
Combinatorial Guidance by CCR7 Ligands for T
Lymphocytes Migration in Co-Existing Chemokine Fields
Saravanan Nandagopal1,2., Dan Wu1., Francis Lin1,2,3,4*

1 Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba, Canada, 2 Department of Biosystems Engineering, University of Manitoba,

Winnipeg, Manitoba, Canada, 3 Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada, 4 Department of Immunology, University of

Manitoba, Winnipeg, Manitoba, Canada

Abstract

Chemokines mediate the trafficking and positioning of lymphocytes in lymphoid tissues that is crucial for immune
surveillance and immune responses. In particular, a CCR7 ligand, CCL21, plays important roles in recruiting T cells to
secondary lymphoid tissues (SLT). Furthermore, CCL21 together with another CCR7 ligand, CCL19, direct the navigation and
compartmentation of T cells within SLT. However, the distinct roles of these two chemokines for regulating cell trafficking
and positioning are not clear. In this study, we explore the effect of co-existing CCL19 and CCL21 concentration fields on
guiding T cell migration. Using microfluidic devices that can configure single and superimposed chemokine fields we show
that under physiological gradient conditions, human peripheral blood T cells chemotax to CCL21 but not CCL19.
Furthermore, T cells migrate away from the CCL19 gradient in a uniform background of CCL21. This repulsive migratory
response is predicted by mathematical modeling based on the competition of CCL19 and CCL21 for CCR7 signaling and the
differential ability of the two chemokines for desensitizing CCR7. These results suggest a new combinatorial guiding
mechanism by CCL19 and CCL21 for the migration and trafficking of CCR7 expressing leukocytes.
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Introduction

Migratory responses of cells to cellular guiding signals play

important roles in regulating a wide range of physiological and

pathological processes such as inflammation and autoimmune

diseases, wound healing, neuron guidance, embryogenesis, and

cancer metastasis [1,2,3,4,5,6]. In particular, chemoattractant

gradients guide the migration of immune cells (i.e. chemotaxis),

orchestrating cell trafficking and positioning in tissues [7,8]. It has

been shown that leukocytes express multiple different chemoattrac-

tant receptors in a cell subset dependent manner, and can integrate

multiple co-existing chemotactic signals to direct their migration to

specific targets in tissues that enable immune surveillance and

immune responses [9,10]. Such a multiple chemoattractants-based

guiding mechanism relies on chemotactic signaling transduction

through chemoattractant and their different specific cell surface

receptors. In contrast, some chemoattractants share a common

receptor for triggering chemotactic signaling such as chemokines

CCL19 and CCL21 and their shared receptor CCR7 expressed in

lymphocytes subsets and dendritic cells (DCs) [11,12,13,14].

However, the mechanism of multiple chemoattractants with a

common cell receptor for guiding cell migration is unclear.

Chemokine receptor CCR7 and its two ligands, chemokine

CCL19 and CCL21, are important players in regulating lymphocytes

and DCs trafficking in secondary lymphoid tissues (SLT) such as

lymph nodes (LNs) [11,12,13,14]. CCL19 and CCL21 are co-

expressed in LNs with different expression patterns. CCL19 is only

produced and presented in T cell zone (TCZ) in humans and mouse

LNs [11,13,15,16]. In contrast, CCL21 is produced in TCZ and is

transcytosed to high endothelial venules (HEV) in human [13,17,18],

and is produced and presented in both TCZ and HEV in mouse LNs

[19,20]. Inside TCZ, it has been shown that CCL19 and CCL21 are

co-expressed by reticular cells with more CCL21-expressing cells

than CCL19-expressing cells in the periphery of TCZ [21],

suggesting the size of the CCL21 producing tissue in TCZ is possibly

larger than the CCL19 producing tissue. Therefore, the profiles of

overlapping CCL19 and CCL21 fields can be different in different

sub-regions of TCZ. Furthermore, the production levels of CCL19

and CCL21 in SLT are significantly different with up to 100-fold

higher of CCL21 production than CCL19 [15,19] but the exact

difference is not defined in sub-regions. In addition, CCL19 only

exhibits soluble patterns in SLT whereas CCL21 is found in both

soluble and immobilized forms [22]. At the cellular level, CCL19 and

CCL21 have similar binding affinity with CCR7 and they are similar

in inducing calcium immobilization and G protein activation [23].

However, only CCL19 but not CCL21 robustly desensitizes and

internalizes CCR7 [14,16,24]. Although both CCL19 and CCL21

are potent chemoattractants for T cells as shown using in-vitro
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chemotaxis assays, their distinct roles in regulating T cell trafficking in

SLT remain unclear. It has been shown that CCL21 but not CCL19

is required for T cells and DCs recruitment to SLT using CCL19/21

deficient mice and CCL19 deficient mice [20,25,26]. This finding

together with the significantly lower production level of CCL19

further complicates the role of CCL19 in lymphocytes and DCs

trafficking in SLT. Altogether, the differential expression patterns of

CCL19 and CCL21 in SLT and their differential ability for

desensitizing CCR7 and for recruiting T cells and DCs to SLT

present a complex and unclear picture of CCR7 ligands guided T cell

migration and trafficking in SLT.

In the present study, we hypothesize that the different profiles of

co-existing CCL19 and CCL21 fields in sub-regions of LNs

together with the differential ability of CCL19 and CCL21 for

desensitizing CCR7 provide a mechanism for fine tuning T cell

trafficking in LNs. We employed a microfluidics-based approach

to quantitatively analyze T cell migration in-vitro in different

configurations of co-existing CCL19 and CCL21 fields that mimic

the physiological conditions in different regions of LNs and the

results are explained by mathematical modeling and computer

simulations. The experimental and modeling results allow us to

formulate a possible combinatorial guiding mechanism by co-

existing CCL19 and CCL21 gradient fields for T cell migration

and trafficking.

Figure 1. Illustration of cell migration experiments using
microfluidic devices and data analysis methods.
doi:10.1371/journal.pone.0018183.g001

Figure 2. T cell migration in a gradient or a uniform field of CCL21. (A) Angular histograms show T cells orient randomly in a 100 nM uniform
CCL21 field, but toward a 100 nM CCL21 gradient (B) Comparison of chemotactic index (C.I.) and speed of cells in a 100 nM uniform CCL21 field or a
100 nM CCL21 gradient show random migration in the 100 nM uniform CCL21 field, but chemotaxis in the 100 nM CCL21 gradient with similar
speed. The error bars represent the standard error of the mean (s.e.m.). The p values for each comparison from 2-sample t test are shown. Positive C.I.
indicates cells migrate toward the gradients.
doi:10.1371/journal.pone.0018183.g002
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Results and Discussion

Physiological CCL21 but not CCL19 gradient attracts T
cells

As illustrated in Figure 1, we employed a microfluidic device

that can precisely configure stable single or superimposed

chemokine gradients by controlled mixing of continuous flows

inside a microfluidic channel for quantitative cell migration

analysis, and we used activated human peripheral blood T cells

as a model cell system. In the first, we tested the migration of T

cells in a CCL19 or a CCL21 concentration field with

physiological doses (i.e. 100 nM for CCL21 and 5 nM for

CCL19, which were selected based on in-vivo studies of CCL19

and CCL21 expression [19] and the saturation chemokine

concentration for T cell chemotaxis in-vitro [12,27]. Our results

show that T cells strongly chemotax to the 100 nM CCL21

gradient (Figure 2 and Video S1). A high percentage of cells

migrate toward the gradient with a high chemotactic index. In the

uniform field of 100 nM CCL21, T cells migrate randomly

(Figure 2 and Video S2). The speed of cells is similar in the

gradient and uniform CCL21 field. These results confirm CCL21

as a potent chemoattractant for T cells and suggest its role in T cell

recruitment to TCZ. In contrast, T cells migrate randomly in a

5 nM CCL19 gradient (Figure 3 and Video S3). In a super-

physiological 100 nM CCL19 gradient, T cells show strong

chemotaxis (Figure 3 and Video S4). Interestingly, T cells maintain

similar migration speeds in the 5 nM CCL19 gradient when

compared with those observed in a 100 nM CCL21 gradient or

100 nM uniform CCL21 field (Figure 2), suggesting the motile

nature of activated T cells. These results confirm that CCL19 can

act as a chemoattractant for T cells at a super-physiological

concentration. However, the much lower physiological dose of a

CCL19 gradient is not sufficient to attract T cells. To further

validate the 100 nM CCL21 gradient as a chemoattractant for T

cells in SLT, we tested the condition of competing gradients of

100 nM CCL21 and 5 nM CCL19. Our results show 60% of cells

Figure 3. T cell migration in CCL19 gradients. (A) Angular histograms show T cells orient randomly in a 5 nM CCL19 gradient, but toward a
100 nM CCL19 gradient (B) Comparison of chemotactic index (C.I.) and speed of cells in a 5 nM CCL19 gradient or a 100 nM CCL19 gradient show
random migration in the 5 nM CCL19 gradient, but chemotaxis in the 100 nM CCL19 gradient with higher speed in the 100 nM CCL19 gradient. The
error bars represent the standard error of the mean (s.e.m.) The p values for each comparison from 2-sample t test are shown. Positive C.I. indicates
cells migrate toward the gradients.
doi:10.1371/journal.pone.0018183.g003
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migrate toward the 100 nM gradient, suggesting that the 100 nM

CCL21 gradient attracts cells even in the presence of an opposing

5 nM CCL19 gradient. Interestingly we found the chemotactic

index (C.I.) toward the CCL21 gradient is significantly reduced

(i.e. 0.0460.04) comparing to it in the single CCL21 gradient (i.e.

0.2460.04). We speculate that although the opposing 5 nM

CCL19 gradient does not attract cells by itself, it may still have an

effect on cell chemotaxis to the 100 nM CCL21 gradient at the

quantitative level. While it is interesting, this aspect of the study is

beyond the focus of the current paper and thus is not discussed

further. Collectively, the results from the cell migration experi-

ments in single and competing CCL19 and CCL21 fields indicate

that at physiological concentrations, CCL21 but not CCL19 serves

as a chemoattractant for T cell migration, which is consistent with

previous in-vivo studies showing CCL21 alone is sufficient for T

cells and DCs recruitment to SLT [20,25,26].

T cells migrate randomly in superimposed CCL19 and
CCL21 uniform fields at physiological concentrations

Both CCL19 and CCL21 are produced in TCZ, wherein uniform

concentration fields of both chemokines are expected. Thus, we

tested T cell migration in superimposed CCL19 and CCL21 uniform

fields at physiological concentrations (i.e. 100 nM for CCL21 and

5 nM for CCL19) using microfluidic devices. Our results show that T

cells exhibit random orientation and migration in the ‘‘double

uniform’’ chemokine fields (Figure 4 and Video S5). However, the

speed of T cells is similar to it in single CCL19 or CCL21 gradient or

uniform fields at the physiological concentrations. Thus, CCL19 does

not necessarily enhance T cell motility in TCZ.

T cells migrate away from the physiological CCL19
gradient in the presence of a uniform background of
100 nM CCL21

As discussed in the Introduction section, because of more

CCL21 producing cells than CCL19 producing cells in the

periphery of TCZ [21], we speculate that the chemokine field in

this region to be the superposition of a CCL19 gradient and a

uniform CCL21 field. Therefore, we next tested T cell migration

in this gradient configuration (i.e. a 5 nM CCL19 gradient with a

uniform background of 100 nM CCL21) using microfluidic

devices. Unexpectedly, more T cells oriented and migrated away

from the 5 nM CCL19 gradient (Figure 5A and 5D and Video S6)

and this repulsive effect is shown by the relatively high negative

chemotactic index, the migration angle distribution and individual

cell tracks. The speed of these cells is similar to it in other

chemokine fields tested in this paper. If a super-physiological

concentration (i.e. 250 nM) of uniform CCL21 field is used, cells

will not migrate away from the 5 nM CCL19 gradient, but

migrate randomly (Figure 5B, Video S7). Additionally, we tested

the condition of superimposed gradients 5 nM CCL19 and

100 nM CCL21 along the same side, and analyzed cell migration

in different regions of the gradient fields. As detailed in the

Supporting Information S1, our results show that in the high

concentration region of the CCL19 and CCL21 gradients, cells

exhibit repulsive migration away from the gradients; In contrast, in

the low concentration region of the CCL19 and CCL21 gradients,

cells chemotax to the gradients; in the middle region of the

gradient fields, cells migrate randomly. This experiment demon-

strates the differential cell migratory behaviours in different

combinations of CCL19 and CCL21 fields in a single experimen-

tal setup. Taking together, these results suggest that CCL19 and

CCL21 may play an interesting role together in regulating T cell

migration in the periphery of TCZ.

Differential CCR7 desensitization by CCL19 and CCL21 as
an underlying mechanism

To further understand the observed repulsive migration of cells

from the CCL19 gradient in the uniform background of CCL21,

we adapted a previous mathematical model to consider the ligand-

induced chemoattractant receptor modulations for mediating cell

orientation and migration in ligand fields [28]. The previous

model is modified to consider 2 ligands L1 and L2 with a common

cell receptor R. We assume only L1 but not L2 can desensitize R to

simulate the differential ability of CCL19 and CCL21 for

desensitizing CCR7. In a high dose L2 gradient, the model

predicts that cells orient and migrate toward the L2 gradient

(Figure 6A, 6C and Video S8). In a superimposed field of low dose

uniform L1 and high dose uniform L2, the model predicts that cells

orient and migrate randomly (Figure 6B, 6D and Video S11).

These predictions are in agreement with our experimental results

of T cell migration in single 100 nM CCL21 gradient (Figure 2

and Video S1) and in ‘‘double-uniform’’ CCL19 and CCL21 fields

(Figure 4 and Video S5). Furthermore, the model predicts that

cells orient and migrate randomly in a low dose L1 gradient

(Figure 7A, 7D and Video S10) or a high dose uniform field of L2

(Figure 7B, 7E and Video S9), consistent with experimental results

of random migration of T cells in a 5 nM CCL19 gradient or a

Figure 4. T cell migration in ‘‘double-uniform’’ CCL19 and
CCL21 fields. (A) Angular histogram shows random orientation of T
cells in superimposed 5 nM CCL19 and 100 nM CCL21 uniform fields.
Chemotactic index (C.I.) and the speed of cells are shown with the
errors represented as the standard error of the mean (s.e.m.) Positive C.I.
indicates cells migrate toward the gradients. (B) Selected cell tracks
from a representative experiment showing cells migrate randomly.
doi:10.1371/journal.pone.0018183.g004
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100 nM uniform CCL21 field (Figure 3 and Figure 2; Videos S3

and S2). In the configuration of a low dose L1 gradient with a

uniform background of high dose L2, the model predicts the

repulsive migration of cells from the L1 gradient (Figure 7C and 7F

and Video S12) and this prediction is in consistency with the

experimentally observed repulsive migration of T cells from the

5 nM CCL19 gradient in a uniform background of 100 nM

CCL21 (Figure 5 and Video S6). Thus, the modeling predictions

and experimental results are in good agreement. The model is

illustrated in Figure 8A with more details in the Materials and

Methods section and the Supporting Information S1.

As illustrated in Figure 8B, mathematical modeling provides an

explanation for the repulsive migration of cells in a low dose

desensitizing ligand gradient (L1 in the model and CCL19 in the

experiment) with a high dose uniform background of a

nondesensitizing ligand (L2 in the model and CCL21 in the

experiment). The desensitizing ligand gradient (L1 in the model

and CCL19 in the experiment) causes a differential receptor

binding and activation between the front and the back of the cell

with more activated receptors in the front. Although the difference

of receptor activation across the cell does not lead to chemotaxis

toward the gradient at the low ligand dose, it causes a difference of

available free receptors between the front and the back of the cell

with less free receptors in the front. As a result, when a

nondesensitizing uniform ligand field (L2 in the model and

CCL21 in the experiment) is superimposed to the desensitizing

ligand gradient, the high dose nondesensitizing ligands bind and

activate more receptors in the back than the front of the cell.

Additionally, the nondesensitizing ligand activated receptors stay

active on the cell surface for chemotactic signaling that reverses the

difference of activated receptors between the front and the back of

the cells with more activated receptors in the back facing the low

concentration side of the desensitizing gradient. Thus, the model

suggests that the differential ability of CCL19 and CCL21 for

desensitizing CCR7 combined with the hypothesized physiological

configuration of superimposed CCL19 and CCL21 fields (possibly

in the periphery of TCZ) enable the repulsive migration of T cells.

Hypothesized combinatorial guidance by CCR7 ligands
for T cell migration

Taking together our experimental and modeling results and

the previous results of others, we propose a possible combina-

torial guiding mechanism by different configurations of CCL19

and CCL21 gradient fields for T cell migration in different sub-

regions of LNs (Figure 9): Although both CCL19 and CCL21 are

chemoattractants for T cells, CCL21 alone is sufficient to

mediate the entry of T cells to the TCZ of LNs through HEV.

This is supported by our results showing T cells chemotax to a

100 nM CCL21 gradient (Figure 2 and Video S1) but not a

5 nM CCL19 gradient (Figure 3 and Video S3) as well as by

Figure 5. T cell migration in a CCL19 gradient with a uniform background of CCL21. (A) Angular histogram shows more T cells orient
against a 5 nM CCL19 gradient with a uniform background of 100 nM CCL21. (B) Angular histogram shows T cells orient randomly in a 5 nM CCL19
gradient with a super-physiological 250 nM uniform CCL21 field. (C) Comparison of chemotactic index (C.I.) and the speed of cells between 5 nM
CCL19 gradient with a uniform background of 100 nM CCL21 and 5 nM CCL19 gradient with a super-physiological 250 nM uniform CCL21 field. The
error bars represent the standard error of the mean (s.e.m.). Positive C.I. indicates cells migrate toward the gradients. (D) Selected cell tracks from a
representative experiment showing more cells migrate away from the 5 nM CCL19 gradient in a uniform background of 100 nM CCL21.
doi:10.1371/journal.pone.0018183.g005
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previous experimental studies [20,25]. Inside TCZ, T cells

migrate randomly in uniform fields of CCL19 and CCL21 to

maximize sampling efficiency with antigen presenting cells

(APCs) for immune synaptic interactions [29,30,31]. As expect-

ed, our results show random migration of T cells in ‘‘double-

uniform’’ CCL19 and CCL21 fields (Figure 4 and Video S5).

Thus, CCR7 and CCL21 play important roles in T cell

recruitment to LNs, and in T cell migration within TCZ.

However, CCL19 is not necessarily required for these processes.

Previous studies suggested that CCR7 down-regulation com-

bined with S1P signaling mediate the exit of T cells from LNs for

recirculation and immune responses [11,32]. The exit process

will be facilitated if T cells first migrate out of TCZ through a

CCR7-dependent mechanism.

Here we suggest that T cells will migrate away from TCZ

when they reach (by random migration) the periphery region of

TCZ wherein the gradient fields is speculated to be a

superposition of a low dose CCL19 gradient and a high dose

uniform CCL21 field. This mechanism is enabled by the

competition of CCR7 binding between CCL19 and CCL21,

together with the differential ability of CCL19 and CCL21 for

desensitizing CCR7 and the unique superimposed chemokine

field profiles. Interestingly, this CCR7-dependent mechanism

for T cell exit from SLT responds well to the previously

reported CCR7-dependent T cell exit from peripheral tissues

[27,33], suggesting the importance of CCR7 in T cell

trafficking and recirculation. Furthermore, it has been previ-

ously reported that leukocytes exhibit repulsive migration from

Figure 6. Model predictions of cell orientation and migration in a single L2 gradient or a ‘‘double-uniform’’ L1 and L2 fields.
Orientation and migration of cells in a single L2 gradient (A, C) and in co-existing uniform L1 (0.88 nM) and L2 (17.6 nM) fields (B, D). The 20-fold
concentration difference between L1 and L2 based on neutrophil parameters [28] simulates the scenario of CCL19 and CCL21 production in LNs. The
cell orientation at steady state is represented by arrows in the figures and the length of the arrows indicates the strength of the orientation. The
ligand gradient is represented by contour plot with the highest ligand concentration (17.6 nM) at the center of the contours for the gradient. The
ligand concentration at the outmost contour circle is 0.03 nM, and the concentration difference between adjacent circles is 0.9 nM. Because of the
magnitude difference between the orientation vector of the cell in different conditions, the length of the arrow is adjusted with a scaling factor of
0.07 for (A) and 15 for (B). The total time of cell migration in (C) and (D) is 150 minutes. Eight representative cell tracks are shown, and the starting
positions of the tracks are consistent in all simulations. The end of the tracks is indicated by solid circles.
doi:10.1371/journal.pone.0018183.g006
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high concentration chemoattractant gradients, termed ‘‘che-

mofugetaxis’’ [34,35,36,37] and that receptor desensitization

may play a role in such chemorepulsive migration [38]. Thus,

there are other mechanisms for the repulsive cell migration that

differ from the proposed mechanism of this study based on the

combined chemokine fields. Altogether, this combinatorial

guiding mechanism argues for the importance and necessity

of co-expression of CCL19 and CCL21 in TCZ and the robust

design for T cell entry to LNs, navigation within LNs, and exit

from LNs using a united CCR7-dependent mechanism in

combination with other important mechanisms such as S1P

signalling.

The differential ability of CCL19 and CCL21 for desensitiz-

ing CCR7 has been demonstrated previously [24]. In addition,

the physiological concentrations of CCL19 and CCL21 in LNs

were approximated according to previous studies [21]. It is

technically challenging to quantitatively measure the gradient

profiles of CCL19 and CCL21 in vivo, especially considering the

low amount of CCL19 in LNs, and so far there is no published

data available. In addition, it is difficult to test cell migration in

complex co-existing chemokine fields using conventional assays

such as transwell assays. The microfluidic devices used this study

allowed us to quantitatively test T cell migration in different

chemokine gradient conditions that mimic possible scenarios in

LNs. The results of such studies in conjunction with mathe-

matical modeling and computer simulations offer novel insights

into the complex process of T cell migration and trafficking in

SLT.

In summary, we experimentally investigated T cell migration

in different single and superimposed CCL19 and CCL21 fields

using microfluidic devices. Our results show that the CCL21

gradient but not the CCL19 gradient at physiological concen-

trations similar to those observed in LNs attract T cells in vitro. T

cells migrate randomly in ‘‘double-uniform’’ fields of CCL19 and

CCL21. However, T cells migrate away from the CCL19

gradient in the presence of a uniform background of CCL21.

The experimental results are consistent with mathematical

modeling and computer simulations, and the repulsive migration

of T cells is explained by mathematical modeling based on the

chemokine field profiles, competition of CCL19 and CCL21 for

activating CCR7 and the differential ability of CCL19 and

CCL21 for desensitizing CCR7. Based on these results, we

propose a combinatorial guiding mechanism by CCL19 and

CCL21 for T cell migration in LNs.

Materials and Methods

T cell preparation
Human peripheral blood samples were collected from healthy

donors in collaboration with The Victoria General Hospital at

Winnipeg with an approved human ethics protocol. Peripheral

blood mononuclear cells (PBMC) were isolated using standard

gradient centrifugation method. T cells from total PBMC were

selectively activated by anti-CD3/CD28 antibodies for 2 days in

culture medium (RPMI-1640 with 1% PS and 10% FBS) in a

37uC incubator with 8% CO2 injection. Activated T cells were

expanded with IL-2 and were cultured for at least 3 days before

cell migration experiments.

Microfluidic device and gradient generation
A previously reported ‘‘Y’’ shape microfluidic device was used

for cell migration experiments in this study (Figure 1) [39]. The

microfluidic device was designed in Freehand 9.0 (Macromedia)

and the design was printed to a transparency mask by a high

resolution printer. The masters were fabricated at Stanford

Nanofabrication Facility (SNF) at Stanford University and The

Nano Systems Fabrication Laboratory (NSFL) at the University

of Manitoba. The design was patterned on a silicon wafer by

contact photolithography with SU-8 photoresist (Micro Chem,

MA) through the transparency mask and the SU-8 pattern yields

,100 mm thickness. Two 1 mm diameter holes for the 2 fluidic

inlets and one 4 mm diameter hole for the fluidic outlet were

punched out of PDMS respectively in the device. An additional

1 mm hole was punched for loading cells. The PDMS replicas

were then fabricated by molding PDMS (Sylgard 184 silicon

elastomer, Dow Corning, MI) against the master, and were

bonded to a glass slide using an air plasma cleaner. Polyethylene

tubing (PE-20, Becton Dickinson, MD) was inserted into the inlet

holes to connect the microfluidic device to syringe pumps (Model

V6, Kloehn, Inc., NV) with two 250 mL Kloehn syringes

containing medium or chemokine solutions for fluidic infusion.

Chemokine solutions (Recombinant Human CCL19/MIP-3 beta

and Recombinant Human CCL21/6Ckine from R&D Systems)

of suitable concentrations were prepared in migration medium

(RPMI-1640 with 0.4% BSA). FITC-Dextran 10 kD that has

similar molecular weight of the chemokine molecule was added to

the chemokine solution. The migration medium and chemokine

solutions were continuously infused into the device by syringe

pumps through tubing and the inlets of the device at the total

flow rate of 0.2 mL/min. The defined stable chemokine gradients

are generated by controlled mixing of chemokines and medium.

The chemokine gradient was confirmed by measuring the

fluorescence intensity profile of FITC-Dextran inside the

microfluidic channel and the cells were imaged at ,3 mm

downstream of the ‘‘Y’’ junction where the gradient yields a

smooth profile. For generating superimposed CCL19 and CCL21

fields, solutions of one or both chemokines with specific

concentrations were used for both inlets (i.e. CCL19 and

CCL21 were infused to both inlets for ‘‘double-uniform’’ fields;

CCL19 was infused to one inlet and CCL21 were infused to both

inlets for generating a CCL19 gradient with a uniform

background of CCL21).

Figure 7. Model predictions of cell orientation and migration in a single L1 gradient, a uniform L2 field, and a single L1 gradient with
a uniform background of L2. Comparison of orientation and migration of cells in single L1 gradient (A, D), in a uniform L2 field (B, E), and in co-
existing L1 gradient and uniform L2 fields (C, F). The 20-fold concentration difference between L1 and L2 based on neutrophil parameters [28]
simulates the scenario of CCL19 and CCL21 production in LNs. The cell orientation at steady state is represented by arrows in the figures and the
length of the arrows indicates the strength of the orientation. The ligand gradient is represented by contour plot with the highest ligand
concentration (0.88 nM) at the center of the contours for each gradient. The ligand concentration at the outmost contour circle is 0.001 nM, and the
concentration difference between adjacent circles is 0.044 nM. Because of the magnitude difference between the orientation vector of the cell in
different conditions, the length of the arrow is adjusted with a scaling factor of 2.25 for (A), 3302 for (B) and 0.12 for (C). Simulation results show that
cells migrate randomly in a low dose single L1 gradient (D); In a high dose uniform L2 field, cells migrate randomly as expected (E); In co-existing fields
of a low dose L1 gradient and a high dose uniform L2, cells migrate away from the L1 gradient (F). The total time of cell migration is 150 minutes. Eight
representative cell tracks are shown, and the starting positions of the tracks are consistent in all simulations. The end of the tracks is indicated by solid
circles.
doi:10.1371/journal.pone.0018183.g007
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Cell migration experiments
The fluidic channel was coated with fibronectin (BD Biosciences,

MA) for 1 hour at room temperature and blocked with BSA for

another hour before the experiment. For each experiment, cells

were loaded into the microfluidic device from the wells and allowed

to settle in the fibronectin-coated channel for ,5 min. The device

was maintained at 37uC by attaching a transparent heater to the

back of the cover slide (Thermal-Clear Transparent Heater, Model

No. H15227, Minco, MN). The heater was powered by a DC

power supply (Model No. 6204A, Harrison, Canada) and was

controlled by a sensorless temperature controller (Model

No. CT198, Minco, MN). The temperature was calibrated to

37uC using a digital thermometer (VWR, Canada). Medium and

chemokine solutions were infused into the device by syringe pumps

through tubing and the inlets of the device. The device was placed

on a microscope stage (Model No. BX60, Olympus). The system

was allowed to equilibrate for ,5 min (wait until no flowing cells

were seen in the channel) and cell migration was recorded by time-

lapse microscopy at 6 frames/min for 19 to 44 min using a CCD

Figure 8. Illustration of the model and its explanation for the
repulsive T cell migration. (A) Illustration of the model for receptor
modulations by the 2 ligand L1 and L2. (B) The model provides an
explanation for the repulsive migration of cells in a low dose
desensitizing ligand gradient (L1 in the model and CCL19 in the
experiment) with a high dose uniform background of a nondesensitiz-
ing ligand (L2 in the model and CCL21 in the experiment). The
desensitizing ligand gradient (L1 in the model and CCL19 in the
experiment) causes a differential receptor binding and activation
between the front and the back of the cell with more activated
receptors that does not lead to chemotaxis toward the gradient at low
ligand dose. Although the difference of receptor activation across the
cell does not lead to chemotaxis toward the gradient at the low ligand
dose, it causes a difference of available free receptors between the front
and the back of the cell with less free receptors in the front. As a result,
when a nondesensitizing uniform ligand field (L2 in the model and
CCL21 in the experiment) is superimposed to the desensitizing ligand
gradient, the high dose nondesensitizing ligand binds and activates
more receptors in the back than the front of the cell. Additionally, the
nondesensitizing ligand activated receptors stay active on the cell
surface for chemotactic signaling that reverses the difference of
activated receptors between the front and the back of the cells with
more activated receptors in the back facing the low concentration side
of the desensitizing gradient. Thus, the model suggests that the
differential ability of CCL19 and CCL21 for desensitizing CCR7 combined
with the physiologically relevant configuration of superimposed CCL19
and CCL21 fields (possibly in the periphery of TCZ) enable the repulsive
migration of T cells.
doi:10.1371/journal.pone.0018183.g008

Figure 9. The proposed combinatorial guidance mechanism.
(A) We propose a possible combinatorial guiding mechanism by
different configurations of CCL19 and CCL21 gradient fields for T cell
migration in different sub-regions of lymph nodes. CCL21 alone
mediates the entry of T cells to the TCZ of LNs through HEV. Inside
TCZ, T cells migrate randomly in uniform fields of CCL19 and CCL21 to
maximize sampling efficiency with antigen presenting cells (APCs) for
immune synaptic interactions. The exit of T cells from LNs is facilitated
by first migrating out of TCZ through a CCR7-dependent mechanism.
Specifically, T cells migrate away from TCZ when they reach (by random
migration) the periphery region of TCZ wherein the gradient fields is
likely to be a superposition of a low dose CCL19 gradient and a high
dose uniform CCL21 field. This mechanism is enabled by the
competition of CCR7 binding between CCL19 and CCL21, together
with the differential ability of CCL19 and CCL21 for desensitizing CCR7
and the unique superimposed chemokine field profiles. Such combi-
natorial guiding mechanism argues the importance and necessity of co-
expression of CCL19 and CCL21 in TCZ and the robust design for T cell
entry to LNs, navigation within LNs, and exit from LNs using a united
CCR7-dependent mechanism. (B–D) Schematic illustration of the
hypothesized chemokine fields in different regions in the lymph nodes
and the corresponding distributions of signalling CCR7 on the cell
surface indicating the cell orientation and migration direction.
doi:10.1371/journal.pone.0018183.g009
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camera (Model No. 370 KL 1044, Optikon, Canada). The image

acquisition was controlled by NIH ImageJ (v.1.34s).

Data analysis
Movement of individual cells was tracked using NIH ImageJ

(v.1.34s). The background noise of the image was removed using

the ‘‘despeckle’’ function. Then the images were calibrated to

distance. Only the cells that migrated within the microscope

field were selected and tracked using the ‘‘Manual Tracking’’

plug-in in NIH ImageJ. The tracking data were exported to

Excel and MATLAB for analysis. Following previously estab-

lished analysis methods [39,40], the movement of cells was

quantitatively evaluated by (a) the percentage of cells that

migrated toward the chemokine gradient; (b) the Chemotactic

Index (C.I.), which is the ratio of the displacement of cells

toward the chemokine gradient (Dy), to the total migration

distance (d) using the equation C.I. = Dy/d, presented as the

average value 6 standard error of the mean (s.e.m); (c) the

average speed (V) calculated as d/Dt and presented as the

average value 6 s.e.m. of all cells; and (d) statistical analysis of

migration angles performed using MATLAB to examine the

directionality of the cell movement. Specifically, migration

angles (calculated from x-y coordinates at the beginning and the

end of the cell tracks) were summarized in a direction plot,

which is a rose diagram showing the distribution of angles

grouped in defined intervals, with the radius of each wedge

indicating cell number. The parameters between different

conditions were compared by the 2 sample t test. 20–85 cells

were analyzed for each experiment. Two-three independent

experiments were repeated for each condition with similar

results. The figures in the paper were generated using one

representative experiment for each condition.

Mathematical modeling and computer simulations
A previous cell gradient sensing model was adapted to describe

receptor-ligand binding, receptor desensitization and recycling

[28]. As illustrated in Fig. 8A, two ligands L1 and L2 share a

common cell receptor R with equal binding affinity. However,

only L1 but not L2 desensitizes R. Desensitized receptors are

subsequently internalized and eventually re-expressed back to the

cell surface. The model cell is simplified to consist of four receptor

expressing units symmetrically located along the x and y axis with

equal distance to the center of mass of the cell (r = 5 mm assuming

the typical 10 mm diameter of cells [41]. A set of ordinary

differential equations (ODEs) are used to describe the evolution of

ligand-induced receptors modulations. In a single ligand field, the

active receptor-ligand complex LR* is evaluated for all four

receptor expressing units of the cell, and the difference of LR*

along the x and y axis is calculated to determine the orientation

strength in the two directions. The net orientation of the cell is

determined by the orientation vector DLR�
��!

in the 2-D plane. In

superimposed ligand fields of L1 and L2, the net orientation

vector of the cell is determined by the addition of the orientation

vectors to L1 and L2: DLR�
���!

~DL1R�
����!

zDL2R�
����!

. The threshold

magnitude of the orientation vector for chemotactic orientation is

set at 10, i.e. |DLR*|$10. Below the threshold, i.e. |DLR*|,10,

the cell orients and migrates randomly in the 2-D plane

[28,42,43]. The cell orientation at long time is determined by

evaluating DLR�
��!

at the equilibrium state (i.e. dDLR�
��!

=dt~0).

Based on the gradient sensing model, the migration of the model

cell is simulated by continuously evaluating the orientation vector

and allowing the cell to move along the direction set by the net

orientation vector. More details of the model, and the parameters

and their values used in the model are provided in the Supporting

Information S1.

Supporting Information

Supporting Information S1 Supporting methods for
mathematical modeling and computer simulations;
Supporting results on cell migration in same side
CCL19 and CCL21 gradients; Supporting table, figure,
and references.

(DOC)

Video S1 Chemotaxis of T cells in a 100 nM CCL21
gradient.

(MOV)

Video S2 Random migration of T cells in a uniform
100 nM CCL21 field.

(MOV)

Video S3 Random migration of T cells in a 5 nM CCL19
gradient.

(MOV)

Video S4 Chemotaxis of T cells in a 100 nM CCL19
gradient.

(MOV)

Video S5 Random migration of T cells in ‘‘double-
uniform’’ fields of 5 nM CCL19 and 100 nM CCL21.

(MOV)

Video S6 Repulsive migration of T cells from a 5 nM
CCL19 gradient with a 100 nM CCL21 uniform back-
ground.

(MOV)

Video S7 Random migration of T cells from a 5 nM
CCL19 gradient with a 250 nM CCL21 uniform back-
ground.

(MOV)

Video S8 Simulation shows chemotaxis of cells in a high
dose L2 gradient.

(MOV)

Video S9 Simulation shows random migration of cells
in a uniform L2 field.

(MOV)

Video S10 Simulation shows random migration of cells
in a low dose L1 gradient.

(MOV)

Video S11 Simulation shows random migration of cells
in ‘‘double-uniform’’ fields of low dose L1 and high dose
L2.

(MOV)

Video S12 Simulation shows repulsive migration of
cells from a low dose L1 gradient with a high dose L2

uniform background.

(MOV)
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