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Simple Summary: Goose meat is recognized as one of the healthiest foods. Goose capons are specially
bred and consumed in several parts of China for their high-quality meat. However, the effects of
caponization on goose growth and carcass traits have remained uninvestigated, and its molecular
mechanisms remain unclear. In this research, caponization lowered testosterone and increased the
total cholesterol and triglyceride concentrations in serum. Caponization increased live weights by
promoting food intake and abdominal fat deposition, and improved meat quality by increasing
intermuscular fat. Changes in the expression of these genes indicate that caponization increases the
live weight mainly by increasing fat deposition rather than muscle growth. These results expand
our understanding of the mechanisms of caponization on growth performance and fat deposition
in ganders.

Abstract: In this study, we determined the effects of caponization on the growth performance and
carcass traits of Yangzhou ganders. Fifty sham operated geese (the control group) and 80 caponized
geese (the caponized group) were selected at 150 days of age and reared until 240 days of age. At
210 days of age, 30 geese from the caponized group were selected and fed with testosterone propionate
(testosterone group). The results showed that caponization lowered testosterone and increased the
total cholesterol and triglyceride concentrations in serum, live weights, average 15 day gains, and feed
intake. Abdominal fat and intramuscular fat were significantly higher in the caponized geese than in
the control at 240 days. Gene expression analysis showed that caponization promoted abdominal fat
deposition and intermuscular fat content by upregulating the expression of adipogenic genes in the
liver, adipose tissue, and muscle tissue. The high expression of SOCS3 in the hypothalamus, liver,
and muscle of caponized geese suggests that caponization may lead to negative feedback regulation
and leptin resistance. Changes in the expression of these genes, along with the downregulation of
PAX3 in the breast muscle and MYOG in the leg muscles, indicate that caponization increases the
live weight mainly by increasing fat deposition rather than muscle growth. These results expand
our understanding of the mechanisms of caponization on growth performance and fat deposition
in ganders.

Keywords: gander; caponization; live weight; gene expression

1. Introduction

Testosterone is a sex hormone secreted by the Leydig cells of the testes that stim-
ulate the reproductive system as well as the growth of muscle, bone, and connective
tissue [1,2]. In male chickens, testosterone inhibits abdominal fat accumulation and
negatively regulates adipogenesis-related genes [3,4] that promote fat synthesis and
increase fat accumulation [5–7]. Caponization, the surgical removal of the testes, results
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in testosterone deficiency or a reduction in testosterone levels, which lead to the degener-
ation of secondary male sexual characteristics such as the comb, wattle, fighting behavior,
and vocalizations [8] in addition to higher body weights and more savory meat [9–11].
Some studies reported that caponized cocks had increased live weights (LWs) [12–14],
while others showed that caponization resulted in an overall increase in abdominal fat
weight (AFW), as well as subcutaneous and intramuscular fat in chickens [4,15,16]. The
accumulation of body fat improves meat quality by enhancing the flavor, texture, and
juiciness of the meat compared to intact cocks [8].

Goose rearing is an important form of poultry production, and goose meat consump-
tion has increased in China and several European countries [17]. According to statistics,
the total goose production in China is approximately 2.52 million tons, and approximately
95.2% of goose meat is consumed annually [18]. Goose capons are specially bred and
consumed in several parts of China for faster growing and better quality meat than intact
ganders [19]. However, the effects of caponization on goose growth and carcass traits have
remained uninvestigated, and its molecular mechanisms remain unclear. Therefore, this
study aims to investigate the effects of caponization on the LW, feed intake (FI), and carcass
performance of Yangzhou ganders by comparing them to intact males to understand the
role of testosterone in ganders.

2. Materials and Methods
2.1. Ethics Approval

The experimental procedures were approved by the Research Committee of Jiangsu
Academy of Agricultural Sciences and conducted with adherence to the Regulations for the
Administration of Affairs Concerning Experimental Animals (Decree No. 63 of the Jiangsu
Academy of Agricultural Science on 8 July 2014).

2.2. Animal Populations and Experiment Design

The experiments were carried out on Yangzhou ganders (aged 150 d) in Anhui Tianzhi-
jiao Goose Industry Co., Ltd. (Quanjiao, Anhui, China). The geese were foot-marked,
weighing 4.75 ± 0.20 kg, and the population density was 4 geese/m2 on the ground. The
geese were raised in the conventional method of stocking and supplementary feeding
(11.69 MJ/kg ME, 12.5% CP, 0.11% calcium, and 0.14% available phosphorus for 150-day-
old geese) [20]. In addition to feed, the geese were free to eat grass during grazing. The
geese were maintained under natural daylight and temperatures. Fifty sham-operated
geese (the control group) and eighty caponized geese were selected at 150 days of age
and reared until 240 days of age. Ten geese were randomly selected from each group to
be slaughtered at the ages of 180 d and 210 days. At 210 d, sixty caponized geese were
divided into two groups: the caponized group and the testosterone group. The geese of
the testosterone group were fed testosterone propionate (Sigma-Aldrich, Tokyo, Japan).
The dose of testosterone propionate was 5 mg per kg of body weight per day. Testosterone
propionate was dissolved in sesame oil and mixed with the feed to feed these geese for
30 d in the testosterone group. The amount of testosterone propionate per kg of feed was
150 mg. In order to ensure that all feed mixed with testosterone propionate was consumed,
each subgroup was first fed with about 2 kg mixed testosterone propionate. After eating all
the feed, feed without testosterone was added to ensure that all geese could eat freely. Ten
slaughters from each group were performed at the age of 240 days. The geese were fasted
16 h before slaughter. Ten geese were randomly selected from each group to be slaughtered
at the age of 180 days and 210 days. They were electrically stunned (120 V/50 Hz for
5 s) and exsanguinated by severing the jugular vein and carotid artery on one side of the
neck. Afterward, they were passed through a warm scalding vessel (60 ◦C for 2 min) and
a plucker (2 min) and were manually eviscerated. The tissue samples of hypothalamus,
pituitary, liver, breast muscle, leg muscle, and abdominal fat were collected and were frozen
in liquid nitrogen, and stored at −80 ◦C.
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2.3. Testectomy

Caponization was performed at 150 days of age. The testectomy procedure was
performed according to Chen et al. [21]. The ganders selected for surgery were deprived
of feed and water for 12 h, respectively, before the procedure. Anesthesia was performed
using xylazine (Rompun, Bayer HealthCare, Leverkusen, Germany) and ketamine (Ketaset,
Fort Dodge Animal Health, Fort Dodge, IA, USA) in doses of 23 mg/kg of body weight.
Anesthesia was administrated via goose flipper vein. The (mean ± SE) body weight of the
ganders was 4.75 ± 0.20 kg. After the removal of the feathers and the disinfection of the
skin with povidone alcohol 75%, a 1.5-cm incision was made between the 2 last ribs. A
rib spreader was inserted and the testicles were removed. The control group had a 1.5-cm
incision between the last two ribs without removing the testicles. Survival rates for the
whole experiment were 100%, respectively.

2.4. Measurements

LW of each goose was measured every 15 days individually, and FI of 30 geese per cell
was monitored daily. Each group were divided into three subgroups with 10 geese, and the
feed intake of each subgroup was measured. The average feed intake of each group was
calculated according to the subgroups. Carcass traits were measured according to Symeon
et al. [22]. The breast was separated from the back at the shoulder and along the junction of
the vertebral and sternal ribs. The legs were separated from the carcass by cutting through
the iliofemoral joint and included the thigh and the drumstick. The breast and left leg were
dissected into meat, and their wet weights were recorded. AFW was dissected out and
weighed. Liver weight and gizzard weight were measured. The intramuscular fat (IMF)
was analyzed using the FoodScan Meat Analyzer (Foss, Hillerod, Denmark).

Blood samples were collected via wing veins into heparinized syringes every 15 days.
Serum was separated from the blood within 3 h of sample collection by centrifugation at
2000× g and stored at −20 ◦C until the measurements of other targets were conducted.
Serum testosterone concentrations were determined by an ELISA using the quantitative
Diagnostic Kit for testosterone (North Institute of Biological Technology, Beijing, China) [23].
Concentrations of glucose, triglycerides, cholesterol, high-density lipoprotein, and low-
density lipoprotein were measured by using a ROCHE Modular P800 Automatic Biochemi-
cal Analyzer (Roche, Milan, Italy) [24].

2.5. RNA Isolation, Primer Synthesis, and Quantitative Real-Time PCR

Total RNA from the hypothalamus, pituitary, abdominal fat, breast muscle, and leg
muscle was extracted with TRIzol using a commercial kit according to the manufacturer’s
instructions (RNAiso Plus, Code No. 9108; Takara, Shiga, Japan). Gene-specific primers
were designed using Primer 3.0 software accessd on 8 January 2022 (www.ncbi.nlm.nih.
gov/tools/primer-blast/) based on the GenBank databases. ABI PRISM_7500 sequence
detection system (Applied Biosystems, Foster City, CA, USA) was used to detect the
amplification products. The relative expression levels of different genes in the tissues were
calculated according to the 2−∆∆CT method.

2.6. Statistical Analysis

All values are expressed as mean ± SEM. Differences in the plasma concentrations of
testosterone, metabolite concentrations data, LW, average weight gain, carcass composition
weights, and gene expression levels were analyzed by 2-way ANOVA in the animal ex-
periment with the time and group treatments as factors using SPSS 20 software (SPSS Inc.,
Chicago, IL, USA). Least significant difference pairwise comparisons were also analyzed
for time course and testosterone propionate. Caponization effect on FI was analyzed by
ANCOVA, with the cumulative FI of each time period as dependent variable and the total FI
of the whole day as the independent co-variable. Statistical significance was set at p < 0.05.
All pictures were drawn with the GraphPad Prism V8.0 (GraphPad Software, San Diego,
CA, USA).

www.ncbi.nlm.nih.gov/tools/primer-blast/
www.ncbi.nlm.nih.gov/tools/primer-blast/


Animals 2022, 12, 1364 4 of 12

3. Results
3.1. FI and Growth Performance

FI were higher in the caponized group than in the control group throughout the
experiment (Figure 1A). From 210 days to 240 days, the FI of the caponized group was >50
g higher than that of the control group, and even more than >180 g/d at 238 d. The FI of
the testosterone group decreased compared to the caponized group, but was higher than
that of the control group. During the period from210 days to 240 days, the FI of the of the
caponized group was significantly higher than that of the control group (p < 0.05).

Figure 1. Feed intake (A), live body weight (B), and average 15 day gains (C) of the control group (•),
the caponized group (�), and the testosterone group (N). Data are shown as mean values ± standard
error of the mean. Different letters above the bars denote significant differences (p < 0.05).

During the course of the experiment, the LWs of caponized geese became significantly
higher than those of the control group at 195 d (Figure 1B, p < 0.05). The difference gradually
decreased (p > 0.05) but reached a significant level again at 240 d (p < 0.05). At the end of
the experiment, the LW of caponized geese was 6.63 kg, which was 0.6 kg higher than that
of the control group.

During the course of the experiment, the weight gains of the control group and
caponized group increased, reached the highest at 195 d, and then decreased (Figure 1C).
From 225 days to 240 days, the weight gains of the control group decreased sharply,
resulting in them being significantly lower than those of the caponized group (Figure 1C,
p < 0.05). The weight gains of the control group were lower than those of the caponized
group from 150 days to 165 days (p < 0.05), from 180 d to 195 d (p < 0.05), from 195 days to
210 days (p < 0.05), and from 225 days to 240 days (p < 0.05).

3.2. Measure of Plasma Testosterone and Metabolite Concentrations

In the control group, the circulating concentrations of testosterone increased between
150 days to 225 days and subsequently decreased slightly from 225 days to 240 days
(Figure 2A). The concentrations in the caponized group remained stable at a low level.
A significant difference was observed in the testosterone concentration between these
two groups (p < 0.05). After the geese were supplemented with testosterone, the serum
testosterone concentration of the geese was significantly higher than that in the caponized
group and significantly lower than that in the control group (p < 0.05).

The glucose of the control group was maintained at approximately 10 mm/mol
throughout the experiment. Although the glucose of the caponized group changed slightly,
the difference was not significant (Figure 2B, p > 0.05). The total cholesterol exhibited an
upward trend in the control and caponized groups, and was higher in the caponized group
than in the control group (Figure 2C, p < 0.05). After supplementation with testosterone
propionate, total cholesterol decreased slightly compared to the caponized group and was
higher than that of the control group (Figure 2C). Triglycerides of the caponized group were
significantly higher than those of the control group at 180 days and 225 days (Figure 2D,
p < 0.05). After supplementation with testosterone propionate, there was no significant
difference in triglyceride concentration between the testosterone group and the caponized
group. The high-density lipoprotein concentration of the caponized group was higher than
that of the control group at 180 days (Figure 2E, p < 0.05). In contrast, the low-density
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lipoprotein concentration of the caponized group was lower than that of the control group,
and the difference was significant at 180 days (Figure 2F, p < 0.05).

Figure 2. Serum testosterone and metabolite concentrations of the control group (•), the caponized
group (�), and the testosterone group (N). (A) (Testosterone), (B) (glucose), (C) (triglycerides),
(D) (cholesterol), (E) (high−density lipoprotein), (F) (low−density lipoprotein). Data are shown
as mean values ± standard error of the mean. Different letters above the bars denote significant
differences (a,b: p < 0.05; b,c: p < 0.05; a–c: p < 0.01).

3.3. Carcass Composition

The carcass composition of birds is presented in Table 1. The gizzard weights (GZWs)
of the caponized group increased quickly and were significantly higher than those of the
control group at 180 days, 210 days, and 240 days (p < 0.05). The ratio of GZW to body
weight (BW) in the caponized group was significantly higher than that of the control group
at 180 days and 210 days (p < 0.05), and there was no difference at 240 days. There were
significant differences in the liver weights (LIWs) and the ratios of LIW to BW between
the control group and the caponized group at 180 days (p < 0.05). The AFW increased
continuously in all the geese in our experiment. There were significant differences in the
AFWs between the caponized geese and control ganders at 210 days (p < 0.05) and at
240 days (p < 0.01), respectively. After the caponized geese were fed testosterone, their
AFW decreased significantly; however, it was still significantly higher than that of the
control group. The ratios of AFW to BW in the caponized group and testosterone group
were significantly higher than those of the control group at 240 days (p < 0.05). There were
no significant differences in the breast muscle weights (BMWs) and the ratios of BMWs to
BW among the three groups at 180 days, 210 days, and 240 days (p > 0.05). The leg muscle
weights (LMWs) of the caponized geese were significantly lower than those of the control
group at 180 days (p < 0.05), and there were no differences at 210 days and 240 days. The
ratios of LMW to BW in the caponized group and testosterone group were significantly
lower than those of the control group at 240 days (p < 0.05). At 240 d, the IMF contents of
the breast muscle and leg muscle in the caponized group were significantly higher than
those in the control group and testosterone group (p < 0.05), and there was no significant
difference between the control and testosterone group.
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Table 1. Carcass traits in the control group, the caponized group, and the testosterone group at 180 days, 210 days, and 240 days.

Group Traits At 180 Days At 210 Days At 240 Days
Ratio of BW 8 (%)

At 180 Days At 210 Days At 240 Days

Control 112.32 ± 4.59 a 106.06 ± 3.93 a 106.90 ± 2.59 a 2.24 ± 0.12 a 1.96 ± 0.09 a 1.78 ± 0.06
Caponized GZW(g) 1 144.53 ± 6.24 c 134.54 ± 6.85 b 127.33 ± 3.55 b 2.86 ± 0.15 c 2.38 ± 0.13 b 1.93 ± 0.06

Testosterone 117.87 ± 7.51 ab 1.84 ± 0.10
Control 85.90 ± 3.87 a 87.66 ± 6.18 100.24 ± 17.01 1.70 ± 0.08 a 1.62 ± 0.13 1.70 ± 0.33

Caponized LIW(g) 2 127.69 ± 18.86 b 87.72 ± 3.92 84.72 ± 6.74 2.56 ± 0.42 b 1.54 ± 0.05 1.27 ± 0.07
Testosterone 100.79 ± 8.35 1.57 ± 0.11

Control 154.79 ± 16.55 178.61 ± 10.37 a 243.69 ± 24.92 a 3.02 ± 0.28 3.26 ± 0.14 3.96 ± 0.30 a
Caponized AFW(g) 3 160.95 ± 17.20 222.19 ± 25.84 b 397.94 ± 32.69 c 3.13 ± 0.29 3.86 ± 0.05 5.95 ± 0.33 c

Testosterone 322.05 ± 30.50 b 4.99 ± 0.40 ac
Control 406.47 ± 22.39 480.70 ± 18.37 544.44 ± 28.62 11.32 ± 0.42 12.37 ± 0.41 12.60 ± 0.31

Caponized BMW(g) 4 377.64 ± 22.04 465.03 ± 15.63 530.45 ± 17.03 11.03 ± 0.37 11.93 ± 0.59 11.85 ± 0.31
Testosterone 563.81 ± 17.13 12.32 ± 0.26

Control 452.54 ± 15.93 a 515.78 ± 12.24 595.50 ± 17.31 12.57 ± 0.22 13.29 ± 0.33 13.76 ± 0.43 a
Caponized LMW(g) 5 415.85 ± 10.81 b 494.00 ± 15.58 553.91 ± 22.59 12.20 ± 0.16 12.60 ± 0.35 12.24 ± 0.31 b

Testosterone 583.23 ± 16.90 11.86 ± 0.28 b
Control 4.59 ± 0.42 4.64 ± 0.38 4.88 ± 0.33 b

Caponized IMFB(%) 6 4.11 ± 0.33 4.89 ± 0.31 5.84 ± 0.54 a
Testosterone 4.59 ± 0.27 b

Control 4.67 ± 0.42 5.34 ± 1.02 4.60 ± 0.38 a
Caponized IMFL(%) 7 5.07 ± 0.46 6.23 ± 0.76 7.27 ± 0.46 b

Testosterone 5.34 ± 0.07 a
1 GZW = gizzard weight, 2 LIW = liver weight, 3 AFW = abdominal fat weight, 4 BMW = breast muscle weight, 5 LMW = leg muscle weight, 6 IMFB = intermuscular fat content of breast
muscle, 7 IMFL = intermuscular fat content of leg muscle, 8 BW = body weight. Different letters above the bars denote significant (a,b: p < 0.05; b,c: p < 0.05; a,c: p < 0.01) differences.
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3.4. Gene Expression
3.4.1. Appetite Regulating Genes in the Hypothalamus

Both the genes AgRP and NPY were upregulated in the hypothalamus of the caponized
group compared to the control group, and significant differences were observed in the
expression levels of the POMC gene at 240 days (Figure 3, p < 0.05). After supplementation
with testosterone propionate, there was no significant difference in the expression of the
AgRP, NPY, POMC, and MC4R genes among between testosterone group and caponized
group, and between testosterone group and control groups (p > 0.05).

Figure 3. Genes’ mRNA levels relative to β-actin, POMC, MC4R, NPY, and AgRP of hypothalamus
in the control, the caponized group, and the testosterone group. Data are shown as mean values ±
standard error of the mean. Vertical bars represent the standard errors of the mean. Different letters
above the bars denote significant differences (p < 0.05).

3.4.2. Expression of Genes in the Liver and Abdominal Adipose Tissues

To gain further insights into the effect of caponization on adipogenesis metabolism,
12 genes in the liver were examined (LEPR, AR, INSR, SOCS3, PCK1, SCD, SQLE, RXRG,
PPARγ, FASN, FABP4, and ACC). Caponization significantly upregulated the expression of
the genes SOCS3, SCD, SQLE, RXRG, and FASN in the liver (p < 0.05), and the testosterone
propionate supplementation downregulated the expression of SOCS3, SCD, SQLE, RXRG,
and FASN (Figure 4, p < 0.05). These 12 genes were also detected in the abdominal
adipose tissues. The expression of the genes SOCS3, PCK1, SCD, RXRG, FASN, and
FABP4 was significantly upregulated in the abdominal adipose tissues of the caponized
geese (Figure 5, p < 0.05), whereas the expression of the gene ACC was significantly
downregulated (p < 0.05). The testosterone propionate supplementation decreased the
expression of the genes SOCS3, FASN, and FABP4 significantly compared to that in the
caponized geese (p < 0.05).

3.4.3. Expression of Genes in the Breast and Leg Muscle Tissues

To gain further insights into the effect of caponization on intermuscular adipogenesis,
four genes (FASN, FABP4, MYOG, and PAX3) were examined in the leg and breast muscles
(Figure 6). Caponization significantly upregulated the expression of the genes FASN and
FABP4 in the leg muscle tissues (p < 0.05), and the testosterone propionate supplementation
significantly downregulated the expression of the genes FABP4 and FASN (Figure 6A,
p < 0.05). The expression of the gene MYOG in the leg muscle tissues of the caponized geese
was downregulated compared to that in the control geese (Figure 6B, p < 0.05).
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Figure 4. Genes’ mRNA levels relative to β-actin, LEPR, AR, INSR, SOCS3, PCK1, SCD, SQLE,
RXRG, PPARγ, FASN, FABP4, and ACC of liver tissues in the control, the caponized group, and
the testosterone group. Data are shown as mean values ± standard error of the mean. Vertical
bars represent the standard errors of the mean. Different letters above the bars denote significant
differences (p < 0.05).

Figure 5. Genes’ mRNA levels relative to β-actin, LEPR, AR, INSR, SOCS3, PCK1, SCD, SQLE, PPARγ,
RXRG, FASN, FABP4, and ACC of abdominal adipose tissues in the control, the caponized group,
and the testosterone group. Data are shown as mean values ± standard error of the mean. Vertical
bars represent the standard errors of the mean. Different letters above the bars denote significant
differences (p < 0.05).
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Figure 6. Genes’ mRNA levels relative to β-actin, FASN, FABP4, MYOG, and PAX3 of the leg muscle
tissues (A,B) and breast muscle tissues (C,D) in the control, the caponized group, and the testosterone
group. Data are shown as mean values ± standard error of the mean. Vertical bars represent the
standard errors of the mean. Different letters above the bars denote significant differences (p < 0.05).

Four genes (FASN, FABP4, MYOG, and PAX3) were examined in the breast muscle
tissues. The expression of FASN and FABP4 were significantly upregulated in the breast
muscle tissues of the caponized geese (Figure 6C, p < 0.05), and the testosterone propionate
supplementation resulted in the downregulation of the expression of FASN compared to
that in the caponized geese (Figure 6D, p < 0.05). The expression of the PAX3 gene in the
breast muscle tissues of the caponized geese was downregulated compared to that of the
control geese (Figure 6D, p < 0.05).

4. Discussion

The results of this study showed that caponization reduced testosterone and sig-
nificantly increased the concentrations of serum cholesterol and triglycerides in geese.
Additionally, it enhanced the LW and FI of caponized geese. Caponization also improved
the AFW and intermuscular fat content by upregulating the expression of the adipogenic
genes in liver tissues, AFW, and muscle tissues. Supplementation with testosterone propi-
onate decreased the LWs and FI of caponized geese.

Caponization promoted the LW of the caponized geese in our study. Moreover, the
weight gain of the caponized geese was mainly due to fat deposition rather than muscle
growth. The total cholesterol serum concentration increased significantly in the caponized
group compared to the control group during the whole experiment; serum triacylglycerol
concentration increased significantly in the caponized group compared to the control group
at 180 d and 225 d; in particular, the AFW and the ratio of AFW to BW were higher in the
caponized geese than in the control group at 240 d. These results showed that caponization
resulted in a reduction in testosterone levels and increased fat deposition. In an earlier
report, capons showed a higher total cholesterol concentration than intact males in blood
constituents [25], indicating that lipid synthesis increased in capons compared to intact
males [26,27]. Lower serum testosterone levels caused by caponization also depressed
lipase and enzymes related to fat metabolism, thereby increasing the total cholesterol
and triacylglycerol levels in the serum [28–30]. The increase in AFW suggested that
adipogenesis was significantly faster in the caponized geese than in the control group.
In fact, the expression of adipogenic genes, such as RXRG and FASN, was significantly
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upregulated in the liver and adipose tissue of caponized geese. In this regard, it has been
reported that FASN gene expression in liver may be associated with hepatic steatosis [31].
IMF content is an important factor affecting meat quality and nutrition [32]. Caponization
also increased the IMF contents of muscle tissues in our study. At 240 d, the IMF contents
of the breast and leg muscles in the caponized geese were significantly higher than those in
the control geese. The expression of FABP4 gene related with IMF was upregulated in the
breast and leg muscle tissue of the caponized geese compared to the control geese. IMF
positively influences flavor, juiciness, tenderness, firmness, and the overall acceptability of
the meat [33]. Thus, capons have more savory meat compared to intact ganders.

Testosterone plays an important role in the regulation of muscle growth in males [30,34,35].
High testosterone levels promote muscle growth [36], whereas low testosterone levels decrease
muscle growth [30,37]. The results of the present study showed that the LMWs of the caponized
group were lower than those of the control group at 180 d. The ratios of LMW to BW in the
caponized group and testosterone group were significantly lower than those of the control
group at 240 d. This indicated that the muscle growth in the caponized geese was slower than
that in intact ganders, which was consistent with the expression of genes related to muscle
growth. The expression of the MYOG gene in the leg muscle tissues and the expression of the
PAX3 gene in the breast muscle tissues of caponized geese were downregulated compared to the
control geese. MYOG can promote the terminal differentiation of single free myoblasts and their
fusion to form multinucleated myotubes, thereby promoting muscle growth [38,39]. The PAX3
gene is important at the onset of myogenesis [40,41]. Lower serum testosterone levels decreased
the muscle growth of the caponized geese. Therefore, caponization resulted in a reduced level
or lack of testosterone, which in turn reduced muscle growth.

Caponization leads to low testosterone levels, and the decrease in testosterone results
in an increase in leptin levels in castrated rats [42]. A significantly negative relationship
between serum leptin and testosterone has been reported [42]. A high leptin concentration
suppresses the JAK/STAT pathway in leptin receptor signaling by negative regulators
such as the suppression of cytokine signaling 3 (SOCS3) gene (leptin resistance) [43]. Src
homology 2 (SH2) domains are the key domains of SOCS3 that interact with proteins
phosphorylated on the amino acid residue tyrosine [44]. Androgen receptor tyrosine
phosphorylation may also modulate its ability to interact with the SH2 domains of cell
signaling molecules [45]. In the present study, the expression of the SOCS3 gene in the
caponized geese was significantly higher than that in the control group in the hypothalamus,
liver, and abdominal adipose tissues. Such a high concentration of SOCS3 suggested a state
of ‘leptin resistance’ in the caponized geese. Leptin resistance stimulated appetite, and the
expression of the orexigenic genes, NPY and AgRP, was upregulated in the hypothalamus,
and that of the anorexigenic genes, MC4R and POMC, was downregulated. Consequently,
FI and fat deposition increased in caponized geese. The results were consistent with
the observation that castrated mice fed high-energy diets promotes fat deposition [46].
The results demonstrate the importance of testosterone and leptin in the regulation of FI
in ganders.

5. Conclusions

In conclusion, caponization led to low or a lack of testosterone, and increased FI by
upregulating the expression of NPY and AgRP in hypothalamus. Caponization promoted
fat deposition and intermuscular fat by upregulating the expression of adipogenic genes in
the liver, adipose tissue, and muscle tissue, and increased body weight and intermuscular
fat content. Although caponization promoting weight gain in geese may be related to low
levels of testosterone or leptin resistance, the specific molecular mechanism is not clear and
needs to be further studied.

Author Contributions: Conceptualization, M.L. and R.C.; methodology, M.L. and Z.D.; resources,
X.Q. and Z.D.; writing—original draft preparation, M.L. and H.Z.; writing—review and editing, Z.S.
All authors have read and agreed to the published version of the manuscript.



Animals 2022, 12, 1364 11 of 12

Funding: This research was supported by the National Natural Science Foundation of China
(grant number 31972551), and Jiangsu Agricultural Science and Technology Innovation Fund (CX
(20)3148), and the Key National Research and Development Program project of Anhui Province
(202204c06020078).

Institutional Review Board Statement: The experimental procedures were approved by the Research
Committee of Jiangsu Academy of Agricultural Sciences and were conducted with adherence to the
Regulations for the Administration of Affairs Concerning Experimental Animals (Decree No. 63 of
the Jiangsu Academy of Agricultural Science on 8 July 2014).

Informed Consent Statement: Not applicable.

Data Availability Statement: All data generated or analyzed during this study are included in this
published paper.

Conflicts of Interest: The authors declare that they have no competing interests. The funders had no
role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of
the manuscript, or in the decision to publish the results.

References
1. Giagulli, V.; Castellana, M.; Pelusi, C.; Triggiani, V. Androgens, Body Composition, and Their Metabolism Based on Sex. Front.

Horm. Res. 2019, 53, 18–32. [PubMed]
2. Kraemer, W.J.; Ratamess, N.A.; Hymer, W.C.; Nindl, B.C.; Fragala, M.S. Growth hormone(s), testosterone, insulin-like growth

factors, and cortisol: Roles and integration for cellular development and growth with exercise. Front. Endocrinol. 2020, 11, 33.
[CrossRef] [PubMed]

3. Duan, J.; Shao, F.; Shao, Y.; Li, J.; Ling, Y.; Teng, K.; Li, H.; Wu, C. Androgen inhibits abdominal fat accumulation and negatively
regulates the PCK1 gene in male chickens. PLoS ONE 2013, 8, e59636. [CrossRef] [PubMed]

4. Cui, X.C.; Liu, H.; Zhao, L.; Liu, G.; Li, R.; Zheng, M.; Wen, J. Decreased testosterone levels after caponization leads to abdominal
fat deposition in chickens. BMC Genom. 2018, 19, 344. [CrossRef]

5. Mayes, J.S.; Watson, G.H. Direct effects of sex steroid hormones on adipose tissues and obesity. Obes. Rev. 2004, 5, 197–216.
[CrossRef]

6. Symeon, G.K.; Charismiadou, M.; Mantis, F.; Bizelis, I.; Kominakis, A.; Rogdakis, E. Effects of caponization on fat metabolism-
related biochemical characteristics of broilers. J. Anim. Physiol. Anim. Nutr. 2013, 97, 162–169. [CrossRef]

7. Antunes, I.C.; Quaresma, M.A.G.; Ribeiro, M.F.; Alves, S.P.; Martins da Costa, P.; Bessa, R.J.B. Effect of immunocas tration and
caponization on fatty acid composition of male chicken meat. Poult. Sci. 2019, 98, 2823–2829. [CrossRef]

8. Chen, K.L.; Chi, W.T.; Chiou, P.W. Caponization and testosterone implantation effects on blood lipid and lipopro tein profile in
male chickens. Poult. Sci. 2005, 84, 547–552. [CrossRef]

9. Amorim, A.; Rodrigues, S.; Pereira, E.; Teixeira, A. Physicochemical composition and sensory quality evaluation of capon and
rooster meat. Poult. Sci. 2016, 95, 1211–1219. [CrossRef]

10. Amorim, A.; Rodrigues, S.; Pereira, E.; Valentim, R.; Teixeira, A. Effect of caponisation on physicochemical and sensory
characteristics of chickens. Animal 2016, 10, 978–986. [CrossRef]

11. Gesek, M.; Zawacka, M.; Murawska, D. Effects of caponization and age on the histology, lipid localization, and fiber diameter in
muscles from Greenleg Partridge cockerels. Poult. Sci. 2017, 96, 1759–1766. [CrossRef] [PubMed]

12. Chen, T.T.; Huang, C.C.; Lee, T.Y.; Lin, K.J.; Chang, C.C.; Chen, K.L. Effect of caponization and exogenous andro gen implantation
on muscle characteristics of male chickens. Poult. Sci. 2010, 89, 558–563. [CrossRef] [PubMed]

13. Rikimaru, K.; Takahashi, H.; Nichols, M.A. An efficient method of early caponization in slow-growing meat-type chickens. Poult.
Sci. 2011, 90, 1852–1857. [CrossRef] [PubMed]

14. Zeng, Y.T.; Wang, C.; Zhang, Y.; Xu, L.; Zhou, G.B.; Zeng, C.J.; Zuo, Z.C.; Song, T.Z.; Zhu, Q.; Yin, H.D.; et al. Improvac
immunocastration affects the development of thigh muscles but not pectoral muscles in male chickens. Poult. Sci. 2020, 99,
5149–5157. [CrossRef]

15. Quaresma, M.A.G.; Antunes, I.C.; Ribeiro, M.F.; Prazeres, S.; Bessa, R.J.B.; da Costa, M.P. Immunocastration as an alternative to
caponization: Evaluation of its effect on body and bone development and on meat color and composition. Poult. Sci. 2017, 96,
3608–3615. [CrossRef]

16. Mu, X.; Cui, X.; Liu, R.; Li, Q.; Zheng, M.; Zhao, G.; Ge, C.; Wen, J.; Hu, Y.; Cui, H. Identification of differentially expressed genes
and pathways for abdominal fat deposition in ovariectomized and sham-operated chickens. Genes 2019, 10, 155. [CrossRef]

17. Orkusz, A.; Haraf, G.; Okruszek, A.; Werenska-Sudnik, M. Lipid oxidation and color changes of goose meat stored under vacuum
and modified atmosphere conditions. Poult. Sci. 2017, 96, 731–737. [CrossRef]

18. FAO-STAT. Livestock Primary; Food and Agriculture Organization of the United Nations; Available online: http://www.fao.org/
faostat/en/#data/QL (accessed on 31 August 2020).

19. Wang, J.B.; Yu, C.G.; Wang, Y.L.; Chen, L.; Xia, C.D. Study on key technologies to improve the economic benefits of Wanxi White
ganders. J. Anhui Agric. Sci. 2012, 40, 14734–14736.

http://www.ncbi.nlm.nih.gov/pubmed/31499499
http://doi.org/10.3389/fendo.2020.00033
http://www.ncbi.nlm.nih.gov/pubmed/32158429
http://doi.org/10.1371/journal.pone.0059636
http://www.ncbi.nlm.nih.gov/pubmed/23544081
http://doi.org/10.1186/s12864-018-4737-3
http://doi.org/10.1111/j.1467-789X.2004.00152.x
http://doi.org/10.1111/j.1439-0396.2011.01254.x
http://doi.org/10.3382/ps/pez034
http://doi.org/10.1093/ps/84.4.547
http://doi.org/10.3382/ps/pev448
http://doi.org/10.1017/S1751731115002876
http://doi.org/10.3382/ps/pew451
http://www.ncbi.nlm.nih.gov/pubmed/28339957
http://doi.org/10.3382/ps.2009-00429
http://www.ncbi.nlm.nih.gov/pubmed/20181874
http://doi.org/10.3382/ps.2010-01270
http://www.ncbi.nlm.nih.gov/pubmed/21753225
http://doi.org/10.1016/j.psj.2020.06.040
http://doi.org/10.3382/ps/pex191
http://doi.org/10.3390/genes10020155
http://doi.org/10.3382/ps/pew325
http://www.fao.org/faostat/en/#data/QL
http://www.fao.org/faostat/en/#data/QL


Animals 2022, 12, 1364 12 of 12

20. Yu, J.; Yang, H.M.; Lai, Y.Y.; Wan, X.L.; Wang, Z.Y. The body fat distribution and fatty acid composition of muscles and adipose
tissues in geese. Poult. Sci. 2020, 99, 4634–4641. [CrossRef]

21. Chen, K.L.; Chi, W.T.; Chu, C.; Chen, R.S.; Chiou, P.W. Effect of caponization and testosterone implantation on hepatic lipids and
lipogenic enzymes in male chickens. Poult. Sci. 2007, 86, 1754–1759. [CrossRef]

22. Symeon, G.K.; Mantis, F.; Bizelis, I.; Kominakis, A.; Rogdakis, E. Effects of caponization on growth performance, carcass
composition, and meat quality of medium growth broilers. Poult. Sci. 2010, 89, 1481–1489. [CrossRef]

23. Zhu, H.X.; Liu, X.Q.; Cai, L.P.; Lei, M.M.; Chen, R.; Yan, J.S.; Yu, J.N.; Shi, Z.D. Cellular and molecular mechanisms of low dose
prolactin potentiation of testicular development in cockerels. Domest. Anim. Endocrinol. 2019, 69, 51–61. [CrossRef] [PubMed]

24. Lei, M.M.; Wu, S.Q.; Shao, X.B.; Li, X.W.; Chen, Z.; Ying, S.J.; Shi, Z.D. Creating leptin-like biofunctions by active immunization
against chicken leptin receptor in growing chickens. Domest. Anim. Endocrinol. 2015, 50, 55–64. [CrossRef] [PubMed]

25. Chen, K.L.; Tsay, S.M.; Lee, T.Y.; Chiou, P.W. Effects of caponization and different exogenous androgen on the bone characteristics
of male chickens. Poult. Sci. 2006, 85, 1975–1979. [CrossRef] [PubMed]

26. Cui, X.; Wang, J.; Liu, J.; Zhao, G.; Liu, R.; Zheng, M.; Li, Q.; Wen, J. Effects of caponization and ovariectomy on comb development,
slaughter performance and fat metabolism in Beijing-you chickens. Acta Vet. Zootech. Sin. 2016, 47, 1414–1421.

27. Zawacka, M.; Murawska, D.; Gesek, M. The effect of age and castration on the growth rate, blood lipid profile, liver histology and
feed conversion in Green-legged Partridge cockerels and capons. Animal 2017, 11, 1017–1026. [CrossRef]

28. Rahman, M.M.I.; Ali, M.A.; Khondaker, M.Y.; Hossain, M.E.A. Effect of caponization on body weight, hematology ical traits and
blood cholesterol concentration of Nara chicken. Int. J. Poult. Sci. 2004, 3, 284–286.

29. Dubois, V.; Laurent, M.R.; Jardi, F.; Antonio, L.; Lemaire, K.; Goyvaerts, L.; Deldicque, L.; Carmeliet, G.; Decallonne, B.;
Vanderschueren, D.; et al. Androgen deficiency exacerbates high-fat diet-induced metabolic alterations in male mice. Endocrinology
2016, 157, 648–665. [CrossRef]

30. Ren, X.; Fu, X.; Zhang, X.; Chen, S.; Huang, S.; Yao, L.; Liu, G. Testosterone regulates 3T3-L1 pre-adipocyte differ entiation and
epididymal fat accumulation in mice through modulating macrophage polarization. Biochem. Pharmacol. 2017, 140, 73–88. [CrossRef]

31. Liu, X.; Liu, Y.; Cheng, H.; Deng, Y.; Xiong, X.; Qu, X. Comparison of performance, fatty acid composition, enzymes and gene
expression between overfed Xupu geese with large and small liver. Ital. J. Anim. Sci. 2020, 20, 102–111. [CrossRef]

32. Li, X.; Fu, X.; Yang, G.; Du, M. Review: Enhancing intramuscular fat development via targeting fibro-adipogenic progenitor cells
in meat animals. Animal 2020, 14, 312–321. [CrossRef] [PubMed]

33. Ge, K.; Ye, P.; Yang, L.; Kuang, J.; Chen, X.; Geng, Z. Comparison of slaughter performance, meat traits, serum lipid parameters
and fat tissue between Chaohu ducks with high- and low-intramuscular fat content. Anim. Biotechnol. 2020, 31, 245–255.
[CrossRef] [PubMed]

34. Herbst, K.L.; Bhasin, S. Testosterone action on skeletal muscle. Curr. Opin. Clin. Nutr. Metab. Care 2004, 7, 271–277. [CrossRef]
[PubMed]

35. Sarchielli, E.; Comeglio, P.; Filippi, S.; Cellai, I.; Guarnieri, G.; Guasti, D.; Rapizzi, E.; Rastrelli, G.; Bani, D.; Vannelli, G.; et al.
Testosterone improves muscle fiber asset and exercise performance in a metabolic syndrome model. J. Endocrinol. 2020, 245,
259–279. [CrossRef] [PubMed]

36. Ghanim, H.; Dhindsa, S.; Batra, M.; Green, K.; Abuaysheh, S.; Kuhadiya, N.D.; Makdissi, A.; Chaudhuri, A.; Dandona, P. Effect of
testosterone on FGF2, MRF4 and myostatin in hypogonadotropic hypogonadism: Relevance to muscle growth. J. Clin. Endocrinol.
Metab. 2019, 104, 2094–2102. [CrossRef]

37. Antinozzi, C.; Marampon, F.; Sgro, P.; Tombolini, V.; Lenzi, A.; Crescioli, C.; Di Luigi, L. Comparative study of testosterone and
vitamin D analogue, elocalcitol, on insulin-controlled signal transduction pathway regulation in human skeletal muscle cells. J.
Endocrinol. Investig. 2019, 42, 897–907. [CrossRef]

38. Tajbakhsh, S. Stem cells to tissue: Molecular, cellular and anatomical heterogeneity in skeletal muscle. Curr. Opin. Genet. Dev.
2003, 13, 413–422. [CrossRef]

39. Yablonka-Reuveni, Z.; Paterson, B.M. MyoD and myogenin expression patterns in cultures of fetal and adult chicken myoblasts. J.
Histochem. Cytochem. 2001, 49, 455–462. [CrossRef]

40. Buckingham, M.; Relaix, F. PAX3 and PAX7 as upstream regulators of myogenesis. Semin. Cell Dev. Biol. 2015, 44, 115–125. [CrossRef]
41. Buckingham, M. Skeletal muscle progenitor cells and the role of Pax genes. Comptes Rendus Biol. 2007, 330, 530–533. [CrossRef]
42. Baltaci, A.K.; Mogulkoc, R.; Ozturk, A. Testosterone and zinc supplementation in castrated rats: Effects on plasma leptin levels

and relation with LH, FSH and testosterone. Life Sci. 2006, 78, 746–752. [CrossRef] [PubMed]
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