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The commensal microbiome refers to a large spectrum of microorganisms which mainly
consists of viruses and bacteria, as well as some other components such as protozoa and
fungi. Epstein–Barr virus (EBV) is considered as a common component of the human
commensal microbiome due to its spread worldwide in about 95% of the adult population.
As the first oncogenic virus recognized in human, numerous studies have reported the
involvement of other components of the commensal microbiome in the increasing
incidence of EBV-driven cancers. Additionally, recent advances have also defined the
involvement of host–microbiota interactions in the regulation of the host immune system in
EBV-driven cancers as well as other circumstances. The regulation of the host immune
system by the commensal microbiome coinfects with EBV could be the implications for
how we understand the persistence and reactivation of EBV, as well as the progression of
EBV-associated cancers, since majority of the EBV persist as asymptomatic carrier. In this
review, we attempt to summarize the possible mechanisms for EBV latency, reactivation,
and EBV-driven tumorigenesis, as well as casting light on the role of other components of
the microbiome in EBV infection and reactivation. Besides, whether novel microbiome
targeting strategies could be applied for curing of EBV-driven cancer is discussed as well.
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INTRODUCTION

Epstein–Barr virus (EBV) could be considered as a component of the human microbiome as a
consequence of its roughly sustaining 95% of the adult populations worldwide, and majority of it
persists lifelong as an asymptomatic carrier (Dreyfus, 2013; Young et al., 2016; Connolly et al.,
2021). In addition, EBV is the first identified human oncogenic virus (De Martel et al., 2020) which
was discovered 50 years ago (Young et al., 2016). The importance of EBV reactivation is emphasized
in the progression of EBV-driven carcinogenesis since the antibodies for capsid antigen and EBV-
DNase of EBV were observed to be increased prior to the tumorigenesis in nasopharyngeal
carcinoma (NPC) (Chien et al., 2001). Therefore, factors which might induce the EBV reactivation
will be emphasized in this review for the pathogenesis of EBV-driven cancers.

The commensal microbiome refers to the diverse microorganisms, which consist mainly of
bacteria and virus, as well as other components such as archaea, fungi, and protozoa that colonize
barrier surfaces of different niches of mammals, such as the skin, vaginal, upper respiratory, and
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gastrointestinal tracts (Lloyd-Price et al., 2016; Barko et al.,
2018). For the past few years, microbiome studies focus mainly
on the composition and function of bacteria and archaea
(Carding et al., 2017; Nikolich-Zugich et al., 2017). However,
recent virome studies emphasized that viruses, which are
abundant in divergent tissues (such as oral cavity, skin, gut,
and blood) as well as in the feces of individuals in sickness and in
health (Norman et al., 2015; Neil and Cadwell, 2018; Schmidt,
2018; Clooney et al., 2019), are the largest proportion of the
human microbiome instead of bacteria (Wylie et al., 2012). The
virome of human, which consists of diverse viruses that could
infect not only eukaryotic cells but also prokaryotic cells
(Handley, 2016), is an important factor in host health and
diseases (Cadwell, 2015).

As EBV is sustained in almost all adult humans, it is puzzling
why only a few of them evolved to induce malignant
transformation. Some cooperative triggers must occur in the
tumorigenesis of EBV-driven cancers. In the 1960s, the role of
the commensal microbiome in modulating virus infections was
first suggested (Robinson and Pfeiffer, 2014). The susceptibility
of host to virus infection was enhanced in germ-free (GF) mice.
Over the past few years, host–microbiota interactions have been
reported to be fundamental for the regulation and maintenance
of the mammalian immune system (Belkaid and Hand, 2014;
Belkaid and Harrison, 2017; Rowan-Nash et al., 2019), which
could be the implication for how we understand the persistence
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
and reactivation of EBV, as well as the progression of EBV-
associated cancers. In the present review, we aimed to discuss the
impact of the microbiome on EBV infection. In addition, we
focus on how the microbiome reactivates latently infected EBV
and pertain to the etiology of EBV-driven cancers in patients
who could be with asymptomatic life-long infection.
EBV INFECTION AND EBV-ASSOCIATED
CANCERS

EBV is a globally spread virus that infects and persists lifelong in
about 95% of the world’s population (Torniainen-Holm et al.,
2018). The life cycle of EBV includes a latent infection phase,
during which the virus persists by attaching to the host
chromosomes, and a lytic replication phase, predominantly
occurring in oropharyngeal epithelial cells (Hochberg et al.,
2004) (shown as Figure 1). During the latency, a few EBV
viral promotors are dynamically regulated, and the latency of
EBV is classified from latency 0 to 3 according to the differential
expressed sets of viral genes in a cell-dependent manner
(Woisetschlaeger et al., 1990; Ohga et al., 2002). The latent
EBV genomes are spontaneously reactivated by various stimuli,
including pathogenic infections and other commensal
microbiomes. The virion episome is spliced to linear and
FIGURE 1 | The life cycle of EBV and the role of gene expression in a latent or lytic phase. EBV is normally spread by saliva, then it first enters into the oropharyngeal
epithelia cells. During the latent infection phase, EBV DNA persists by attaching to the host chromosomes, and the expression of BZLF1 is vital in the EBV reactivation
which would promote the expression of early and late lytic genes. Reactivated EBV are cleaved, packaged, and released outside of the infected cell.
February 2022 | Volume 12 | Article 852066
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released from infected cells during the transformation of EBV
latency into a lytic/replicative phase.

EBV harbors high tumorigenic potential preferentially
infecting B-cells, T-cells, natural killer (NK) lymphocytes, and
epithelial cells, steadily promoting the uncontrolled proliferation
of infected cells (Miller and Lipman, 1973a; Miller and Lipman,
1973b), leading to a wide spectrum of EBV-positive cancers (Cai
et al., 2015). According to the EBV-infected cell type involved in
the tumorigenesis, the divergent EBV-driven cancer could be
grouped into three mainly groups, including lymphoproliferative
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
disorders (LPD) (Heslop, 2020), epithelial malignancies
(Yamaguchi et al., 2018), and lymphoepithelioma-like
carcinoma (LELC) (Ose et al., 2021) (Table 1).
MAINTENANCE OF EBV LATENCY

The latency of EBV has been grouped according to the immune
status of the patient and expression of EBV proteins (Carbone
et al., 2008; Taylor et al., 2015), and the differences among these
TABLE 1 | The EBV-driven cancers and the involvement of coinfections.

Classification Infected cell type Tumor Coinfection Latency References Incidence
of EBV
infection

Detection method

Lymphoproliferative
disorders

B cell Diffuse large B
cell lymphoma

(DLBCL)

HIV Latency
1/2/3-

(Ozsan et al.,
2013)

30–50% In situ hybridization

Primary effusion
lymphoma

KSHV
HIV

Latency
1

(Bigi et al., 2018) 70–100%

T cell Burkitt lymphoma Malaria
HIV

Latency
2/3

(Moormann and
Bailey, 2016;
Heslop, 2020)

>90% -

Hodgkin’s
lymphoma

HIV Latency
2

(Pánisová et al.,
2022)

27.7% Serologies

Non-Hodgkin’s
lymphoma

HIV (Piriou et al.,
2005)

- -

NK cell Aggressive NK-
cell leukemia

(ANKL)

(Ishida, 2018) ~90%

Extranodal NK/
T-cell lymphoma,

nasal-type
(ENKTL)

Latency
1/2

(Mao et al.,
2012)

In situ hybridization

Epithelial
malignancies

Nasopharyngeal
epithelium

Undifferentiated
NPC

HPV Latency
2

(Tsao et al.,
2017)

Gastric epithelial
cells

Gastric
adenocarcinomas

- Latency
1/2

(Okabe et al.,
2020)

8–10%

Lymphoepithelioma-
like carcinoma
(LELC)

Gastric
carcinoma

Latency
1/2

(Song et al.,
2021)

90%

Oropharyngeal
carcinomas

HPV (Blanco et al.,
2021)

Breast epithelial
cells

Breast cancer HPV Latency
2

(Sinclair et al.,
2021; Gupta
et al., 2021)

0–31%

Thyroid (Shimakage
et al., 2003)

mRNA in situ hybridization, indirect
immunofluorescence staining,

polymerase chain reaction (PCR)
Salivary gland
epithelial cells

Salivary gland
carcinomas -

LELCs

- - (Tsai et al.,
1996)

12.5% In situ hybridization

Renal epithelial
cells

Renal cell
carcinoma

(Shimakage
et al., 2007;
Kryst et al.,

2020)

29.6% mRNA in situ hybridization and
indirect immunofluorescence staining

Prostate
epithelial cells

Prostate cancer HPV (Whitaker et al.,
2013; Nahand
et al., 2021)

24-30% In situ polymerase chain reaction (IS-
PCR) and standard liquid PCR;

enzyme-linked immunosorbent assay
(ELISA) and quantitative real-time

polymerase chain reaction
Urothelial

epithelial cells
Upper urinary
tract urothelial
carcinomas

- (Dere et al.,
2020)

29.5% Chromogenic in situ hybridization
Real-time PCR
Fe
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latency groups determine the treatment responses of EBV.
Latency 0 only expresses the EBV-encoded messenger RNA
(EBER) and BamH1-a rightward reading frame transcript
(BART) in cells of healthy previously infected individuals. In
Burkitt lymphoma, gastric cancer, HIV-associated diffuse large
B-cell lymphoma (HIV-DLBCL), and approximately two-thirds
of nasopharyngeal carcinoma, EBV exists in a latency 1 pattern
and only expresses EBV-nuclear antigen 1 (EBNA1), EBER, and
BARTs (Tempera and Lieberman, 2014), thereby evading
immune responses to EBV (Burkitt, 1958; Arvey et al., 2015).
Latency 3, which persists only in severely immunocompromised
hosts such as EBV-positive post-transplant lymphoproliferative
disorder (PTLD), expresses all virus-specific latent nuclear
antigens and membrane proteins (Gottschalk et al., 2005;
Lacasce, 2006). For latency 2, late membrane protein-1 (LMP1)
is expressed in addition on the basis of latency 1, and this phase
has been observed in Hodgkin, some nasopharyngeal carcinoma,
and so on (Sekihara et al., 2014). As a consequence of the
restricted antigen expression, EBV-CTLs (Bollard et al., 2014)
which act well in latency 2 fail in latency 1 tumors.

During the viral infections, many viruses would enter the
latency state with their genetic materials integrated into the
genome of the infected cells (Nikolich-Zugich et al., 2017) and
regulate the host immune system (Virgin, 2014). Viral infections
are reported to modulate the host immune system by stimulating
the production and release of a variety of cytokines, including
interferon and other cytokines such as interleukin (IL)-10
(Nikolich-Zugich et al., 2017). As for the role of EBV in
infected hosts, EBV and related herpesvirus are assumed to
encode a copy of human cytokines that regulate the host
immune system to satisfy their own colonization and
expansion needs (Irons and Le, 2008; Slobedman et al., 2009).
A human IL-10-like protein that acts in the TH2 family was
reported to be encoded by EBV (Hsu et al., 1990; Macneil et al.,
1990; Moore et al., 1990). The LMP1 expression of EBV could act
as the tumor necrosis factor (TNF) receptors to transmit the
growth signals through TNF-receptor-associated factors
(TRAFs) (Liebowitz, 1998) and thus is vital for the EBV-
induced tumorigenesis (Iwakiri et al., 2013). EBER was
reported to act as a substitute of interferon and induce the
expression of IL-9/10 and insulin-like growth factor, resulting in
the promotion of EBV-infected cells growth (Kitagawa et al.,
2000; Iwakiri et al., 2003; Yang et al., 2004; Iwakiri et al., 2005).

It is vital to elucidate the mechanisms involved in the EBV
reactivation since the chronic EBV reactivation is considered as a
key mechanism in the pathogenesis of EBV-driven or
-associated cancers.
REACTIVATION OF LATENT EBV

Despite that mechanisms for EBV latency have been clarified,
those required to reactivate latent EBV have not yet been
elucidated well. Since reactivation of latent EBV is associated
with EBV-driven cancers (Chien et al., 2001), the further
understanding of the mechanisms that promote EBV
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
reactivation is of great significance for revealing the
pathobiology of EBV-driven cancers and developing novel
therapies against it. The epigenetic regulation such as
deacetylation by histone deacetylases (HDACs) is reported to
play central roles in viral latency and reactivation (Li et al., 2007;
Berger, 2007). EBV tends to establish a latency state in infected
cells, and once transformed to the lytic replication cycle, cells are
regulated by the “open” and “closed” conformations of
chromatin (Tsurumi et al., 2005; Murata et al., 2021). For the
maintenance and disruption of EBV latency, HAT and HDAC
take part in the post-translational modification (hypoacetylation)
of DNA-associated histone in the BZLF1 promoter (Liu et al.,
1997a; Liu et al., 1997b; Gruffat et al., 2002). Besides, methylation
also plays an important role in EBV latency maintenance
(Murata et al., 2012; Imai et al., 2014).

During lytic infection, the viral genome of EBV is amplified
up to 1,000-fold and expresses a variety of EBV genes to maintain
the cell cycle progression in the S-phase which is necessary for
viral replication (Tsurumi et al., 2005). The expression of the
BamHI Z/R fragment leftward open reading frame 1 (BZLF1/
BRLF1) genes can induce the lytic cycle by cascade
transactivating both early and late EBV genes (Speck et al.,
1997; Tsurumi et al., 2005; Murata et al., 2021). For the final
step of the EBV lytic cycle, the virion genome is replicated,
cleaved, packaged, and released to infect other susceptible cells
(Tsurumi et al., 2005). During the EBV infection, the expressions
of LMP1 and EBNA2 (Sekihara et al., 2014) during the lytic/
replicative phase are considered as oncogenic; thus, regulation of
LMP1 and EBNA could suppress the tumorigenesis.
IMPLICATION OF DIVERSE
MICROBIAL INTERACTS WITH
EBV IN EBV-DRIVEN CANCERS

Coinfections of Other Components
of Microbiome and EBV in
EBV-Driven Cancers
Despite that EBV can transform lymphocyte and other cells to
tumorigenesis, it is puzzling why the prognosis of patients with
EBV-positive gastric adenocarcinoma or HL is often better than
that of patients with EBV-negative cancers (Van Beek et al., 2004;
Keegan et al., 2005), which still has not been elucidated.
Previously, the interplays between EBV and other components
of the microbiome which could contribute to EBV-driven
cancers will be discussed here.

EBV-associated cancer is often associated with coinfections
that regulate the host immune system. The higher EBV loads
were reported in the peripheral blood of HIV-infected
individuals (Yan et al., 2018), which leads to the development
of EBV-associated cancers, such as lymphomas (Dolcetti et al.,
1995; Vaghefi et al., 2006). Investigations also revealed an
elevated EBV load in continuously Plasmodium falciparum-
exposed children (Moormann et al., 2005; Njie et al., 2009).
Using the 16S gene ribosomal RNA sequencing, a divergent
February 2022 | Volume 12 | Article 852066
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expression of the gut microbiota KEGG functional pathway was
described in the fecal samples of patients with EBVaGC, when
compared with those with EBVnGC (Wang et al., 2019a). The
coinfection with the dengue virus resulted in an increasing EBV
replication in the blood cells (Deng et al., 2021). EBV has also
been reported to coinfect with other secondary human pathogens
such as HCMV (Jakovljevic et al., 2015), influenza virus,
adenovirus, and severe acute respiratory syndrome coronavirus
2 (SARS-CoV-2), (Wang et al., 2010; Nadeem et al., 2021).

Coinfections of Other Components of
Microbiome Could Induce the EBV
Reactivation and Lead to
EBV-Driven Cancers
The mechanistic studies for the promotion of EBV reactivation and
EBV-driven tumorigenesis by coinfections have been explored.
When the hospitalized patients were coinfected with EBV and
HCV, the immune responses could be dampened (Shoman et al.,
2014). The PI3K signaling pathway was first reported to play a role
in DENV-2’s reactivation of EBV (Deng et al., 2021). Studies
suggested that cytotoxic lymphocytes can prevent the
tumorigenesis of asymptomatic EBV carriers since a higher viral
load and the latency III infection program were induced in the
circumstances that the CD8+/CD4+ T cells and NK cells were
inhibited or depleted (Murer et al., 2019; Münz, 2021). The
regulation of host CD8+/CD4+ T cells and NK cells by coinfected
pathogens has also been explored in EBV-driven cancers.

HPV Coinfects With EBV Leading to Carcinomas
HPV is reported to cause a large spectrum of carcinomas, and in
some cases, it coinfects with EBV (Polz-Gruszka et al., 2015;
Kienka et al., 2019). It still remains to be explored whether the
coinfection is the etiology or just a phenomenon which is not
causality. HPV/EBV coinfection was reported to present in some
of prostate cancer (PCa) cases (Nahand et al., 2021), oral
carcinogenesis (Blanco et al., 2021), cervical cancer (Feng et al.,
2021), breast cancer (Nagi et al., 2021), and nasopharyngeal
carcinoma (NPC) (Blanco et al., 2021) (shown in Table 1). The
cytokine expression profile of PCa cases with HPV and EBV
coinfection was quite different from that only infected with HPV
or EBV. The differential expression profile suggests that HPV
and EBV coinfection could be an etiology for the development of
PCa. EBV could also play an important role in the integration of
the HPV genome (Nahand et al., 2021). When co-expressed with
low-risk HPV E6/E7 (HPV 6/11), EBV LMP-1 failed to induce
the malignant transformation as that co-expressed with high-risk
HPV E6/E7 (in primary mouse embryonic fibroblast (MEF) cells
(Shimabuku et al., 2014; Blanco et al., 2021). However, the co-
expression was proved to lead to precancerous lesions (Uehara
et al., 2021) since it promoted the accumulation of DNA damage-
related somatic mutations.

Malaria Coinfects With EBV Leading to Endemic
Burkitt Lymphoma
For the past few years, coinfection of Plasmodium falciparum
and EBV has been described to lead to the commonest pediatric
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
cancer—endemic Burkitt lymphoma (eBL)—in equatorial Africa
(Moormann and Bailey, 2016; Quintana et al., 2020) (shown as
Table 1). Once infected with Plasmodium falciparum, an
increased viral load could be induced by reactivating EBV and
impairing the IFN-g signal in children (Moormann et al., 2005;
Moormann et al., 2007). Additionally, the repeated or prolonged
malaria infection was also considered to disturb the immune
surveillance directed by EBV-specific T/NK cell (toward EBNA1)
in eBL (Forconi et al., 2018; Forconi et al., 2021). Malaria
infection was known to activate EBV in affected children
(Reynaldi et al., 2016) and induce the EBV replication by
initiating the B-cell receptor (BCR) signal pathway (Chêne
et al., 2007). Coinfection with Plasmodium falciparum was
reported to induce infected B cells into a differential phase,
resulting in the occurrence of c-myc translocation.

KSHV Coinfects With EBV in Primary Effusion
Lymphoma and Kaposi Sarcoma
Kaposi sarcoma-associated herpesvirus (KSHV) which belongs
to the g-herpesvirus also coinfects with EBV in Kaposi sarcoma
and primary effusion lymphoma (PEL) (2019; Mariggiò et al.,
2017) (shown as Table 1). The simultaneous coinfection of EBV
and KSHV was believed to promote the sustenance of KSHV
both in vivo (Mchugh et al., 2017; Caduff et al., 2021) and in vitro
(Bigi et al., 2018). Additionally, the gene expression profile of
PEL with coinfection of KSHV and EBV was divergent from that
found in lymphomas which only carry EBV (Mchugh et al., 2017;
Caduff et al., 2021). When coinfected with EBV in B cells, KSHV
seemed to reactivate EBV (Mchugh et al., 2017). The fact that
KSHV-coinfected EBV which was lytic replication deficient
failed to induce lymphoma in mice favors that EBV
reactivation is vital for EBV-driven tumorigenesis (Mchugh
et al., 2017; Caduff et al., 2021). Besides for reactivating EBV in
the host, KSHV coinfection was also reported to influence the
NK cell differentiation (destined to CD56-negative NK cells) so
as to assist replication as well as expansion pf lytic EBV (Caduff
et al., 2021; Alari-Pahissa et al., 2021; Pánisová et al., 2022).

HIV Coinfects With EBV Contributing to
B Cell Lymphoma
The coinfection of human immunodeficiency virus (HIV) and
EBV exists in a large variety of lymphoma such as Burkitt
lymphoma, Hodgkin’s lymphoma, diffuse large B cell
lymphoma, PEL, and primary CNS lymphoma (Verdu-Bou
et al., 2021) (shown as Table 1). The depletion of CD4+ T
cells and senescence of CD8+ T cells are common in HIV
carriers, which could contribute to the deficiency of EBV-
specific T cell immune responses in EBV-driven lymphoma
(Piriou et al., 2005; Hernández et al., 2018). The EBV control
was reported to be compromised in EBV-driven lymphoma
which coinfected with HIV due to the deficient EBNA1-
specific CD4+/CD8+ T cells (Münz et al., 2000; Piriou et al.,
2005; Mavilio et al., 2005), as well as the differentiation of NK
cells to a CD56-negative NK cell without protective effects
(Mavilio et al., 2005; Cao et al., 2021) in HIV carriers. Besides,
the induction of the apolipoprotein B mRNA-editing enzyme,
February 2022 | Volume 12 | Article 852066
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catalytic polypeptide-like (APOBEC) family, which was clarified
as a DNA-modifying enzyme in HIV coinfection, might be
another trigger for EBV-driven lymphoma by somatic
mutation accumulation (Venkatesan et al., 2018). Furthermore,
the cooperation between HIV and EBV in HIV-related
lymphoma has been speculated, with HIV likely contributing
to the generation of a permissive microenvironment for EBV
infection, and the differentiation and survival of infected B-cells
(Verdu-Bou et al., 2021).
OTHER COMMENSAL MICROBIOME
COULD INTERACT WITH EBV IN EBV-
DRIVEN CANCER BY REGULATING THE
IMMUNE SYSTEM

The depletion of CD8+/CD4+ T cells and NK cells is reported to
promote the occurrences of EBV-driven cancers (Murer et al.,
2019; Münz, 2021), and extra evidence has also been claimed that
the coinfection of EBV and some pathogen could have induced
the EBV reactivation and impaired the EBV-targeted immune
cell response. The commensal microbiota is considered as
fundamental for the development of secondary lymphoid
structures, as well as the differentiation, maturation, and
function of T and B cells including virus-specific effector CD4+

and CD8+ T cells, FoxP3+ CD4+ T regulatory cells (Tregs) and
Th17 cells, CD4+ helper T cells, and B cells (Hill and Artis, 2010;
Furusawa et al., 2013; Khosravi et al., 2014; Josefsdottir et al.,
2017; Luu et al., 2018; Zhao and Elson, 2018; Lee et al., 2021). It is
reasonable to believe that other commensal microbiota
coinfection with EBV could also be a trigger for EBV-
driven cancer.

The disturbance of commensal microbiota is reported to
result in impaired lymphoid tissue development and alter
susceptibility to infectious diseases (Abt and Artis, 2009;
Atarashi et al., 2011; Pickard et al., 2017). For example, the
colonization of segmented filamentous bacteria (SFB) in the
intestine is associated with increased CD4+ T helper 17 cells in
the intestine (Wang et al., 2019b). The oral colonization of
Lactobacillus paracasei has also been reported to induce an
increased number of tissue resident and circulatory myeloid
cells in mice lungs (Belkacem et al., 2017).

The Commensal Microbiota Is Likely to
Prime Type I IFN-Dependent Antiviral
Immune Responses in EBV Infection
The binding of pattern recognition receptors (PRRs) to
conserved ligands of commensal microbiota which are termed
microbe-associated molecular patterns (MAMPs) is reported to
shape and modulate host immune responses (Chu and
Mazmanian, 2013). The MAMPs of virus, bacteria, protozoa,
and fungi could bind to specific PRR, thus priming the type I IFN
response (Ito et al., 1976; Abt et al., 2012; Ganal et al., 2012),
which is the central component of virus control (Forero et al.,
2019), and the production of divergent cytokines such as TNF-a
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
and IL-6 (Ma et al., 2018; Winkler and Thackray, 2019). For
example, in mice treated with antibiotics, the type I IFN response
was diminished in peritoneal macrophages (MO) (Abt et al.,
2012), resulting in the impaired ability to stimuli such as
lipopolysaccharide (LPS), influenza virus (IAV), and
lymphocytic choriomeningitis virus (LCMV).

The Possible Role of the Commensal
Microbiota in Priming Cell-Mediated
Innate and Adaptive Immune Responses
During EBV Infection
Numerous studies using antibiotic-treated and germ-free mice
have declared that commensal microbiota could influence the
generation of a diverse spectra of adaptive cells, such as virus-
specific T cells and B cells. It was reported that the numbers of
virus-specific CD4+ and CD8+ T cells toward hepatitis B virus
(HBV), IAV, LCMV, and West Nile virus (WNV) were reduced
in antibiotic-treated mice (Ichinohe et al., 2011; Abt et al., 2012;
Chou et al., 2015; Jiang et al., 2017; Thackray et al., 2018). In the
meantime, the virus-specific antibody response also diminished
in the same series of studies in antibiotic-treated mice. As for the
EBV infection, it remains to be explored whether the diminished
virus-specific T/B cells would impair the control of EBV
infection and result in EBV-driven cancers. In addition, there
are fewer CD103+ DCs with impaired antigen-presenting
capacity (a required site of antiviral CD8+ T cell priming) of
naïve antibiotic-treated mice (Ichinohe et al., 2011; Thackray
et al., 2018). Moreover, NK cells of antibiotic treated mice were
impaired in the production of IFN-g and cell-mediated
cytotoxicity despite the maintenance, resulting in increased
virus titers during murine cytomegalovirus infection (MCMV)
(Ganal et al., 2012). The gut microbiota reconstitution for germ-
free mice successfully protected mice from IAV and LCMV
infection, suggesting an important role of microbiota in
regulating pro-inflammatory cytokine responses during
systemic virus infection (Ichinohe et al., 2011; Abt et al., 2012).

Commensal Microbiota Could Promote the
EBV Reactivation as well as EBV-Driven
Cancers by Microbial-Derived Metabolites
Numerous studies have proposed that the diverse metabolites
produced by host microbiome components might play a key role
in the regulation of host health as well as cancer progression as
reviewed by Cogdill et al. (2018). In the meantime, the concrete
mechanisms behind the relationship between microbiome and
cancer need further cautious explorations. The commensal
microbia-derived metabolites play an important role in the
regulation of host immunity (Levy et al., 2017) during the
systemic virus infection. Recently, Steed et al. found that oral
administration of the human-associated commensal gut bacteria
Clostridium orbiscendens or its production, desaminotyrosine
(DAT), could protect mice from lethal IAV infection through
reduced immunopathology in the lung in a phagocyte-dependent
process potentially through augmentation of the Type I IFN
amplification loop (Steed et al., 2017). The reactivation of EBV is
known to be a vital step for the onset of EBV-related cancers. In
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addition to the coinfection of EBV and pathogens such as HIV,
HPV, and others listed in Section 4, previous studies have reported
an increased EBV replication in populations colonized with
Gracilibacteria and Abiotrophia (Urbaniak et al., 2020). However,
the key trigger for EBV reactivation and impairment of EBV control
still remains to be explored.

It is reported that P. gingivalis and F. nucleatum can take part
in the regulation of acetylation and deacetylase for histone, thus
reactivating the EBV by modulating the BZLF1 promoter in
EBV-infected cells (Imai et al., 2012a; Imai et al., 2012c). Butyrate
(BA), which belongs to a short-chain fatty acid (SCFA) family
(Louis et al., 2010; Imai et al., 2012b), was reported to be excreted
by P. endodontalis and F. nucleatum in EBV carriers, and leads to
the occurrences of periapical periodontitis (Makino et al., 2018;
Himi et al., 2020). In addition, studies have also declared that the
intraperitoneal injection of BA in EBV-driven cancers accelerates
the expression of ZEBRA expression and reactivate the lytic EBV
replication (Westphal et al., 1999; Westphal et al., 2000). A
significantly higher level of BA has also been observed in the
saliva of EBV-infected patients with BZLF1 transcription
induction and lysine acetylation of histone H3 (Koike et al.,
2020). In a word, BA is possibly a key trigger for EBV switching
to reactivation and priming the EBV-driven cancers. However,
Whether the reduction of BA-producing bacteria in host could
be a possible treatment for EBV-driven cancer and how to
achieve it remain to be explored.
THE REGULATION OF COMMENSAL
MICROBIOTA COULD BE A TARGET FOR
TREATMENT OF EBV-DRIVEN CANCERS

As for the treatment of EBV-driven cancers, studies have tried to
develop some EBV-targeted therapies in addition to traditional
chemotherapy and radiotherapy. However, limit progressions
have been made by targeting the deregulated signal pathway in
EBV infection or focusing on the drugs targeting EBV antigens,
such as EBNA1 (Thompson et al., 2010; Messick et al., 2019). Up
to now, no vaccine against EBV has been made successfully
(Dugan et al., 2019; Cai et al., 2021). The application of
nucleoside analogs which could act during the lytic phase of
EBV, such as ganciclovir and zidovudine, in addition to IL-2 and
CAR-T treatment, worked well in EBV-positive PCNSL
(Aboulafia et al., 2006; Dugan et al., 2019). For latent EBV-
driven cancer, the induction of the EBV lytic phase could be a
rationale chosen, and BA was reported to take effect in refractory
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
EBV-driven lymphoma (Ghosh et al., 2007; Perrine et al., 2007).
Therefore, whether there would be another microbial product
that could be efficient in the treatment of EBV-driven cancer
needs further exploration. In recent years, increasing evidence
suggested that the microbiome could regulate the host responses
toward anticancer therapy, including chemotherapy, radiation,
and targeted therapy (Cogdill et al., 2018). A recent study of
advanced colorectal cancer reported that the diversity of blood
microbiota influences the host response to chemotherapy and
adoptive T cell immunotherapy (Yang et al. , 2021).
Consequently, whether the regulation of microbiome
constitution would favor the therapeutic efficiency in EBV-
driven cancer also needs to be explored.
CONCLUDING REMARKS

Over the past few years, the roles of the commensal microbiome
in modulating host immunity have been studied (Brosschot and
Reynolds, 2018; Neil and Cadwell, 2018). The function of the
commensal microbiome ranges from aiding in metabolism to
competing with invasive pathogens (Abt et al., 2012; Belkaid and
Hand, 2014). EBV, as a member of the commensal microbiome,
has also been reported to regulate the host immune system and
interact with other components of the microbiome. Some of
these interactions are considered to induce the reactivation of
EBV. However, a more thorough understanding of the molecular
mechanisms by which specific constituents of the commensal
microbiota would promote the reactivation of EBV, as well as
driven EBV-associated cancers, is in great need.
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