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Abstract

We introduce a method for detecting variants in several genes of related function with small effect 

on a phenotype of interest. Our method uses logistic regression to test whether multiple alleles 

within a functional set have significantly higher than expected predictive value, even though none 

individually may have strong individual effects. We illustrate this method by testing seven gene 

sets (including 48 genes), from a study with1350 single nucleotide polymorphisms in 130 

addiction candidate genes studied in a sample of 575 alcohol dependence (AD) cases and 530 

controls. We conclude that AD is related to variation in genes participating in Glutamate and 

GABA signaling, as has been reported elsewhere, and in stress response pathways, but not with 

genes in several other systems implicated in other drugs of abuse.
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Introduction

Modern efforts to identify the genetic risk factors for complex psychiatric and drug abuse 

disorders have focused mostly on genomic regions (in linkage analysis) or individual 

sequence variants (or associated haplotypes) in or near specific genes (in candidate gene 
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association studies). A few studies 1–5 have examined epistatic models of disease etiology; 

these studies have, typically examined only two markers, loci or linked regions at a time. 

Recently genome-wide association studies (GWAS) for psychiatric disorders have appeared 
6–9.

In this article, we apply a different and systematic approach towards uncovering the genetic 

basis of complex diseases – one based on the analysis of sets of genes whose protein 

products collaborate in specific functions. This may be thought of as in-between a candidate 

gene study and a GWAS. For the purposes of this paper, we define a functional gene set as 

one whose protein products are involved in a closely coordinated biological function. While 

network approaches are common in the analysis of expression arrays, we are aware of only 

three prior steps in this direction in linkage or association studies in relation to complex 

disease 10–12. These papers have used methods devised for continuous gene expression data 

and adapted them to discrete genotype data. By contrast our approach is grounded in the 

methodology of statistical genetics extended in a natural manner to gene networks.

We conceptualize the gene set approach as follows. Consider a particular set of genes that 

produce proteins that act in a pathway to produce a given metabolite, or that convey a signal 

from the cell surface to the cell nucleus, or that come together to form a multimeric receptor. 

Functional variants in any one of the genes might produce abnormal proteins, many of 

which would impair the function accomplished by that set. Many variants in that gene set 

would result in similar perturbations in biological function, which could then affect 

propensity to a complex disease. If one variant in one of these genes conferred substantially 

increased disease risk, then that variant would be relatively easy to detect by traditional 

association methods. However natural selection tends to remove such genes, but is less 

efficient at removing variants which increase risk only slightly. If each of several variants of 

genes within that set confer modest increases in disease risk, those variants might be quite 

difficult to detect when examined one at a time. However greater statistical power might be 

achieved toward detecting a disease association if all these variants were analyzed jointly as 

an a priori statistical unit.

Recent comprehensive studies of genetic contributions to disease in other fields have also 

found many fewer candidates than would be needed to explain the documented heritability 

of the disorders 13. Current discussions emphasize the role of multiple genes and posit a 

‘long tail’ – many genes with very small effects on risk could account for a large fraction of 

the variance 14, 15. Such loci might be extremely difficult to detect by classical genetic 

methods that focus on a single locus at a time.

In this paper, we attempt to provide a “proof of principle” for our method by applying it to 

genotype data from 370 SNPs in 48 putative candidate genes obtained from a sample of 

individuals with alcohol dependence (AD) and population controls. A number of prior 

studies have examined risk loci for AD and their results may serve as a test of our approach. 

An unresolved issue is whether common complex disorders reflect the effects of a few 

common variants of several genes or the dramatic effects of many rare variants. Here we 

propose a method to address, from a gene set perspective, the common disease/common 

variant (CDCV) model.
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Materials and Methods

Subjects and phenotype measurement

Participants in the Irish Affected Sibpair Study of Alcohol Dependence (IASPSAD) were 

recruited in Ireland and Northern Ireland between 1998 and 2002. Further details of the 

study design, sample ascertainment, and clinical characteristics of this sample are described 

elsewhere16. In brief, ascertainment of probands was mainly conducted in community 

alcoholism treatment facilities and public and private hospitals. Probands were eligible for 

study inclusion if they met the current DSM-IV criteria (American Psychiatric Association, 

1994) for AD and if all four grandparents had been born in Ireland, Northern Ireland, 

Scotland, Wales or England. After a prospective family was identified through a proband, 

parents and potentially affected siblings whom the probands provided permission to contact 

were recruited.

Probands, siblings and parents were interviewed by clinically-trained research interviewers, 

most of whom had extensive clinical experience with alcoholism. The assessment included 

demographic characteristics, lifetime history of AD and other comorbid conditions, alcohol-

related traits, personality features, and clinical records. The DSM-IV AD diagnosis was 

assessed in probands and siblings using the modified Semi-Structured Assessment of the 

Genetics of Alcoholism (SSAGA) version 11 17 interview to reduce assessment time.

All participants provided informed consent. There were 1238 individuals who completed the 

SSAGA interview and met DSM-IV AD diagnosis, including 591 probands, 620 affected 

siblings, and 27 affected individuals from 10 complex families. Controls were recruited in 

the Northern Ireland from volunteers donating at the Northern Ireland Blood Transfusion 

Service (N=554) and in the Republic from the Garda Siochana (the national police force, 

N=38) and the Forsa Cosanta Aituil (the army reserve, N=34). Controls were screened and 

their samples excluded if they reported a history of heavy drinking or problem alcohol use. 

In the present case-control study design, we included 575 independent AD cases (399 

probands and 176 sibs) that were drawn one each from the IASPSAD families and 530 

controls, with high yield of high quality DNA for genotyping.

SNP selection for the Addiction Array

For this study, we tested 48 genes which had previously been tested individually on a 

custom addiction array. The array, developed by Dr. David Goldman, tested a total of 130 

addiction candidate genes, selected from multiple functional systems and implicated in 

substance dependence phenotypes (primarily alcohol, cocaine and opiates). For the array 

genes, a genomic region containing 5 kb upstream and 1 kb downstream of each candidate 

gene was retrieved from NCBI (Human Genome Build 35.1) and genotype data from the 

African population, which is the most diverse, were obtained from HapMap Phase I Rel18 to 

re-construct haplotypes for each gene using SNPHAP (http://www.gene.cimr.cam.ac.uk/

clayton/software/snphap.txt). A double classification tree search algorithm was applied to 

select minimum index SNPs representing maximum haplotype information and with 

frequency >0.6% for each gene. Probable functional SNPs (non-synonymous, splice site and 

putative functional SNPs from the literature) were forced in during the selection process. 
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The performance of the initially selected SNP set was validated by the manufacturer and 

replacements made where necessary. In total, there were 1536 SNPs on this Illumina array, 

including 1350 SNPs from the 130 candidate genes, and 186 ancestry informative markers 

(AIMs). Our Irish population showed more linkage disequilibrium than the African 

population for which the chip was designed: the median r2 between neighboring variants 

was 0.21; 145 pairs of neighbors had r2 > 0.8. By construction of the algorithm SNPs in high 

LD could not both count toward the significance of a gene set.

Genotyping using an Illumina custom SNP array

Genotyping for the addiction array was performed using the Illumina GoldenGate 

genotyping protocols on 96-well format SentrixR arrays. All pre-PCR processing was 

performed using a TECAN liquid handling robot and arrays were imaged using an Illumina 

Beadstation GX500. The data were analyzed using GenCall v6.2.0.4 and GTS Reports 

software v5.1.2.0 (Illumina). Full details of array genotyping and post-experiment QC are 

described elsewhere 18. In brief, a total of 1105 unique samples were genotyped. After 

screening for poor performing SNPs based on technical metrics from the GX500 and 

assessment of Hardy-Weinberg equilibrium, the data available for this sample included 

1286/1350 (95.3%) of gene SNPs and 176/186 (94.6%) AIM markers. Markers which 

passed QC metrics were then assessed for Hardy-Weinberg equilibrium, and those with p < 

0.001 were discarded. Those SNPs or individuals in which more than 10% values were 

missing were dropped from further analysis. Any SNPs with minor allele frequency less 

than 5% were also discarded.

Identification of signaling gene sets

In this study, we focused on a subset of signaling systems which were well represented in 

the available data. We divided up the 130 assayed genes into families based on the signaling 

systems in which they participate. In most cases these were sets of receptors for a particular 

signaling molecule, which annotations were provided with the chip; the genes for CRH were 

selected by DK who has specialized expertise. This process yielded seven gene sets which 

had at least four member genes; several other signaling systems (e.g. opioids) had fewer 

than four genes represented on the chip; these were not considered further for a systems-

analysis approach. We concentrated on those seven, which included receptors and other 

molecules involved in neurotransmission via norepinephrine, acetylcholine, dopamine, 

CRH, gamma-amino butyric acid (GABA), glutamate, and serotonin. The genes in each 

group were as comprehensive as possible limited only by the coverage on the chip. The 

genes in the gene sets are shown in Table 1.

Statistical approach

Model

Our model is directed toward the Common Disease Common Variant hypothesis. We posit 

that each variant contributes independently and additively to risk. This can be simply 

expressed in a logistic regression model: the logit of relative risk is predicted by a weighted 

sum of counts of risk-bearing alleles as in equation (1):
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(1)

where ni represents the counts of allele i and βi reflects the contribution of allele i to the 

phenotype. We are anticipating many small contributions of common alleles to AD risk and 

therefore anticipate that many of the true coefficients βi will be non-zero but not large. 

Therefore when we fit model (1) to our data, we expect to see that many of the fitted 

estimates bi, of βi, will be significantly different from 0, i.e. more fitted coefficients bi will 

be associated with large increases in deviance explained in model (1), and therefore small p-

values, than we would see in similarly powered studies if there no underlying effects (if all 

βi were 0). In order to test whether there are more non-zero coefficients than we would 

expect by chance, we permute the phenotype labels to generate many data sets with the same 

LD structure among the genotypes, but no consistent relation to the AD phenotype, and ask 

how unusual is it to find as many significant estimated coefficients bi as in fact occur with 

the true phenotype labels.

SNP selection

We expect that most typed variants will not be even weakly associated with AD risk, and 

statistical testing would be weakened by including all variants. We therefore selected subsets 

of SNPs across gene sets in two ways. First we followed standard practice for building a 

multivariate linear model based on increase in log-likelihood. We set a relatively modest 

threshold of a log likelihood increase of 2.5 for inclusion in a model. Second we 

implemented a faster procedure by selecting a subset of alleles that were potentially 

individually associated with AD using a liberal threshold for inclusion of p < 0.20. Both 

these inclusion criteria are fairly weak, and statistical significance cannot be assessed by 

conventional means. For both procedures we prevented from entering the model those 

variants in LD (r2 > .25) with variants already in the model.

Statistical significance

In order to properly assess significance of the AD risk contributions of selected SNPs, 

therefore, we generated a null distribution by repeating the whole procedure, including SNP 

selection, 1,000 times with randomized phenotype data (for the LR inclusion criterion) or 

10,000 times (for the faster p-value threshold criterion); for each permutation we recorded 

the total deviance. We then compared the total deviance increase for the SNPs chosen using 

the true outcomes to the distribution of total deviance increases for SNPs chosen using the 

identical procedure for randomized outcomes; the p-value associated with each gene set was 

the proportion of permutation fits whose total explained deviance exceeded that of the true 

fit. We found that the sets of SNPs chosen and the significance of gene sets differ only 

modestly depending on which criterion for SNP inclusion is employed or on which log 

likelihood threshold is used for the likelihood criterion. We report results for the likelihood 

criterion, since this is more traditional; the results based on the other inclusion criterion were 

slightly more significant (not shown).

Reimers et al. Page 5

Pharmacogenomics J. Author manuscript; available in PMC 2013 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Results

The individual genes selected for each of the 7 gene sets are shown in Table 1 and main 

results of our analyses are shown in Table 2.

Using the standard Benjamini-Hochberg procedure for FDR, at an expected proportion of 

10% of false positives, we identified the following four systems as potential contributors to 

genetic risk for AD: norepinephrine, glutamate, GABA, and CRH. The 27 SNPs in these 

systems together accounted for 6.8 % of the total phenotype variance, although this is likely 

an overestimate due to selection bias.

If we had done a standard chip-wide association analysis on this data, none of the individual 

variants in this study would be significantly associated with AD after multiple comparisons 

corrections. In fact, the smallest Q-value would be 0.7 using the standard Benjamini-

Hochberg procedure. However among our seven gene sets, four gene sets (norepinephrine, 

glutamate, GABA, and CRH) achieved a Q-value < 0.1.

In order to examine the distribution of effect sizes within the positive gene sets, we plotted 

the odds-ratios for all of the SNPs selected by the algorithm in the four systems selected by 

our procedure (Fig 1). Modest to moderate association signals were distributed widely 

within both gene sets and were not confined to a few markers. To give some sense of the 

statistical significance of the odds-ratios (ORs) associated with these SNPs, for associations 

with a randomized phenotype, only 1 in 100 SNPs would have an OR ≥ 1.25 We examined 

165 SNPs in the GABA system and 90 in the Glutamate system. Thus, one would expect 

one or two of the ORs ratios from GABA receptors SNPs to exceed 1.25, whereas we 

observe nine. For glutamate receptor SNPs, we would expect 1 and we observe 4. For the 

NE system we would expect to see 0 or 1 SNP whose OR exceeds 1.25; we see three. For 

the CRH system we expect on average to see one SNP whose OR exceeds 1.2 one half of the 

time; in fact we see two.

Discussion

The goal of this report was to test a new method for the detection of small effect risk 

variants for complex neuropsychiatric disorders. We proposed 7 gene sets based on a priori 

biological hypotheses and tested these sets for their impact on risk for AD. Using the 

standard Benjamini-Hochberg FDR procedure, we identified four gene sets significantly 

associated with AD with at an FDR of 10%, indicating a low likelihood of their being false 

discoveries. In contrast, no individual SNP in any of the selected gene sets would have been 

selected in a chip-wide study at an FDR less than 40%. If we had hypothesized a priori that 

our candidate genes would belong to one of the seven groups tested and restricted our single 

locus tests to those SNPs only, then we would have had only one SNP significant at an FDR 

of 0.2, (which would also be a Bonferroni-corrected p-value of 0.2), but none at an FDR of 

0.15.

Interestingly, the distribution of the association signals in the two largest sets was among 

several genes rather than being concentrated in one gene. Such a wide distribution of effects 

would be predicted by the original motivation for this gene set approach.
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The validity of our findings is also supported by the work of many previous researchers who 

have identified the contribution of GABA and glutamate receptors to AD 19. Some of the 

genes contained in the gene sets tested here have been previously tested as candidate genes 

albeit with inconsistent results. Some of the others have yet to reveal association with AD; 

however since the effect sizes are small, they would not likely have yielded association 

when tested individually, even if the association is real. For example, previous studies have 

shown that a number of individual genes for components of the GABAA receptor are 

associated with AD. Investigations in the COGA sample showed that variations in GABRA2 

were highly associated with AD as well as the beta frequency of the electroencephalogram 
20. Another study 21 produced evidence showing gene-environment correlation and 

interaction in the impact of GABRA2 variants and risk for AD. Other studies have reported 

association between AD and GABRA6 22–24, GABRB3 and severe alcoholism 25 and Song et 

al 24 found evidence of association with GABRA5 and GABRB3. The most frequent 

combination of GABAA subunits is α1, β1, and δ 26. Of these three common subunits, only 

β1 and δ were sampled on the array, but when SNPs for these the genes encoding these 

subunits were considered together as a group they also reached a significance level of 0.025.

There is also increasing evidence that glutamatergic neurotransmission is involved in 

alcohol tolerance and withdrawal through its role in synaptic plasticity 27, 28. A limited 

number of studies testing NMDA receptor subunit genes in human samples have reported 

association with AD and related phenotypes 29–33. Genetic association results for genes 

coding subunits of the NMDA, kainate and AMPA receptors have produced mixed results 30 

despite the substantial functional evidence implicating this system in AD. Results from the 

current study suggest that other glutamatergic genes also represent putative risk factors for 

AD.

Although genes in the Norepinephrine and CRH systems have not been tested for AD to the 

extent that GABA and glutamate have, there is evidence to suggest that the Norepinephrine 

and CRH systems have a functional role in the etiology of AD. Previous findings have 

shown that stress system disturbances are observed in AD and are involved in alcohol-

induced neurotoxicity and cognitive deficits 34. The Hypothalamic-pituitary-adrenal (HPA) 

axis activation influences reward pathways 35 and GABAA receptor function involved in 

ethanol sensitivity 36. Evidence for genetic factors is supported by family studies showing 

altered HPA response to ethanol 37, 38, animal studies linking a CRH haplotype in alcohol 

consumption 39, and clinical studies associating CRHR1 variants with drinking patterns 40, 
41. Findings of HPA axis disturbance in drinking or abstinent AD individuals, however, are 

inconsistent and difficult to interpret, with both heightened and reduced activity reported 34, 
42. Moreover, acute and chronic alcohol use differ in their effects on HPA axis activity, with 

disturbed activity in AD potentially due in part to the impact of chronic alcohol consumption 

on brain regions involved in negative feedback 43. HPA disturbance in AD may also be due 

to the high comorbidity of AD with major depression (MD). Support for an etiologic role for 

altered stress system activity in the pathophysiology of MD is growing, with some evidence 

that genetic variation may be involved 44–46. Epidemiological research suggests MD may be 

the primary pathology in some AD patients 47. Results of AD studies selecting for 48 or 
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screening out 49 a history of MD suggest disturbance of the stress system in some AD 

patients may be due to the well-documented disturbance of this system in MD.

The fraction of variance accounted for by the subset of SNPs in the GABA receptor genes 

selected was 3.8 %, while the fraction of variance accounted for by the subset of SNPs in the 

six selected glutamate receptor genes was 3.3 %. We note that these estimates are 

comparable to previously published estimates for the contributions of multiple variants in 

distinct neurotransmitter systems to a different psychiatric phenotype (ADHD) 50. For 

comparison purposes, the fraction of variance that would be explained by comparably sized 

subsets of SNPs, randomly selected from those of comparable minor allele frequencies, 

would be 1.1% and 0.6% respectively. We think that a systematic search of other gene sets 

(including those related to metabolism of alcohol and taste) along the lines performed here 

may yield further useful results.

One concern about this study may be that the genes were a priori selected to be likely 

candidates for association with addictive behavior. We agree that this means it is more likely 

that we have higher levels of association than in a GWAS. However this caveat applies 

equally well to the individual tests, which as noted above, do not result in experiment-wide 

significance. And in any event a priori selection does not invalidate the statistical evidence 

of an independent study.

This method is likely to prove most useful in complex biomedical phenotypes where 

information exists about plausible pathophysiological mechanisms. Particularly when 

applied to genome wide data, the task will be to develop informed sets of candidate 

pathways that can be tested as plausible a priori hypotheses. Defining the boundaries of 

individual pathways may prove challenging as biological pathways are rarely discrete. 

Nonetheless, if the CDCV hypothesis is correct, genetic variation for many common 

diseases may be scattered throughout a number of genes within particular biological 

pathways. Testing a limited number of such pre-defined pathways is likely to lead to a 

substantial gain in statistical power if it is possible to nominate the likely candidate 

pathways. Such a gain in power could significantly reduce the need for very large samples 

for GWAS needed to compensate for the multiple testing burden.

In summary, we see the most important results here as methodological. We have developed 

and tested a network based approach to clarifying the genetic substrate of complex diseases. 

Applying this to a pre-selected set of candidate genes genotypes in cases with AD and 

controls, we found evidence that variants in four neurotransmitter pathways (norepinephrine, 

glutamate, GABA, and CRH) significantly contributed to risk for AD. These results are 

broadly consistent with the prior literature and suggest that network analyses may be a 

useful addition to the more standard approaches to clarifying the genetic basis of complex 

disorders, especially when prior biological hypothesis of disease etiology can lead to 

predicted gene pathways.
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Figure 1. 
Upper Left Effect sizes (as odds-ratios) for SNPs selected in the GABA gene set. Three 

SNPs for GABA occur in the same gene (GABRG3), but the markers are not in LD (r2 < 

0.25 by construction). Upper Right. Odds ratios for SNPs in the glutamate receptor gene 

set. Lower Left Odds ratios for selected SNP’s in the Norepinephrine gene set. Lower 
Right. Odds ratios for SNP’s selected in the CRH gene set.
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Table 1

Genes considered within gene sets

Norepinephrine system ADRA1A, ADRA2A, ADRA2B, ADRA2C, ADRB2

Cholinergic system CHRM1, CHRM2, CHRM3, CHRM4, CHRM5

Dopaminergic system DRD1, DRD2, DRD3, DRD4, DRD5, DBH, DDC, TH

GABAergic system GABRA2, GABRA3, GABRA4, GABRA6, GABRB1, GABRB2, GABRB3, GABRD, GABRE, GABRG2, 
GABRG3, GABRQ, SLC6A7

Glutaminergic system GRIK1, GRIN1, GRIN2A, GRIN2B, GRIN2C, GRM1

Serotonergic system HTR1A, HTR1B, HTR2A, HTR2B, HTR2C, HTR3A, HTR3B

CRH system CRH, CRHBP, CRHR1, CRHR2
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