that in addition to its cytotoxic effects, even
subtoxic XN concentrations inhibit in vitro pathological functions of melanoma cells that
are critical for tumor growth and metastasis.

To identify the mechanism through which XN was exhibiting its functional effects
on melanoma cells, we analyzed its effects on the expression of markers of endoplasmic
reticulum (ER) stress. Previous studies have shown that XN induced ER-stress in leukemia
and breast cancer cells [26,27], and a recent study by Zhang et al. found that ER-stress
mediated XN-induced cell death in a murine melanoma cell line [23]. Interestingly, we also
observed that in the subtoxic range: XN dose-dependently induced the expression of the
ER stress markers CCAAT-enhancer-binding protein homologous protein (CHOP) and heat
shock protein family A (Hsp70) member 5 (HSPA5; also known as binding immunoglobulin
protein (BiP)) in both human melanoma cell lines (Figure 2F,G, Figure S2F,G). Furthermore,
we analyzed the effects of XN on the phosphorylation of c-Jun N-terminal kinases (JNK)
and found that XN inhibited the JNK-phosphorylation in the subtoxic range (Figure 2H,
Figure S2H). Importantly, this mitogen-activated protein kinase (MAPK) has been shown
to be a critical promotor of different aspects of the tumorigenicity of melanoma cells [28].
In contrast, phosphorylation of p38 MAPK was slightly induced following treatment with
XN (Figure 2I, Figure S2I). Interestingly, a study by Mi et al. indicated that XN-induced cell
death of leukemia cells is mediated by the p38 MAPK signaling pathway [29]. The role of
p38 in apoptosis of melanoma cells is controversial, and opposing pro- and anti-tumorigenic
effects have been described [30].

2.3. Effect of Xanthohumol on Hepatic Metastasis of Melanoma Cells In Vivo

To test the effect of XN on tumor metastasis in vivo, we employed an established
syngeneic murine model of hepatic metastasis [31,32]. Murine B16-F10 melanoma cells were
injected into the spleen of syngeneic Bl/6N mice with and without XN treatment. XN was
applied via intraperitoneally implanted pellets releasing XN continuously over time with a
daily dose of 10 mg/kg body weight [33]. Control mice received vehicle-containing placebo
pellets. Macroscopic analysis showed less metastases on the liver surface of XN-treated mice
(Figure 3A). Similar to what was observed in previous studies [31], metastases appeared in
part as whitish, a sign of depigmentation. Interestingly, a recent study found that loss of
melanin pigmentation enhances the ability of melanoma cells to spread in vivo [34]. Here,
we observed that liver weight was significantly lower in XN-treated mice reflecting reduced
hepatic tumor burden (Figure 3B). Tumor load was also quantified by analysis of melanoma
cell-specific MIA expression in hepatic tissues. This gene is specifically expressed in
melanoma cells but not in liver tissue [35,36]. Quantitative RT-PCR analysis revealed
significantly lower MIA mRNA levels in livers of XN-treated animals reflecting reduced
hepatic tumor load (Figure 3C). In line with this, histological analysis showed fewer and
smaller metastases in XN-treated mice (Figure 3D,E). Immunohistological analysis revealed
significantly reduced Ki67 staining in metastases formed in XN-treated mice, indicative
of reduced mitotic activity of melanoma cells in these tumors (Figure 3F). Furthermore,
XN treatment resulted in significantly larger areas of central necrosis in hepatic metastases
(Figure 3G). In summary, these data demonstrate that XN significantly reduced hepatic
metastasis of melanoma cells in vivo.
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Figure 3. Effect of xanthohumol (XN) on hepatic metastasis of melanoma cells in a syngeneic in vivo model. Mice were 
implanted with either XN-liberating pellets (10 mg/kg body weight; n = 7 mice) or control pellets (ctr.; n = 10 mice). (A) 
Representative macroscopic liver images (arrows indicate exemplary metastases on liver surface). (B) Liver weight and 
(C) hepatic MIA mRNA expression as markers of hepatic tumor burden. (D) Average number of metastases per high-
power field (HPF) in XN-treated and control (ctr) mice. (E) Representative images of HE stained hepatic tissues (20-fold 
magnification). (F) Immunohistochemical Ki67 staining of hepatic metastases (left panel) and analysis of Ki67 expression 
(right panel). (G) Representative images of hepatic metastases with similar size in the two mice groups. White bar indicates 
diameter of the metastasis and black bar the diameter of central necrosis (left panel); quantification of relative necrotic 
area (right panel). (*: p < 0.05 compared with control). 
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XN [14] and Cho et al. reported half-maximal inhibitory concentrations of 10 µM for breast 
cancer cells [41]. In addition to cytotoxic effects, we also analyzed functional effects of XN 

Figure 3. Effect of xanthohumol (XN) on hepatic metastasis of melanoma cells in a syngeneic in vivo model. Mice were
implanted with either XN-liberating pellets (10 mg/kg body weight; n = 7 mice) or control pellets (ctr.; n = 10 mice).
(A) Representative macroscopic liver images (arrows indicate exemplary metastases on liver surface). (B) Liver weight
and (C) hepatic MIA mRNA expression as markers of hepatic tumor burden. (D) Average number of metastases per
high-power field (HPF) in XN-treated and control (ctr) mice. (E) Representative images of HE stained hepatic tissues (20-fold
magnification). (F) Immunohistochemical Ki67 staining of hepatic metastases (left panel) and analysis of Ki67 expression
(right panel). (G) Representative images of hepatic metastases with similar size in the two mice groups. White bar indicates
diameter of the metastasis and black bar the diameter of central necrosis (left panel); quantification of relative necrotic area
(right panel). (*: p < 0.05 compared with control).

3. Discussion

In many cancer entities, including melanoma, hepatic metastasis is the critical factor
determining tumor-associated mortality [37]. Despite improvements in comprehensive
therapies for malignant melanoma, treatment of hepatic metastasis is still challenging due
to limited response rates and rapid onset of resistance [6]. Furthermore, targeted therapies
are often associated with serious adverse effects [38].

The low toxicity and the excellent safety profile of xanthohumol (XN) has been demon-
strated in several studies (as reviewed in [39,40]). A number of studies provide sub-
stantial evidence that this hop-derived prenylated chalcone exhibits antitumor activity
against a wide array of cancer cells, such as hepatocellular carcinoma [12–14], breast can-
cer [16,19–21], and prostate cancer [15–18]. However, little was known about the functional
effects of XN on melanoma cells, and to the best of our knowledge, no studies of in vivo
effects of XN on metastasis of any tumor entity existed previously. Here, we show that
XN exhibits in a dose-dependent manner the cytotoxic effects on human melanoma cell
lines Mel Im and Mel Ju with effective potencies in the micromolar range (40–60 µM).
These cytotoxic concentrations were comparable to that observed in other cancer cells;
Dorn et al. observed induction of cell death in HCC cells upon stimulation with 25 µM
XN [14] and Cho et al. reported half-maximal inhibitory concentrations of 10 µM for breast
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cancer cells [41]. In addition to cytotoxic effects, we also analyzed functional effects of
XN on melanoma cells. Previous studies illustrated the anti-proliferative effects of XN
on various cancer cell lines, including HCC cells [14], medullary thyroid cancer cells [42],
and colon carcinoma cells [43]. Nonetheless, the current study shows, for the first time,
that incubation with XN in the subtoxic range dose-dependently inhibits proliferation of
human melanoma cells.

Besides proliferation, the migratory capability is one of the critical factors for cancer
progression [44]. Here, we show that XN treatment inhibits migration of melanoma cells
in concentrations as low as 10 µM. Notably, assay conditions were chosen to exclude
cytotoxic or anti-proliferative effects of XN. Consistent with our data, previous studies
have demonstrated the inhibitory effects of XN on migration of other cancer cells, e.g.,
HCC cells [14] and prostate cancer cells [17].

The liver is a common site for metastatic spread of malignant melanoma [4]. Thus,
the in vitro results prompted us to investigate the effect of XN in an experimental in vivo
model of hepatic metastasis. Here, for the first time, our study provides evidence for the
anti-metastatic potential of XN in vivo. Adjustment of dose or dosing regimen may further
increase the therapeutic efficacy. Together, these findings strongly reinforce XN as a promis-
ing agent for the treatment of hepatic melanoma metastases. Future preclinical studies need
to address the potential for the treatment of melanoma metastasis to extrahepatic sites.

For a mechanistic study, we analyzed the extent of proliferating cells in hepatic
metastases of XN-treated mice and controls by Ki67 staining. Remarkably, metastases of
the XN group exhibited significantly lower Ki67 expression scores. Consistent with our
in vitro data, this indicates that the inhibitory effect of XN on hepatic metastasis is, at least
in part, mediated by anti-proliferative properties. Furthermore, it has been shown that
ER-stress mediates XN-induced cell death [23,26,27], and interestingly, we found that in the
subtoxic range, XN dose-dependently induced the expression of ER-stress markers CHOP
and HSPA5. Even if ER-stress induced by lower XN doses does not yet cause (programmed)
cell death, it may make melanoma cells more vulnerable. This hypothesis nicely fits to
our observation of larger areas of necrosis within the metastases formed in the liver of
XN-treated mice. Within the center of the metastases, hypoxia and nutrient starvation
cause additional ER-stress, and thus, XN treatment may tip the balance towards melanoma
cell death.

Nevertheless, it is important to take into account that further XN-mediated anti-
tumorigenic mechanisms could contribute to the decreased tumor burden in this model.
The anti-migratory activity of XN on melanoma cells, which has been demonstrated in vitro,
might also be one of the mechanisms underlying reduced hepatic metastasis in XN-treated
mice. Furthermore, the larger areas of central necrosis in metastases of XN treated mice
might also be attributed to an inhibition of angiogenesis, which is crucial for the growth of
metastases [45]. Indeed, previous studies elucidated the anti-angiogenic potential of XN in
pancreatic cancer [8] and in hematologic malignancies [46]. Together, it has been shown
that XN inhibits several pro-tumorigenic mechanisms and pathways in melanoma as well
as cancers of other origin. Likely, several anti-tumorigenic XN effects together played a
role in this in vivo model of hepatic melanoma metastasis. Further studies are required
to elucidate whether the mode of action also varies during the course of metastasis or in
metastasis to organs other than the liver. This could also be important information for the
potential combined application with other more-targeted forms of therapy.

Insights in the safety profile are essential to using XN for therapeutic application.
Previous studies have demonstrated the safety of even long term application of daily XN
doses as high as 1.000 mg/kg body weight [47]. More recently, the safety of XN was also
shown in a single-dose pharmacokinetic study performed on healthy volunteers [48] and
an escalating dose study in menopausal women [49]. These studies indicate that XN has
an excellent safety profile.

Together with our present findings, XN appears as a promising agent for the treatment
of hepatic (melanoma) metastases. Since XN is known for its broad-spectrum activity
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against a wide array of cancers, it might also be efficient against (hepatic) metastasis from
other tumor entities. This issue should be addressed in future studies. Moreover, the
molecular mechanisms by which XN reduces hepatic metastasis in mice need to be further
characterized. Thus, future in vitro and in vivo studies will expand the understanding of
the anti-metastatic potential of XN and will guide future research on the use of this natural
compound against metastatic disease.

4. Materials and Methods
4.1. Cells and Cell Culture

The murine melanoma cell line B16-F10 was obtained from American Type Culture
Collection (ATCC; CRL-6475™). The human melanoma cell lines Mel Ju and Mel Im were
derived from melanoma metastases [50]. Cells were cultured as described [32]. Primary
human hepatocytes (PHH) were isolated and cultured as described [51,52].

Cells were treated with xanthohumol (NIC Nookandeh Institute GmbH, Homburg/Saar,
Germany) with different concentrations and time periods as indicated. The vehicle ethanol
alone served as control.

4.2. In Vivo Model of Hepatic Metastasis

A previously described mouse model of hepatic metastasis was used [31,32]. Murine
B16-F10 melanoma cells (2 × 105 in 5 µL) were injected into the spleen of syngeneic Bl/6N
mice (control, n = 10; XN, n = 7, age: 10 weeks, Charles River Laboratories, Sulzfeld,
Germany) using a 10 µl Hamilton syringe (Novodirect GmbH, Kehl/Rhein, Germany).
XN was applied via intraperitoneally implanted pellets (Innovative Research of America,
Sarasota, FL, USA) releasing XN continuously over time with a daily dose of 10 mg/kg
body weight. Control mice received control pellets. After 11 days, mice were sacrificed
and the livers were processed for further analyses.

4.3. In Vitro Analysis of Cell Death and Cell Proliferation

LDH release into the supernatant was determined using the Cytotoxicity Detection
KitPLUS (Roche Applied Sciences, Indianapolis, IN, USA).

For analysis of apoptosis, cells were stained with FITC-conjugated Annexin V and
propidium iodide using the Annexin V-FITC Detection Kit (PromoKine, PromoCell GmbH,
Heidelberg, Germany) according to the manufacturer’s instructions as described [51].

Mitochondrial activity of cells was determined using a colorimetric XTT assay (Roche
Diagnostics, Mannheim, Germany) according to the manufacturer’s protocol, and was
described previously [51].

Cell proliferation was analyzed the using a CyQUANT NF Cell Proliferation Assay
Kit (Molecular Probes, Eugene, OR, USA) following the manufacturer’s description as
described [51].

4.4. Analysis of Cell Migration

Migratory activity of melanoma cells following treatment with XN for 4 h was quan-
tified using a Boyden chamber assay as described [51], with DMEM supplemented with
20% FCS attached to the bottom chamber. Further, cell migration was assessed using the
Cultrex 96 Well Cell Migration Assay (Trevigen, Gaithersburg, MD, USA) according to the
manufacturer’s protocol as described [14].

4.5. Clonogenic Assay

Clonogenic assays were used to analyze stem cell properties, anchorage-dependent
colony formation, and growth of cancer cells as described previously [51].

4.6. Histological Quantification of Hepatic Metastasis and Tumor Necrosis

Standard 4 µm sections of formalin-fixed and paraffin-embedded tissue blocks were
hematoxylin and eosin (HE) stained to determine the average number of metastases per
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high-power field (HPF) and to compare the level of hepatic metastasis and associated
necrosis between XN-treated and control animals. HE-stained sections were examined
under an Olympus CKX41 microscope with the ALTRA 20 Soft Imaging System and CellA
software version 2.6 (Olympus Soft Imaging Solutions GmbH, Münster, Germany).

To determine the average number of metastases per HPF, metastases were counted in
five HPFs per section in two tissue sections per mouse (cut at 1200 µm intervals).

For quantification of relative necrotic area, 0–3 metastases showing necrosis (depend-
ing on the existence and size of metastases with necrosis) in four tissue sections per mouse
(cut at 400 µm intervals) were photographed at 10×magnification. The area of metastasis
and corresponding necrosis was then determined using ImageJ software (National Insti-
tutes of Health, Bethesda, MD, USA) [53]. Finally, the average relative necrotic area (%) of
4–12 metastases per mouse was calculated.

4.7. Immunohistochemical Analysis of Ki67

Immunohistochemical staining for Ki67 was performed using anti-Ki67 antibody
(ab15580 from Abcam, Cambridge, UK) and standard protocols as described [51]. Ki67
expression score based on number of positively stained cells and staining intensity [54]
was determined in five metastases per mouse in a blinded manner.

4.8. Analysis of mRNA Expression

Total RNA was extracted with a Maxwell® 16 LEV simplyRNA Tissue Kit (Promega,
Madison, WI, USA) using a Maxwell 16 Instrument (Promega, Madison, WI, USA) follow-
ing the manual’s instructions. Reverse transcription and quantitative real-time polymerase
chain reaction using a LightCycler 480 System (Roche Diagnostics, Mannheim, Germany)
were performed as described [51]. The following sets of primers were used: 18S (forward:
5′-AAA CGG CTA CCA CAT CCA AG-3′, reverse: 5′-CCT CCA ATG GAT CCT CGT TA-3′),
β-actin (forward: 5′-CTA CGT CGC CCT GGA CTT CGA GC-3′, reverse: 5′-GAT GGA
GCC GCC GAT CCA CAC GG-3′), CHOP (forward: 5′-GTT AAA GAT GAG CGG GTG
GCA G-3′, reverse: 5′-CAC TTC CTT CTT GAA CAC TCT CTC C-3′), HSPA5 (forward: 5′-
CGT GGA ATG ACC CGT CTG TG-3′, reverse: 5′-GCC AGC AAT AGT TCC AGC GTC-3′),
and MIA (forward: 5‘-CCA AGC TGG CTG ACT GGA AG-3′, reverse: 5′- GCC AGG TCT
CCA TAG TAA CC-3′). Amplification of cDNA derived from 18S rRNA or β-actin was
used for normalization of data.

4.9. Western Blot Analysis

Protein extraction, Western blotting, and densitometric quantification were performed
as described [51]. The following primary antibodies were used: rabbit anti-phospho-JNK
(#9251, 1:1000; Cell Signaling Technology), rabbit anti-phospho-p38 (#9215, 1:1000; Cell
Signaling Technology), and mouse anti-actin (MAB1501, 1:10,000; Merck Millipore, Billerica,
MA, USA). Mouse anti-rabbit (sc-2357; 1:10,000; Santa Cruz Biotechnology) and horse anti-
mouse (#7076, 1:3000; Cell Signaling Technology) were used as secondary antibodies.
Original, uncropped blots are shown in Figure S3.

4.10. Statistical Analysis

Statistical analysis was carried out using GraphPad Prism Software version 8.4.3
(GraphPad Software, San Diego, CA, USA). Data are shown as the mean ± standard error
of the mean (SEM). Data sets were compared with analysis of two-tailed unpaired Student’s
t-test. In vitro experiments were performed in biological triplicates, and the analysis of
the presented data was performed in at least triplicates. A p-value < 0.05 was considered
statistically significant.

5. Conclusions

In this study, we newly showed that xanthohumol (XN) inhibits tumorigenicity of
melanoma cells in vitro and in vivo. In particular, we demonstrated in in vitro experiments
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that XN inhibits the proliferation and migratory ability of melanoma cells even in subtoxic
concentrations. Most importantly, we provide the first experimental evidence that the
prenylated chalcone XN significantly reduces hepatic metastasis of melanoma cells in mice.
We propose that the antiproliferative effects of XN on melanoma cells play a key role in the
mechanism of action. Our present findings, in conjunction with an excellent safety profile,
point to XN as a promising agent for the treatment of hepatic (melanoma) metastases.

Supplementary Materials: The following are available online at https://www.mdpi.com/2072-6
694/13/3/511/s1. Figure S1: Effect of xanthohumol (XN) on viability of melanoma cells, Figure S2:
Functional effects of xanthohumol (XN) on melanoma cells in vitro, Figure S3: Original, uncropped blots.
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