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In Brief
MaxQuant.Live builds on the fast
application programming inter-
face of quadrupole Orbitrap
mass analyzers to control data
acquisition in real-time (freely
available at www.maxquant.live).
Its graphical user interface en-
ables advanced data acquisition
strategies, such as in-depth
characterization of peptides of
interest. Online recalibration in
mass, retention time, and inten-
sity dimensions extends this
concept to more than 25,000
peptides per run. Our “global
targeting” strategy combines the
best of targeted and shotgun
approaches.
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Mass spectrometry (MS)-based proteomics is often per-
formed in a shotgun format, in which as many peptide
precursors as possible are selected from full or MS1
scans so that their fragment spectra can be recorded in
MS2 scans. Although achieving great proteome depths,
shotgun proteomics cannot guarantee that each precur-
sor will be fragmented in each run. In contrast, targeted
proteomics aims to reproducibly and sensitively record a
restricted number of precursor/fragment combinations in
each run, based on prescheduled mass-to-charge and
retention time windows. Here we set out to unify these
two concepts by a global targeting approach in which an
arbitrary number of precursors of interest are detected in
real-time, followed by standard fragmentation or ad-
vanced peptide-specific analyses. We made use of a fast
application programming interface to a quadrupole Or-
bitrap instrument and real-time recalibration in mass,
retention time and intensity dimensions to predict precur-
sor identity. MaxQuant.Live is freely available (www.
maxquant.live) and has a graphical user interface to spec-
ify many predefined data acquisition strategies. Acquisi-
tion speed is as fast as with the vendor software and the
power of our approach is demonstrated with the acquisi-
tion of breakdown curves for hundreds of precursors of
interest. We also uncover precursors that are not even
visible in MS1 scans, using elution time prediction based
on the auto-adjusted retention time alone. Finally, we
successfully recognized and targeted more than 25,000
peptides in single LC-MS runs. Global targeting combines
the advantages of two classical approaches in MS-based
proteomics, whereas greatly expanding the analytical
toolbox. Molecular & Cellular Proteomics 18: 982–994,
2019. DOI: 10.1074/mcp.TIR118.001131.

Mass spectrometry (MS)-based proteomics has matured
into a versatile and widely used analytical tool in the life
sciences (1–3). State-of-the-art workflows cover the pro-
teome of model organisms to near-completeness and sensi-
tivity extends into the attomole range (4–7). Still, many, and in

particular low-abundance, proteins escape accurate and re-
producible quantification across large sets of biological sam-
ples, which hinders wider applications of proteomics in sys-
tems biology and translational medicine (8, 9). In part, this is
because of the complexity of bottom-up proteomics samples.
Enzymatic digestions of protein extracts are comprised of
millions of peptide species and, even with liquid chromatog-
raphy, many peptides co-elute, spanning several orders of
magnitude in abundance (10). In data-dependent acquisition
schemes (DDA)1, the mass spectrometer acquires as many
MS2 spectra as possible to maximize the number of peptide
identifications. As high-abundance ions are more likely to
yield high-quality MS2 spectra, precursors are typically prior-
itized for isolation and fragmentation by their abundance and
dynamic exclusion is employed to prevent their resequencing.
This topN approach has been the method of choice for unbi-
ased and comprehensive proteomic studies for many years.
However, given the enormous number of precursor candi-
dates and unavoidable run-to-run variabilities, a specific pep-
tide may not be fragmented in every run. Data-independent
acquisition (DIA) aims to avoid stochasticity by repeatedly
cycling through fixed isolation windows (11), however, it in-
creases spectral complexity and may diminish dynamic range
and by its nature does not address all application scenarios .

In contrast to DDA and DIA, the goals of targeted proteom-
ics methods are to analyze a limited number of selected
proteins of interest with maximum sensitivity and reproduc-
ibility (12). Rather than selecting precursors based on the MS1
scans, the instrument is instructed to continuously fragment
certain predefined precursor-fragment mass combinations
during scheduled time windows, in which the targeted pep-
tides are expected.

Traditionally, these experiments have been performed on
triple quadrupole instruments, even before the advent of pro-
teomics (13, 14). However, today high-resolution time-of-
flight or Orbitrap mass analyzers are gaining popularity. In-
stead of recording one or a few specified precursor-fragment
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transition, these instruments acquire complete MS2 spectra
and therefore monitor all fragment ions simultaneously, which
increases specificity and quantitative accuracy (15, 16). In
practice, setting up a robust targeted proteomics experiment
with a desired coverage remains challenging as the number of
targets needs to be balanced with acquisition speed and
sensitivity (17, 18). Selecting too many targets may unduly
reduce the acquisition time for each of them, whereas spec-
ifying narrow LC elution windows increases the risk of missing
a peptide entirely as the retention times cannot be estimated
very accurately beforehand. Reports in the literature generally
employ minute-wide monitoring windows to target tens and
sometimes hundreds peptides and proteins. Further, despite
the creation of community-wide MRM peptide libraries (19–
21), these assays are typically reestablished and optimized in
each laboratory.

To address some of the above limitations, Domon and
co-workers spiked-in isotope-labeled variants of the peptides
of interest to trigger “pretargeting” and targeting events more
precisely (22). Coon and colleagues used the expected elution
order of peptides to bias DDA toward peptides of interest (23).
Building on the MaxQuant software suite (24, 25) our own
group developed the MaxQuant-RealTime framework, which
identified peptides within milliseconds, providing a basis to
implement intelligent data acquisition methods in different
research scenarios (26). Although these concepts and poten-
tial applications are very promising in principle, the uptake of
the underlying software packages was limited.

Proteomics post-processing algorithms generally contain a
mass recalibration step as well as retention time alignment,
which can be used to transfer identifications between runs
(24, 27, 28). For instance, MaxQuant can achieve sub-parts-
per-million (ppm) mass accuracies and absolute retention
time deviations below 30s by nonlinear recalibration and
alignment. We reasoned that approaching such an accuracy
in real-time could dramatically improve our ability to predict
the appearance of a very large number of peptides. This
would drastically reduce the monitoring time for each peptide
and might allow extending the targeting concept to a global,
proteome-wide scale.

To realize this vision, we developed the freely available
software MaxQuant.Live, which interacts with any Thermo
Fisher Q Exactive mass spectrometer via the redesigned in-
strument application programing interface (IAPI) (29). Scan
modules (“apps”) can be plugged into the MaxQuant.Live
core application on the acquisition computer, allowing straight-
forward implementation and modification of standard acquisi-
tion schemes as well as advanced data acquisition strategies
based on live data analysis.

EXPERIMENTAL PROCEDURES

Cell Culture and Sample Preparation—We cultured the human
HeLa cancer cell line (HeLa S3, ATCC, Manassas, VA) in Dulbecco’s
modified Eagle’s medium (DMEM) with 10% fetal bovine serum, 20
mM glutamine and 1% penicillin-streptomycin added (all Life Tech-
nologies Ltd., Paisley, UK). Metabolic stable isotope labeling (30) was
performed in arginine- and lysine-free DMEM, fortified with arginine
and lysine with natural isotope abundances (light channel) or stable-
isotope labeled arginine-10 and lysine-8 (Cambridge Isotope Labo-
ratories, Tewksbury, MA) as previously described (31). Cells were
collected by centrifugation, washed twice with cold phosphate-buff-
ered saline, pelleted and stored at �80 °C.

We lysed the cells and reduced and alkylated the proteins in a
single reaction vial with sodium deoxycholate (SDC) buffer containing
chloroacetamide (PreOmics GmbH, Martinsried, Germany) following
our previously published protocol (32). Cells were suspended in the
SDC buffer and boiled for 10 min at 95 °C. To disrupt remaining
cellular structures and shear nucleic acids, we sonicated the suspen-
sion for 15 min at full power (Bioruptor, Diagenode, Seraing, Belgium).
The crude protein extracts were enzymatically digested with LysC
and trypsin (1:100, enzyme wt/protein wt) overnight at 37 °C before
stopping the reaction with 5 volumes of isopropanol/1% trifluoroace-
tic acid (TFA). Peptide micro-purification and de-salting was performed
on styrenedivinylbenzene-reversed phase sulfonate StageTips. Follow-
ing sequential washing steps with isopropanol/1% TFA and water with
0.1% TFA, peptides were eluted with 80% acetonitrile (ACN) containing
1% ammonia. The vacuum dried eluates were reconstituted in water
with 2% ACN and 0.1% TFA for further analysis.

Liquid Chromatography and Mass Spectrometry (LC-MS)—In sin-
gle LC-MS runs, �500 ng of purified whole-cell digests were analyzed
with an EASY-nLC 1200 nanoflow chromatography system (Thermo
Fisher Scientific, Bremen, Germany) coupled online to a hybrid qua-
drupole Orbitrap mass spectrometer (Thermo Q Exactive HF-X (33)).
The peptides were separated at 60 °C on a 50 cm long column (75 �m
inner diameter) packed with 1.9 �m porous silica beads (Dr. Maisch,
Ammerbuch-Entringen, Germany), and electrosprayed from a laser-
pulled silica emitter tip at 2.4 kV. Mobile phases A and B were water
with 0.1% formic acid (v/v) and 80/20/0.1% ACN/water/formic acid
(v/v/v). To elute the peptides at a constant flow rate of 300 nL/min, a
binary gradient was ramped from 5% to 30% B within 95 min,
followed by an increase to 60% B within 5 min and further to 95% B
for washing. After 5 min, the organic content was decreased to the
starting value within 5 min and the column was reequilibrated for
another 5 min.

Standard top15 DDA methods were generated with the graphical
Thermo Xcalibur method editor. Full MS scans in the mass range from
m/z 300 to 1650 were acquired with a 128 ms transient time corre-
sponding to a resolution of 60,000 at m/z 200. The target value for the
automatic gain control (AGC) algorithm was set to 3 � 106 charges,
which was typically reached within about 1 ms during the elution
of peptides. Precursor ions for MS2 scans were isolated with
a �0.7 Th window centered on the precursor mass and fragmented
with higher energy collisional dissociation (HCD) (34) at a normalized
collision energy (NCE) of 27. MS2 spectra were acquired with a
resolution of 15,000 at m/z 200, and the maximum ion injection time
and the AGC target were set to 25 ms and 1 � 105 charges, respec-
tively. Only precursors with assigned charge states � � 2 and � � 5
were considered, and previously sequenced precursors were dynam-
ically excluded for 30 s.

Acquisition Software—MaxQuant.Live (Version 0.1) was continu-
ously running in its “listening mode” on the acquisition computer
waiting for a signal to load and execute a scan protocol from the
library. To schedule batches of LC-MS runs, we used the sequence
list from Xcalibur whose entries contain settings for the LC device as

1 The abbreviations used are: DDA, data-dependent acquisition;
GUI, graphical user interface; IAPI, instrument application programing
interface; NCE, normalized collision energy; SIM, selected ion moni-
toring; pmSIM, predictive multiplexed selective ion monitoring.
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well as the method for the mass spectrometer. While using the normal
LC-settings we constructed the instrument method in such a way that
it encodes the start signal for MaxQuant.Live to load a given scan
protocol and take over the control of the mass spectrometer for the
whole run on starting.

Scan protocols for the different targeting strategies were all spec-
ified using the targeting app that is included in MaxQuant.Live. As
initial settings for peptide recognition, we chose by default a mass
tolerance of �10 ppm, a retention time tolerance of �3 min and an
intensity threshold value of 10�5 from the expected intensity of the
target. To calculate the corrections, the adaptive correction includes
the peptides recognized within the last 3 min but retains a minimum
of the last 100. The correction automatically started 6 min after the
first peptide was recognized and the mass tolerances were set to
4.5 ppm.

Breakdown Curves—As an example of advanced acquisition
schemes enabled by MaxQuant.Live, we studied the large-scale and
automated acquisition of HCD fragmentation characteristics of pep-
tides. In triplicate runs of a HeLa digest, we targeted 1000 precursors,
using 10,000 endogenous peptides for real-time corrections. On rec-
ognition in real-time, precursors were isolated with a �0.2 Th window
and repeatedly fragmented with increasing collision energy in ten
steps from NCE 18 to 36. Other than that, the MS parameters were
set as above. Target peptides were selected randomly from the top
50% abundance quantile of peptides identified in a standard DDA run
of the same digest after removal of contaminants and reverse hits and
filtering for the most abundant evidence of each unique peptide
sequence. The tolerances for the real-time correction were the default
values listed before.

Predictive Multiplexed Selective Ion Monitoring (pmSIM)—Light
and heavy labeled tryptic Hela lysates were mixed in a ratio of 4:1 and
500 ng were injected on column. DDA raw files were analyzed using
MaxQuant to identify light to heavy SILAC peptide ratios. To generate
a targeting list for MaxQuant.Live, the “evidence” output file was
filtered for modified sequence duplicates, missed cleavages, keeping
only unmodified peptides with a sequence length less than 25 amino
acids, a retention length less than 2 min, no modifications and a
charge state of 2. Peptides for retention correction were additionally
filtered for �10 and � 80 min retention time, after which the top 5,000
most intense light channel peptides were selected. The fifty peptides
for selected ion monitoring (SIM) were randomly chosen from a list
fulfilling the following criteria: retention time 20–70 min, no reported
L/H ratio, an intensity of zero in the heavy channel. The initial retention
time tolerance was �10 min and the final value was 1.5-fold of the
elution time standard deviation.

MaxQuant.Live pmSIM experiments were performed with a 1 Th
isolation window and a 	0.2 Th offset and acquired with a resolution
of 120,000 at m/z 200. The heavy and light channels were multiplexed
in a single scan. A maximum of 1 � 105 ions were collected in each
channel with a maximum ion injection time of 48 and 192 ms for the
light and heavy channel, respectively.

Data analysis of the pmSIM experiment was performed with the
Skyline (35) (Version 4.1.0.18169) and XCalibur (3.1.66.10) software
suites. The SIM targeting raw file was split into SIM and MS1 scans
and analyzed independently.

Large-scale Targeting—To build a reference DDA dataset, 500 ng
of tryptic Hela digest were measured in triplicate and raw files were
analyzed with MaxQuant. The matching between runs feature was
activated using the default settings. Peptide identities as well as their
mass, charge state, retention time and intensity were extracted from
the evidence output file and used to generate targeting lists for
MaxQuant.Live. Only peptides with a retention time between 10 and
100 min that were identified by MS/MS or matching in all three
replicates were candidates for the targeting lists and any hits from the

reverse decoy library and potential contaminants were excluded from
the selection. To generate the targeting lists, 100, 1000, 5000, 10,000,
20,000 or 30,000 peptides were randomly selected from all peptides
fulfilling the above criteria, ensuring a uniform distribution of targets
over the whole abundance range. For real time correction, we se-
lected the 10,000 most abundant peptides identified by MS/MS or
matching in all three replicates with a retention length less than 30 s.
The tolerances for real-time correction were the default values listed
above. To demonstrate the functionality of the real-time correction we
performed an additional run with 20,000 targeting peptides, in which
the minimal mass tolerance was 4.5 ppm and the retention time
windows size was 2.5-fold of the standard deviation of the peptide
elution times. Here, the correction was calculated from all the pep-
tides that were recognized within the last minute but at least the last
20.

Full MS scans in the mass range from m/z 300 to 1650 were
acquired with a resolution of 60,000 at m/z 200 and an automatic gain
control (AGC) target of 3 � 106. Target peptides had a “Life Time”
(max. time between recognition and fragmentation) of 1000 ms and
were isolated for MS2 scans with a 	- 0.2 Th window centered on the
precursor mass and fragmented with a NCE of 27. MS2 spectra were
acquired with a resolution of 15,000 at m/z 200, and the maximum ion
injection time and the AGC target were 110 ms and 1 � 105 charges,
respectively. Raw files of the targeting runs were analyzed in
MaxQuant together with the standard DDA runs using the matching
between runs feature. Coefficients of variation (CVs) were calculated
for the targeted peptides between replicate measurements of stand-
ard DDA and targeting runs. To normalize for variations in total sample
between injections, intensities were median normalized before calcu-
lation of CVs.

Proteomics Data Processing—Shotgun proteomics raw data ac-
quired with either the standard user interface or MaxQuant.Live were
processed with MaxQuant (24) (version 1.6.1.13) using the default
settings if not stated otherwise. The built-in Andromeda search en-
gine (25) scored MS2 spectra against fragment masses of tryptic
peptides derived from a human reference proteome containing
95,057 entries including isoforms (UniProt, release 2018/06) and a list
of 245 potential contaminants. We required a minimum peptide length
of 7 amino acids and limited the search space to a maximum peptide
mass of 4600 Da and two missed cleavage sites. Carbamidomethy-
lation of cysteine was specified as a fixed modification, and methio-
nine oxidation and acetylation at protein N termini as variable modi-
fications. MaxQuant uses individual mass tolerances for each
peptide, whereas the initial maximum precursor mass tolerances
were set to 20 ppm in the first search and 4.5 ppm in the main search,
and the fragment mass tolerance was set to 20 ppm. The false
discovery rate was controlled with a target-decoy approach at less
than 1% for peptide spectrum matches and less than 1% for protein
group identifications.

Bioinformatics—Post-processing was performed in either Perseus
(36), the R computational environment (37) or the Python program-
ming language. Potential contaminants, reverse database hits and
proteins identified by only one modified peptide were excluded from
the analysis.

Experimental Design and Statistical Rationale—In this study, we
developed the MaxQuant.Live software for MS data acquisition,
which enables classical acquisition schemes as well as methods that
are more elaborate. We evaluated the technical feasibility of large-
scale peptide recognition. Sample sizes were chosen to allow assess-
ing technical variations with replicate LC-MS injections of aliquots
from the same sample preparation batch. The n numbers were 1, 1, 3,
3, 3 for the experiments in Figs. 2, 3, 4, 5, and 6, respectively.
Statistical testing, control samples and blinding were not applicable,
and no data points were excluded. No targeting experiments em-
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ployed internal standards and are therefore classified as “Tier 3”
according to the MCP guidelines. Target peptides were selected
randomly as detailed above without considering modification states
or uniqueness to proteoforms.

RESULTS

Here we describe the development of a software framework
termed MaxQuant.Live for real-time monitoring of mass spec-
trometric data and controlling of the data acquisition. We
demonstrate its usability and performance in terms of scan-
ning speed using a reimplemented topN method. We demon-
strate that thousands of peptides of interest can be detected
and immediately selected for deeper analysis, greatly extend-
ing the toolbox for targeted proteomics. To explore the cur-
rent limits of our technology, we targeted over 25,000 pep-
tides in a single experiment.

Design and Functionality of MaxQuant.Live—A few years
ago, Thermo Fisher Scientific developed an IAPI that enables
fast, bidirectional communication between a Q-Exactive mass
spectrometer and an outside. We developed a software mod-
ule, written in the C# programming language, containing func-
tionality for advanced data acquisition and analysis in real-
time, which communicates with the mass spectrometer
through the IAPI (Experimental Procedures). We termed the
program MaxQuant.Live because it forms a bridge between
intelligent data acquisition and downstream analysis in the
MaxQuant environment. In one direction, the IAPI transmits
every measured mass spectrum to our software on the fly
and in the other direction it enables MaxQuant.Live to send
scan commands to the instrument every time it is ready to

accept new instructions. Fig. 1 illustrates the interplay be-
tween the core module of MaxQuant.Live and the mass
spectrometer enabled by the IAPI. The engine in Max-
Quant.Live executes a run-specific scan protocol (see be-
low) which contains the acquisition strategy for the current
LC-MS run and which is loaded from the scan protocol
library. The scan requests generated by the engine are
stored in the local scan queue before they are pushed
sequentially to the MS instrument.

In case the scan queue is empty it periodically sends
fallback scan requests to prevent the instrument from run-
ning idle or changing its operation status. This design of the
scan queue ensures that the core module of MaxQuant.Live
keeps control of the instrument during the entire run once a
scan protocol has been loaded from the library and while
the instrument is connected to the IAPI. Because of this
generic additional abstraction layer, our core module is
independent of the attached IAPI and could also be com-
bined with instrument control libraries of other mass
spectrometers.

The scan protocol specifies the acquisition concept for an

LC-MS run. It implements an abstract logic (right panel in Fig.
1) which makes use of a decision tree, a common construct in

computer science that has previously been applied in pro-
teomics to select optimal fragmentation modes by Coon and
co-workers (39). The decision tree simplifies the development
of new acquisition strategies and generates a cascade of scan
requests on the basis of the incoming scan containing the

FIG. 1. Architecture of Max-
Quant.Live and the logic of its scan
protocols. The core of our software (yel-
low box) handles the real-time control of
the mass spectrometer using the IAPI by
Thermo Fisher. Its engine processes the
scan data according to a scan protocol,
which specifies a data-acquisition strat-
egy trough a decision tree logic (right).
Scan protocols for different applications
are collected in a library and can be gen-
erated by small applications (‘apps’).
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mass spectrum and the associated metadata. Every node of
the scan protocol tree consists of three components: A filter,
a scan template and data-dependent actions. The filter
checks if meta- and spectral data of the incoming scan match
particular features. If the check is negative, processing of this
node and its children is stopped and the scan protocol tree
proceeds to the next item. If the check is positive, for instance
because the incoming scan is of type MS1 or contains spe-
cific ions of interest, then a new tailored scan request is
created based on properties defined in the scan template.
This comprises settings for the quadrupole, the collision cell
and the mass analyzer. The third component, the data-de-
pendent action, then establishes the connection between the
incoming scan data and the settings of the next scan request.
Based on its stored data and the incoming data, it chooses
particular actions, such as selecting a particular precursor for
isolation in the quadrupole, followed by acquisition of a frag-
mentation spectrum at a particular energy. Only the values
that are different from the default template are overwritten. In
the simple example of a topN method, the data-dependent
action would be restricted to setting the position of the iso-
lation window. After the incoming scan has successfully run
through a scan protocol node, it is passed to its children,
which may implement additional logic by themselves and
trigger further scan requests.

Although scan protocols allow an easy and flexible way to
develop acquisition strategies on a high abstraction level,
using them is complex and difficult for a nonspecialized mass
spectrometry laboratory. For this reason, MaxQuant.Live
includes a series of small programs (apps) that can automat-
ically generate scan protocols based on predefined acqui-
sition strategies. We have created an app store for
MaxQuant.Live that allows easy access to a collection of apps
for different data acquisition strategies, which we have devel-
oped and tested in our group. In addition to the strategies
described in this publication, BoxCar (40) acquisitions and
support for the EASI-tag method (41) are already included.

Usability and Performance of the Software Package—Our
ambition was to make MaxQuant.Live very robust and fast,
so that any mass spectrometry laboratory can use it for their
workflows, without affecting ease of use or throughput. We
further aimed to make it universally available and support-
able in the long term, like the other parts of the MaxQuant
ecosystem.

The graphical user interface (GUI) of MaxQuant.Live unifies
the control over all our software components in a user-friendly
way, starting from the instrument connection to the scan
protocol library and the apps for creation of new acquisition
schemes (Fig. 2A). The user can start a scan protocol from the
library which then triggers MaxQuant.Live to take control of
the mass spectrometer until the end of the run where it
switches back to idle mode. It does not interfere with the
vendor’s software and it can be continuously active in “listen-

ing mode.” In this way, acquisition can seamlessly switch
between Xcalibur and MaxQuant.Live.

The user initially selects the app from the built-in app store
for the desired workflow. MaxQuant.Live allows the creation
of new scan protocols without knowledge of the underlying
decision tree structure using simple GUIs that break down the
complexity of each scan protocol into a small number of
required settings. Fig. 2A illustrates this for the GUI of the
topN app, which reimplements the standard data-dependent
acquisition scheme as a benchmark example. After the user
specifies the parameters, the app generates the correspond-
ing scan protocol and adds it to the scan protocol library. The
GUI also allows editing a scan protocol within the app at later
time points to modify the acquisition strategy.

In our topN implementation, the peak selection can be
restricted to specific charge states and intensity values/
ranges to focus fragmentation on preferred classes. As in
Xcalibur, resequencing of precursors can be prevented. Ad-
ditionally, the relevant instrument parameters for the MS1
survey as well as the MS2 fragmentation scans can be spec-
ified in the GUI.

To benchmark the acquisition speed of a mass spectrom-
eter under the control of MaxQuant.Live, we performed stand-
ard HeLa LC-MS/MS runs using our implementation of the
top15 method. MaxQuant.Live achieved at least as many MS2
scans per second over the full 120 min gradient as the ve-
ndor’s software (Fig. 2B). (The faster speed at the beginning of
the gradient is likely because the Xcalibur peak selection
algorithm uses a different intensity threshold.) This indicates
that both MaxQuant.Live and the IAPI are extremely fast, and
do not impose any relevant overhead in acquisition compared
with direct control by Xcalibur. In particular, the total number
of MS2 scans and peptide spectrum matches (PSMs) is not
compromised, creating a solid basis for more intelligent ac-
quisition schemes.

Three-dimensional Adaptive Control for Peptide Recogni-
tion in Real-time—Having established a fast and robust
framework for data-dependent acquisition, we next set out to
accurately recognize eluting peptides in real-time at a very
large scale. This is challenging because hundreds of precur-
sor ions elute at any given time in complex proteome analysis
and the elution time for every peptide subtly shifts from run to
run. As a result, existing “inclusion lists” and “exclusion lists”
are in practice limited to a relatively small number of precur-
sors. In contrast, the ability to detect large numbers of pep-
tides should enable MaxQuant.Live to take data-dependent
decisions about the next scan operations in real-time and
thereby to realize more intelligent acquisition strategies.

MaxQuant.Live includes a powerful app that implements
diverse strategies to target specific precursor ions in an
LC-MS run. They build on a real-time feature detection
algorithm combined with adaptive nonlinear corrections in
the retention time, m/z and intensity dimensions.
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In the list of centroid m/z values received from the instru-
ment, our software determines isotope patterns, which are
then compared with a list of precursor ions of know mass,
charge state, intensity and estimated retention time. For a
potential match, the ion intensity must first exceed a thresh-
old, which is a user-defined percentage of the expected in-
tensity. This is calculated from the first two isotopic peaks,
which are assumed to conform to the averagine-model (42),
as is the case in MaxQuant post-processing, and which must
have the expected mass-to-charge difference within a user-
defined tolerance of several ppm. MaxQuant.Live sets the
recorded ion intensity to zero if either of the two peaks are
missing or if there is an interfering peak before the presumed
monoisotopic peak.

The second condition of the recognition algorithm requires
that the precursor elutes within a certain time window around

its expected retention time. Depending on a variety of external
factors, peptide elution times can shift by several minutes
between any two LC-MS runs, with the consequence that
“retention time windows” are generally set to several minutes.
For very large numbers of targeted precursors, this would lead
to too many potential matches to eluting features. To tackle
this problem, we extended the recognition algorithm by an
adaptive nonlinear correction of the observed retention time
shifts that is inspired by the “match between runs” approach
of MaxQuant (27). Briefly, we use a subset of easily recogniz-
able peptides to continuously minimize the median differ-
ences between the observed and the expected retention
times. Because of applying dynamic corrections we can dra-
matically shrink the tolerances for the elution time values that
are used in the ion recognition. In a typical run, the interval
containing 95% of the expected precursors shrinks from sev-

FIG. 2. Ease of use and acquisition speed of MaxQuant.Live. A, Graphical user interface containing functionalities to create and manage
scan protocols. B, Benchmarking the acquisition speeds of MaxQuant.Live versus the vendor’s software (Xcalibur). In both top15 implemen-
tations, the instrument was acquiring MS2 spectra at nearly the maximum rate throughout the run (left panel). The number of MS and MS2
scans as well as the peptide spectrum matches (PSM) are comparable (right panel).
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eral minutes to less than 1 min (Fig. 3A). Although similar
“dynamic corrections” have been applied by us and others
before, MaxQuant.Live achieves high robustness and preci-
sion by using a very large number of peptide precursors for
real time correction (up to thousands).

Like the retention time alignment, mass accuracy can be
greatly improved with the help of subsets of peptides that
serve as internal calibrants (43). Based on the same principle
as above, we therefore continuously recalibrate the mass
scale, achieving severalfold improvements in real time mass
accuracy. However, in contrast to MaxQuant, our mass cor-
rection applies to each entire spectrum, rather than being
peptide specific. For the example in Fig. 3B, the a priori mass
window could be reduced from a maximum mass deviation

�10 ppm to �4.5 ppm which is the same maximum value as
used in MaxQuant post-processing.

Signal intensity is the third dimension of precursor features
and its adaptive control accounts for day to day differences in
sensitivity of the LC-MS set up. Given the signals of the
reference peptide population, an overall scaling factor is ap-
plied to make the recorded signal intensities comparable to
the ones in the targeting list generated from a reference run.
In our experiments we noticed that this scaling factor varied
between different runs, for example as a result of varying
sample amounts on column, but only little within a single run
(Fig. 3C).

Targeted Acquisition of Breakdown Curves—Robust and
precise peptide recognition in real-time should open various

FIG. 3. MaxQuant.Live targeting application. A, Real-time peptide recognition expects the first two isotopic peaks within a dynamic
retention time and mass-to-charge tolerance window as indicated by the gray boxes. Our adaptive correction approach continuously corrects
observed global shifts of the elution time, mass calibration and peptide intensity and reduces the tolerances to minimum values. B–D,
application of the dynamic global corrections (black lines) during an LC-MS run (upper row) drastically narrows the recognition algorithm
tolerances (gray areas in B and C) and the scaling of the peptide intensities to the values observed in the reference run.
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opportunities for advanced analysis of selected peptides. To
demonstrate this, we chose to generate “breakdown curves,”
which are useful to determine optimal collision energies of
peptides or to determine the structure of metabolites. We
directed MaxQuant.Live to detect a subset of 1000 peptides
in a complex HeLa background and fragment each of them
with increasing collision energies. Using 10,000 abundant
background peptides for our adaptive real-time correction,
the monitoring time for each of the peptides of interest was
reduced to less than 4 min in the 120 min runs. Notably, the
median absolute retention time deviation was only 0.2 min
after recalibration in all three replicates (supplemental Fig. S1).
Together with the sub-ppm mass accuracy, this allowed us to
successfully acquire breakdown curves for 962 of the 1000
targeted peptides. Fig. 4A illustrates the method for a specific
target peptide (SPVAVQSTK). We used ten different collision
energies from NCE 18 to 36 at a mass resolution of 15,000 at

m/z 200, which translates into a net analysis time of only 0.3 s
per breakdown curve. Three example spectra for low, middle
and high collision energies are annotated in Fig. 4B. At NCE
18, the spectrum was dominated by the precursor ion, indi-
cating incomplete fragmentation. Despite the relatively low
abundance of fragment ions, we observed the complete y ion
series (y1–y8) as well as the complementary b2 to b8 ion series.
At NCE 26, the precursor ion was completely fragmented.
Increasing the NCE further yielded low-mass immonium ions
and many internal fragment ions, which escaped automatic
scoring with the Andromeda search engine (44). The possibil-
ity to target thousands of peptides enables global analysis of
peptide fragmentation. To illustrate uses of this capability, we
plotted the fraction of the fragment ion current that has been
identified as a function of the collision energy (Fig. 4C). This
value peaked at NCE 22–24, presumably because of the less
frequent generation of internal fragment ions. Generally, we

FIG. 4. Automated acquisition of peptide breakdown curves. A, Extracted ion chromatogram of a targeted peptide. On detection,
MaxQuant.Live acquires repeated MS2 scans of this precursor with increasing collision energies. B, Exemplary spectra from a single
breakdown curve. C, Fraction of the total MS2 ion current annotated by the Andromeda search engine as a function of the normalized collision
energy. D, Number of identified b and y ions as a function of the normalized collision energy. E, Median summed intensity of a2, b, and y ions
relative to the sum of all identified fragment ions. n � 962 peptides.
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noted a wide distribution for the peptide specific optimal
NCEs, highlighting sequence-dependent differences in the
fragmentation efficiency even with the normalized collision
energies. Next, we investigated the energy-dependent gener-
ation of b and y ions (Fig. 4D). B ions were preferably gener-
ated at lower collision energies, whereas the number of an-
notated y ions increased with higher collision energy. Over
60% of the annotated ion current was accounted for by y ions
throughout all NCEs, while the relative abundance of b ions
was decreasing (Fig. 4E). Interestingly, the fraction of the a2
fragment ion in the characteristic a2 -b2 ion pair that is formed
instead of the b1 ion, increased up to 15% of the annotated
fragment ion current at higher collision energies.

Predictive Multiplexed Selective Ion Monitoring (pmSIM)—
In the example above, the MS1 signal of a targeted peptide
triggered the acquisition of MS2 scans. However, MS1 spec-
tra can be incomplete in that low abundance precursors may
be present in some but not other runs. Thus, instead of relying
on the MS1 trigger signal and motivated by the high accuracy
of the real-time retention time alignment described above, we
next predicted the elution of target peptides based on the
endogenous background population (Fig. 5A).

To demonstrate our approach, we set up a SILAC (30)
experiment in which heavy and light whole-cell HeLa digests
were mixed in a 1:4 ratio. In DDA, the limited dynamic range
of the full scan resulted in many missing heavy-to-light ratios
in the low intensity range (Fig. 5B) and overall, MaxQuant
reported ratios for only �60% of the identified peptides. The
sensitivity can be boosted dramatically by isolating and se-
lectively accumulating narrow m/z ranges, which results in
improved MS1 (SIM) or, when fragmented, MS2 quantification
(termed parallel reaction monitoring “PRM,” when used in
targeting studies (15)). Without adaptive retention time align-
ment, such scans must be repeated over a time range large
enough to account for the typical shifts and fluctuations in the
elution times. This typically results in a very large overhead of
scans for each targeted peptide, limiting the total number that
can be studied in a single LC-MS run. Here, we used a
“predictive multiplexed SIM” (pmSIM) method to measure
heavy and light SILAC peptides simultaneously.

We selected 5000 high abundant peptides as correction
peptides for the adaptive real-time corrections (Fig. 5A). The
correction algorithm of MaxQuant.Live dynamically centered
the observation time ranges around the peptide elution times
(Fig. 5C, colored lines and circles, respectively), yielded an
accurate prediction of the time range in which each peptide
was expected to elute. This resulted in two times smaller
window sizes compared with the initial values. The compari-
son of the window sizes with the deviations of the peptide
apex times from the predictions (Fig. 5C, histogram) shows
that the time windows could have been chosen smaller. It
should be noted that our settings were very conservative and
the number of target peptides could be much higher.

To validate the accuracy of our prediction algorithm, we
selected 50 peptides from the low abundance range with
missing ratios from our SILAC HeLa study (Fig. 5B). We then
used the MaxQuant.Live targeting app to specify an acquisi-
tion method that executed SIM scans of the corresponding
ion pairs repeatedly over the expected elution time range. The
pmSIM strategy correctly quantified the ratios for the targeted
peptides close to the expected value of 4:1 with a median CV
of 8.2% (Fig. 5D). This is notable, because none of the heavy
labeled peptides was quantified at the MS1 level before. The
example in Fig. 5E shows the increase in sensitivity by com-
paring the MS1 with the corresponding SIM scan. In the SIM
scan, the injection time for the previously unrecorded heavy
peptides is 400 times larger than the injection time of the full
scan, drastically improving the quantitative accuracy.

Highly Efficient Proteome Quantification—The examples
shown so far demonstrate the ability of MaxQuant.Live to
perform a specific and sophisticated analysis of a limited
number of peptides of interest. The fact that the underlying
peptide recognition algorithm can in principle deal with an
unlimited number of peptides, makes applications feasible
that target a substantial proportion of the total set of precur-
sor ions. We reasoned that this generically boosts the repro-
ducibility of peptide fragmentation events between LC-MS
runs compared with the topN method.

We implemented our strategy using the targeting app of
MaxQuant.Live and generated sets with different numbers of
targeted peptides, which were randomly selected from tripli-
cate MS analysis of tryptic HeLa lysates using a standard
top15 method in Xcalibur (Fig. 6A). For every set of peptides,
we performed triplicate LC-MS runs in which MS2 scans were
triggered if one of the peptides was recognized by our algo-
rithm in the MS1 scans. The number of peptides that were
fragmented and correctly identified afterward by MaxQuant is
shown in Fig. 6B for all six sets of peptides. Although nearly
every targeted peptide was hit in at least one of the runs
(green line), this fraction decreases for those hit in at least two
(blue line) and all three runs (red line), respectively. The quan-
tification precision was comparable to standard DDA runs
with coefficients of variation between the triplicate measure-
ments ranging from 10.4%–12.5% (supplemental Fig. S2).

These results indicate that our strategy can target very large
numbers of peptides even though some stochasticity remains
between the acquisitions in the different runs. This is likely
because of some peptides not being recognized by our algo-
rithm at the MS1 level. An analysis of the of the initial topN and
the targeting raw data files using MaxQuant with the matching
between runs feature showed very similar results. Thus, the
well-established feature detection of MaxQuant could not
find significantly more spectral features at the MS1 level
from the targeting list, even given full information after com-
plete analysis. This suggests that these peptides, which
were selected from the original topN runs, are not “visible”
at all in the MS1 scans of the targeting runs. A comparison
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of the intensity histograms of the peptides that were suc-
cessfully targeted and identified by MS/MS in all three runs
(Fig. 6C, blue) to the ones that were hit in less than three
runs (green) shows a slight shift of the intensity distribution
to lower values. We therefore suspect that the spectral
noise thresholding employed by Xcalibur set the corre-
sponding signals to zero even though they only slightly
dipped below acceptance criteria, something we have also

noticed when boosting the dynamic range in the BoxCar
acquisition scheme (40). A possible solution to tackle this
problem of the acquisition side would be to boost the pep-
tide intensities by using BoxCar scans for the peptide rec-
ognition instead of the MS1 scans.

To counter the effect of peptide features missing because
of thresholding in our analysis and make the data between the
two triplicate measurements comparable, we further normal-

FIG. 5. Predictive multiplexed SIM (pmSIM). Peptides employed for live retention time correction are distributed across the gradient and
are highly abundant, compared with the low abundant targeted peptides and their SILAC partner needed for quantification (A). B, Total log2
intensity abundance range of all peptide identifications from the standard run with a light to heavy SILAC ratio of 4:1. In blue, all peptide
identifications with identified ratios are highlighted. In red, all peptide identifications in the light channel without any reported SILAC ratios are
highlighted. C, Watch-time of the predictive multiplexed SIM scan-mode in the targeting experiment. D, Resulting SILAC ratios after
SIM-targeting using Skyline (35). E, Example of a very low abundant target peptide compared in the original MS1 and after pmSIM
demonstrating �40-fold increase of S/N.
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ized the number of peptides that were successfully targeted in
all triplicate measurements to the number of targeted peptides
identified by the matching between runs feature (Fig. 6D). The
standard top15 method reached about 61% success rate, re-
gardless of the number of peptide precursors. In contrast, in our
targeting runs, the normalized percentage of successfully tar-
geted peptides (green line) was 95% and only slightly lower for
�20,000 targeted peptides. This effect is presumably related to
the fact that the number of co-eluting peptides increases be-
yond what can be fragmented sequentially by the mass spec-
trometer in the time available. Although this is not a conceptual
limitation of our large-scale targeting approach, it is an oppor-
tunity to be addressed by instrument improvements.

DISCUSSION AND CONCLUSION

In bottom-up proteomics, data dependent acquisition and
targeted approaches have co-existed for many years. DDA

has been and remains the method of choice for initial char-
acterization of proteomes under study. Conversely, there are
many applications, where only a restricted number of pep-
tides is of interest, but these need to be measured consis-
tently over many samples. Although both approaches have
become more powerful with the general advances in instru-
mentation and proteomics technologies, DDA is still not pow-
erful enough to subsume targeted analyses. Conversely, tar-
geted methods have been difficult to establish in a robust
manner, enough for clinical use, for instance, especially when
monitoring more than a few dozens of peptides.

Here, we made use of the recently developed fast and
robust IAPI of the Thermo instruments to interface with the
acquisition process in real time. MaxQuant.Live makes use of
experimental information as they are acquired to direct the
acquisition in a more intelligent way. We have implemented
different mass spectrometric acquisition schemes in the form

FIG. 6. Reproducible identification of over 20,000 peptides of interest. Tryptic HeLa lysates were analyzed by either a standard DDA
method designed in the Xcalibur method editor or by the MaxQuant.Live targeting method with 100, 1000, 5000, 10,000, 20,000 or 30,000
targeted peptides. Triplicate injections were performed and sequenced peptides were identified by MaxQuant with or without the matching
between runs function activated. A, Selected targets were uniformly distributed over the whole intensity range of peptides identified in
previous triplicate standard DDA runs. B, The number of targets correctly identified by MS/MS. C, Intensity distribution of the correctly
identified sequences in MaxQuant.Live runs with 30,000 targets. D, Percentage of correctly identified targets by MS/MS for the
MaxQuant.Live method compared with the identifications by MS/MS in the standard topN method and matching between runs in all three
triplicate injections.
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of small built-in apps. We demonstrated that this workflow is
highly performant as it can easily replicate the standard topN
methods, for instance, without loss of quality. In targeted
schemes, MaxQuant.Live continuously recalibrates the signal
coming from the mass spectrometer in retention time, mass
and intensity dimensions, allowing a much better prediction of
the identity of eluting peptide features than possible previ-
ously. This allows, for instance, selecting any subgroup of
hundreds of peptides to be targeted for accurate quantifica-
tion (exemplified by our predictive multiplexed SIM method).
In-depth analysis of the fragmentation patterns of large num-
bers of individual peptides is another valuable addition to the
proteomics toolbox, which can be used to optimize precur-
sor-fragment transitions for PRM or to pinpoint and localize
modifications of low-abundance proteins. MaxQuant.Live
ensures that all peptides are reliably acquired at all collision
energies (as opposed to stochastic precursor selection with
DDA) and in single runs. In our own group, we have already
applied such a strategy to characterize the fragmentation of
a novel isobaric tag (41). Even if these methods take much
longer than standard fragmentation for the selected pep-
tides, they still do not substantially contribute to overall
measuring time. This means that sophisticated measure-
ments could be done on peptides of interest, while still
recording the overall proteome. Although we randomly
chose peptides, one could, for instance, select a specific
class of post-translation modifications, peptides that distin-
guish between isoforms or any other highly informative
class of interest. The resulting, “enhanced,” data sets could
also become valuable sources for imminent machine-learn-
ing approaches (20, 28).

Building on the precise recalibration in MaxQuant.Live, we
demonstrate that the scale of such experiments can be readily
extended to over 25,000 peptides of interest with very high
reproducibility. Conceptually, MaxQuant.Live bridges the ap-
proaches of classical shotgun and targeted proteomics. On
one hand, when high numbers of peptides are targeted, it
resembles shotgun experiments and could be interpreted as a
very thorough and much more efficient implementation of
inclusion lists (45). On the other hand, when smaller target
numbers are addressed, the acquisition strategy resembles
classical targeting, however, with more flexibility and much
greater robustness because of real-time recalibration. To ex-
press the conceptual nature of our approach we call it “global
targeting,” as it combines desirable aspects of classical shot-
gun and targeted proteomics.

To analyze such data we therefore resorted to existing tools
from both approaches. In the pmSIM experiments, we man-
ually inspected mass spectra and elution profiles of the few
target peptides. When we extend this approach to hundreds
or thousands of targets, we recommend using established
tools for statistically sound identification of targeted peptides
such as target-decoy strategies (46). Finally, in experiments
with high target peptide numbers we followed a “spectrum

centric approach” (47) for precursor identification, like regular
shotgun proteomics experiments.

In our global targeting experiments, we observed coefficients
of variation that lie in the expected range for classical shotgun
experiments at very high numbers of targeted precursors and
very close to classical targeting experiments, when these num-
bers are somewhat reduced. This means that our method uni-
fies the two approaches not only in terms of identifications, but
also allows to implicitly define the desired accuracy (within
instrument capabilities) via the number of targets beforehand.
The same applies to sensitivity, which is limited by the instru-
ment’s capabilities and the measurement time per peptide.
Global targeting allows the operator to optimally balance target
numbers and sensitivity.

We have made MaxQuant.Live freely available and hope
that it will stimulate the community into exploring this exciting
direction.
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