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ABSTRACT

Chromatin immunoprecipitation (IP) followed by se-
quencing (ChIP-seq) is the gold standard to detect
transcription-factor (TF) binding sites in the genome.
Its success depends on appropriate controls remov-
ing systematic biases. The predominantly used con-
trols, i.e. DNA input, correct for uneven sonication,
but not for nonspecific interactions of the IP anti-
body. Another type of controls, ‘mock’ IP, corrects
for both of the issues, but is not widely used because
it is considered susceptible to technical noise. The
tradeoff between the two control types has not been
investigated systematically. Therefore, we generated
comparable DNA input and mock IP experiments.
Because mock IPs contain only nonspecific interac-
tions, the sites predicted from them using DNA in-
put indicate the spurious-site abundance. This abun-
dance is highly correlated with the ‘genomic activity’
(e.g. chromatin openness). In particular, compared
to cell lines, complex samples such as whole organ-
isms have more spurious sites––probably because
they contain multiple cell types, resulting in more
expressed genes and more open chromatin. Conse-
quently, DNA input and mock IP controls performed
similarly for cell lines, whereas for complex samples,
mock IP substantially reduced the number of spuri-
ous sites. However, DNA input is still informative;
thus, we developed a simple framework integrating
both controls, improving binding site detection.

INTRODUCTION

ChIP-seq was developed to profile in vivo protein–DNA
binding and histone modifications on a genomic scale (1–
4). Compared to its predecessors, ChIP-seq has less noise
and higher resolution (5,6), and thus is currently the stan-
dard technique to identify the binding sites of a transcrip-
tion factor in the genome. ChIP-seq protocols typically be-
gin with cross-linking DNA and its adjacent proteins using
formaldehyde, followed by shearing DNA into small frag-
ments by sonication. Next, in the IP step, an antibody that
binds specifically to the transcription factor (TF) of inter-
est is used to enrich for the TF-DNA complexes. Finally,
the precipitated DNA fragments are sequenced and mapped
back to a reference genome for binding site detection. The
genomic regions with significantly more reads than con-
trols are likely to be TF binding sites. Here, we refer to the
binding sites of a TF as the ∼200 base pair (bp) genomic
regions detected by ChIP-seq with statistical significance,
rather than the short DNA sequences bound directly by the
TF.

As with many high-throughput techniques, ChIP-seq is
also susceptible to technical and biological biases (7,8).
In ChIP-seq, one bias arises during genome sonication,
in which open chromatin regions are more easily sheared
than other regions, and thus these open regions yield more
protein-DNA complexes. Consequently, the IP step precip-
itates more complexes from the open chromatin regions, re-
sulting in more sequencing reads. To correct this sonication
bias, the fragmented genomes are divided into two portions.
One portion goes through the IP step and then the sequenc-
ing step, whereas the other portion is sequenced directly to
serve as an input control. This direct sequencing result con-
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tains the shearing bias of sonication, and thus can be used to
normalize the sequencing results from the IP protocol (9).

In addition to sonication, uneven regulatory binding in
the genome may result in bias during the IP step. For
example, even without sonication bias, genomic regions
with abundant DNA binding proteins tend to have more
protein–DNA complexes. Although the antibody in IP is
designed to bind specifically to its antigens, i.e., the target
TFs, it can also bind nonspecifically to other proteins. Con-
sequently, the antibody captures more protein–DNA com-
plexes from genomic regions with abundant regulatory pro-
teins. To control for this bias, a mock IP can be generated
using the IP protocol, with the mock IP lacking specific
antibody-antigen interactions. To this end, the mock IP ei-
ther uses an antibody that cannot recognize the TF of inter-
est or the TF is not tagged with the epitope for the antibody
used in the IP, e.g. the green fluorescent protein (GFP) tag.
Consequently, the mock IP control mimics only the non-
specific interactions in the IP. In addition to the nonspe-
cific interactions, the mock IP also controls for sonication
bias (7,8,10). However, mock IP usually yields much less
DNA material than DNA input and is thus more suscep-
tible to technical noise (8,10). Therefore, DNA input is rec-
ommended and used primarily in ChIP-seq (7,11). For ex-
ample, in the ENCODE portal (12), almost all of the thou-
sands of ChIP-seq data sets use DNA input as a control.

Increasing evidence suggests that spurious sites in ChIP-
seq data may be substantial. Teytelman et al. and Park et
al. found that TFs often appear to bind genomic regions
that are counterintuitive to their function (13,14). For ex-
ample, TUP1 is recognized as a repressor of gene expres-
sion, but ChIP-seq still identifies its binding sites in the pro-
moters of expressed genes (14). Moreover, Jain et al., ob-
served that when ChIP-seq was performed in a knockout
background for a targeted TF, ∼3000 binding sites from the
mutant embryos of fruit fly (Drosophila melanogaster) were
still detected (15). The unexpected sites from these studies
suggest the existence of abundant spurious sites. These po-
tentially spurious sites tend to appear in highly transcribed
genomic regions (13,15). Since DNA input controls are used
in these examples, the potentially spurious sites are likely
due to nonspecific interactions between the antibodies and
other DNA-binding proteins or DNA fragments.

While these studies suggest the existence of spurious sites,
interpretations of these results remain indefinite for the fol-
lowing reasons. First, the complete functionality of a TF
is often unknown. Again, considering the TUP1 example –
although generally considered as a repressor, TUP1 is also
observed to activate genes (16,17). Second, TF binding may
not necessarily indicate biological function. Therefore, even
though TUP1 usually acts as a repressor, when found in the
promoters of transcribed genes, it may not be exerting any
repressive function. As a result, the binding of TUP1 de-
tected around expressed genes may not be spurious. Finally,
the large number of spurious binding sites in the aforemen-
tioned results were not predicted using standard and robust
computational pipelines (10), and thus these spurious sites
might be due to the parameter settings.

Determining the abundance of spurious sites in ChIP-seq
data is extremely important as the data are being widely
used in numerous biological and medical studies. To this

end, we generated and collected a large number of ChIP-seq
datasets that have both mock IP and DNA input controls.
We designed computational experiments that use these con-
trols to estimate the abundance of spurious sites across dif-
ferent samples. Moreover, we proposed and validated that
many spurious binding sites are potentially due to the in-
trinsic properties of samples. Such potential spurious sites
can be removed using mock IP controls, but not using DNA
input controls. Despite this result, our analyses indicate
that DNA input controls are still informative for ChIP-seq.
Therefore, we developed a method to utilize both mock IP
and DNA input controls for improved binding site detec-
tion. This new tool can be used to tease apart biological
binding sites from spurious ones to capture more accurate
binding profiles of TFs.

MATERIALS AND METHODS

ENCODE pipeline for peak calling and binding site detection

The ChIP-seq data for each TF includes at least two IP
replicates and a control. The high-quality reads of each
set are uniquely aligned to a reference genome using BWA
(v0.7.15) (18). The genome versions of the three species
are hg19 (human), dm6 (fly, D. melanogaster), and ws245
(worm, Caenorhabditis elegans). The mapped reads of the
IP replicates are pooled together, and then randomly di-
vided into two sets as pseudo-replicates. The replicates,
pseudo-replicates, and the control experiment are used by
the established ENCODE pipeline for peak calling and then
binding site prediction (10). In the pipeline, SPP (v1.14) is
used to detect TF binding peaks by comparing a replicate
or pseudo-replicate of IP to the control experiment (9), re-
sulting a list of TF binding peaks ranked by the SPP score.

For this work, we used the top 30 000 and 120 000 peaks,
respectively, for worm/fly and human. These lists of top
ranked binding peaks from multiple replicates were passed
to the irreproducible discovery rate (IDR) tool (v.1.2) to de-
termine binding sites using the standard optimal protocol
(19). Note that each peak is usually a ∼200 bp genomic re-
gion with a potential binding summit detected by SPP. We
refer to the peaks that pass the statistical protocol as bind-
ing sites. To estimate spurious sites, we replaced IP exper-
iments with mock IP experiments, in which there were no
specific interactions between the antibodies and target TFs.
For this detection of spurious sites, we used the top 30 000
peaks ranked by SPP for all the species.

ChIP-seq data of human, worm, and fly from ENCODE and
modERN

ChIP-seq data of human cell lines, tissues and organs from
ENCODE. We acquired ChIP-seq data of human TFs
from the ENCODE portal (12) and focused on six cell lines,
namely GM12878, K562, HepG2, A549, HeLa-S3 and
MCF-7 because both mock IPs and DNA input controls
are available for each of these cell lines (Supplementary Ta-
ble S1). Each pair of the mock IP and DNA input exper-
iments is assigned as controls to an IP experiment of the
corresponding cell line, resulting in 113 ChIP-seq datasets
(Supplementary Table S2). We excluded the ChIP-seq data
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for histone marks, polymerases, and CTCF from our anal-
yses. In addition, we found seven human TFs with ChIP-
seq data (using DNA input controls) from both cell lines
or primary cells and tissue or organ samples (Supplemen-
tary Table S3). These ChIP-seq data were used to compare
the spurious-site abundances between simple and complex
samples.

ChIP-seq data of worm and fly from modERN. We used
317 and 182 ChIP-seq datasets generated by our modERN
consortium for the whole organisms of fly and worm, re-
spectively (Supplementary Tables S4&5). The worm ChIP-
seq data are from developmental stages of embryo, L4 and
young adult. For fly, the ChIP-seq data are from em-
bryo, L3 and prepupae developmental stages. The mod-
ERN ChIP-seq protocol tags a target TF with GFP, gen-
erating a transgenic fly or worm. The same anti-GFP an-
tibody is used in both organisms during the IP process. A
detailed protocol for strain generation and ChIP-seq is de-
scribed in (20). The ChIP-seq data for each TF consists
of multiple IP replicates along with a DNA input control.
For each of the developmental stages, we generated mock
IPs and their DNA input controls. The mock IP was per-
formed using the GFP antibody in wild-type animals with-
out GFP tags to avoid specific interactions (Supplementary
Table S1).

Transcriptome activity of human, worm, and fly samples

The gene expression levels of the six human cell lines were
measured by RNA-seq in the ENCODE portal (Supple-
mentary Table S6) (12). Regarding the developmental stages
of worm and fly, the RNA-seq data were generated by (21).
The gene expression levels were measured across many time
points within each developmental stage. Therefore, we aver-
aged the gene expression levels over the time points. We then
focused on the coding genes of each species, because their
annotations are accurate across the three species. To com-
pare the transcription activity across the samples (i.e. the six
cell lines and six developmental stages), we multiplied the
gene expression values of each sample by a constant so that
the top five highly expressed coding genes of all the sam-
ples had the same average. For each sample, the median of
the scaled expressions was used to indicate its transcriptome
activity.

Genome accessibility of human and worm samples

We used DNase-seq data and ATAC-seq data, respectively,
to measure the accessibility of human and worm chromatin.
The DNase-seq data of the six cell lines were collected from
the ENCODE portal (12). These data were generated by
the ENCODE consortium and processed uniformly by its
DNase-seq pipeline (Supplementary Table S7). The total
length of the accessible regions was used to indicate the
genome accessibility of a human sample. For worm, we
used ATAC-seq data generated and processed uniformly by
Daugherty et al. (22), who assayed worm samples at em-
bryo, L3 and young adult stages. These stages match our
ChIP-seq stages, except for the L4 stage. Therefore, we used

the L3 ATAC-seq for the L4 stage ChIP-seq. This slight mis-
match renders our hypothesis testing more conservative for
any observed statistical significance. Similar to the DNase-
seq data, we used the total length of accessible regions to
indicate the genome accessibility of a worm sample. We to-
tally acquired 60 DNase-seq datasets from human tissues
and organs and 150 from all human cell lines and primary
cells (Supplementary Table S7). From their genome acces-
sibility, we predicted the numbers of spurious binding sites
in the samples.

Binding site detection using posterior probability as a scoring
metric

For a given TF, we focused on the IP (i), DNA input (d), and
mock IP (m) experiments. These experiments were all scaled
to the same sequencing depth. For the DNA input control
(d) and its IP (i), we used the SPP in the ENCODE pipeline
to identify the binding peak regions in the genome. For each
peak region, ni and nd are the numbers of reads in the re-
spective experiments mapped to the region. The likelihood
of the region being a binding site is indicated by P(θ > 0.5),
where θ = ni/(ni + nd ) for estimation purposes. Under the
Bayesian framework, we assume ni ∼ Bin(n, θ ), where θ ∼
Beta(1, 1) is the prior and n is the number of total reads
from the region in i and d. Thus, the posterior distribution
of θ is P (θ | ni , n) = Beta(θ | ni + 1, nd + 1). Instead of
the DNA input (d), we also used the mock IP as a con-
trol (m). The same model setting results in P (θ ′ | ni , n′) =
Beta(θ ′ | ni + 1, nm + 1), where n′ is the number of total
reads from the region in i and m.

Motif enrichment in TF binding regions

From the Cis-bp database (23), we collected the position
weight matrix files (PWMs) of motifs determined by in vitro
methods such as systematic evolution of ligands by expo-
nential enrichment (SELEX) (24), protein-binding microar-
ray (PBM) (25,26) and bacterial one-hybrid (B1H) (27). Oc-
casionally, some TFs have multiple PWMs, which are of-
ten determined in different research publications. For such
a TF, we randomly selected one of the multiple motifs,
as required by certain analyses. We also used all the mo-
tifs to test the robustness of our results. For the 317 fly
ChIP-seq datasets, 127 of them have the TFs with known
motifs (Supplementary Table S8). For human and worm,
respectively, the numbers are 29 and 44 (Supplementary
Table S8).

We used FIMO (MEME Suite v4.11.2) to search for mo-
tif hits (P < 10−4) in the reference genomes (28). For a bind-
ing site detected by the ChIP-seq pipeline, we define its core
region as 100 bp around the summit as determined by SPP,
and thus each binding site is considered as a 200 bp region.
For the binding sites of a TF, its motif enrichment is defined
as the fraction of the binding sites containing the known TF
motifs. Using this fraction avoids the potential bias caused
by the binding sites that have extreme numbers of motifs.
To generate a control for GC content, we divide a refer-
ence genome into 10 bp bins, and then shuffled the sequence
within each bin. Such shuffling breaks the motifs, if any, in
a binding site, while preserving the GC contents of the site.



e17 Nucleic Acids Research, 2021, Vol. 49, No. 3 PAGE 4 OF 13

Motif entropy calculation

The entropy of a motif is calculated from its PWM. Each
element in the matrix is denoted as Pk,j, which is the fre-
quency of the nucleotide k at the jth position of the motif.
The k represents one of the four nucleotides. Therefore, the
entropy of a motif is calculated as in Equation 1,

H = − 1
L

L∑

j = 1

∑

k∈(A,T,G,C)

Pk, j log2
(
Pk, j

)
(1)

where L is the length of the motif.

RESULTS

ChIP-seq with multiple controls illustrates the formation of
spurious sites

Experimental settings of ChIP-seq data used. We acquired
human ChIP-seq data from the ENCODE portal (12,29).
The data were generated from six different cell line samples.
Each sample has both DNA input (d) and mock IP (m) con-
trols for the IP experiments (i), as shown in Figure 1A. In IP
experiments, an antibody specific to the target TF is used,
whereas mock IP uses an antibody that does not specifically
interact with any DNA binding proteins. In contrast, ChIP-
seq data from worm and fly were generated from whole or-
ganisms at the embryo, L4, and young adult stages in worm
and embryo, L3 larva, and prepupae stages in fly. As shown
in Figure 1A, each of the worm and fly TFs has IP replicates
(i) and a DNA input control (d) generated by our modERN
consortium (20). In addition, for each stage, we produced a
mock IP control (m’) as shown in Figure 1B. We also gener-
ated DNA input controls (d’) corresponding to these mock
IP controls (Figure 1B and Materials and Methods; Supple-
mentary Table S1).

Potential mechanism of spurious site generation due to non-
specific interactions. We propose a potential mechanism
on how the nonspecific interactions between an antibody
and regulatory proteins cause spurious sites when DNA in-
put controls are used. This mechanism is illustrated using a
hypothetical example in Figure 1. For this purpose, we cre-
ated three open chromatin regions and let them be equally
sensitive to sonication. As a result, these regions have peaks
of sequencing reads with similar heights in the DNA input
control (d, Figure 1A). We let region 1 contain regulatory
proteins as well as the target TF of the antibody. Regions
2 and 3 have no target TFs but only other regulatory pro-
teins (Figure 1A). Therefore, in the IP experiment (i, Fig-
ure 1A), the peak of reads at region 1 is mainly due to the
specific binding of the antibody to the target TF, whereas
the peaks at regions 2 and 3 are purely due to nonspecific
binding. Because we let region 2 have many more regula-
tory proteins than region 3 (Figure 1A), more complexes of
regulatory proteins and DNA are generated from region 2.
Therefore, even with nonspecific binding to the complexes,
the antibody enriches for more DNA fragments from region
2 than from region 3.

With sufficient regulatory protein binding, the peak of
reads at region 2 in the IP (i) can be higher than its counter-
part in the DNA input (d), as we specified in Figure 1. We

postulate that this event may be further enhanced by physi-
cal and chemical factors at the molecular level. For example,
the antibody used in the IP likely prefers to interact with the
regulatory protein-DNA complexes from open chromatin
rather than the histone-DNA complexes from closed chro-
matin. This preference may be due to the fact that regu-
latory proteins more likely resemble the target of the anti-
body than histones. Moreover, the histone-DNA complexes
tend to carry no charge, which may further reduce binding
to the antibody. Consequently, the antibody likely enriches
for more DNA fragments from open chromatin than from
closed chromatin. This preference renders the peak of reads
at region 2 in the IP even higher than that in the DNA input,
taking the respective closed chromatin regions as reference.
Due to the higher peak of reads at region 2 in IP than in
DNA input, using the DNA input as a control for the IP
results in a spurious binding peak at region 2.

This proposed mechanism of generating spurious sites
predicts that between genomes, the one with more abundant
open chromatin and/or more highly expressed genes has a
larger number of spurious binding sites. Moreover, this pro-
posed mechanism also indicates that within a genome, the
spurious sites tend to be associated with highly expressed
genes, which recruit many regulatory proteins for transcrip-
tion. This prediction is consistent with other recent obser-
vations (13–15). However, spurious sites due to nonspecific
interactions are expected to be removed when mock IP con-
trols are used. As illustrated in Figure 1, because the mock
IP control (m) captures the nonspecific binding between the
antibody and other regulatory proteins (10,30), the resul-
tant peak of reads at region 2 in the mock IP is as high as
the corresponding peak in the IP. In Figure 1, region 3 has
only a few regulatory binding proteins, and thus using either
DNA input or mock IP control results in no spurious bind-
ing peaks. This hypothetical example also demonstrates the
operational definition of a potential binding peak used here,
which is a genomic region (200bp) corresponding to a bind-
ing summit. The statistically significant peaks are defined as
binding sites.

Spurious binding sites across various samples

The abundance of spurious sites from nonspecific interac-
tions between antibodies and regulatory proteins can be
estimated by the sites detected from mock IP experiments
compared to DNA input as a control because mock IP ex-
periments capture no specific interactions but only nonspe-
cific ones (Figure 1B). Therefore, we used the standard EN-
CODE ChIP-seq pipeline to analyze the six pairs of mock
IP (m) and DNA input (d) from the human cell lines, and
the six pairs (m’ and d’) from the worm and fly developmen-
tal stages. As a result, we observed that human cell lines on
average had nine spurious sites per 100 million base pairs
(Mb) in genome, whereas this average number increased to
551 and 3931, respectively, for worm and fly samples. Ac-
cording to the mechanism we proposed, these numbers of
spurious sites are expected to correlate with the transcrip-
tome activity and the genome accessibility of the samples.
Both high activity and accessibility approximately indicate
a large number of protein–DNA complexes in the samples.
Having many different types of DNA binding proteins ex-
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Figure 1. Illustration of the ChIP-seq protocols in use and the generation of spurious sites. The ChIP-seq protocol (A) can consist of IP, DNA input and
mock IP experiments. For simplicity, the three open chromatin regions are assumed to be equally sensitive to sonication. In IP, the peak of reads at region
1 is mainly due to the specific interactions between the antibodies (1) and the antigens (triangle) of the target TFs (in red). The peaks at region 2 and 3 are
due to nonspecific interactions between the antibody and regulatory proteins at the regions. In mock IP, to avoid the specific antigen-antibody reactions,
we use another antibody (2), which does not bind specifically to any DNA binding proteins in the sample. Therefore, the resultant three peaks of reads are
due to nonspecific interactions between antibody 2 and other DNA binding proteins. In this hypothetical example, a peak caller compares the three peaks
from the IP to those from the DNA input, resulting in binding peaks at region 1 and 2. Since there is no target TF binding at region 2, the detected binding
peak is spurious due to strong nonspecific interactions at region 2. Using the mock IP as a control, the peak caller identifies only the genuine binding peak
at region 1. For worm and fly samples, due to the use of a GFP tag, we can remove the antigen to avoid antibody-antigen reactions (B). Therefore, the
mock IP for a worm or fly sample uses the same GFP antibody as its IP. Because there is no antigen present in the sample for mock IP, the peaks of reads
observed are also due to nonspecific interactions. A DNA input control is also generated for the worm or fly sample. The peaks identified from the mock
IP using the DNA input as a control are all spurious due to lack of specific interactions.

pressed also increases the likelihood of nonspecific interac-
tions with the antibodies.

In order to measure transcriptome activity, we used
RNA-seq data from the ENCODE portal (12) and our pub-
lished data (21). However, the RPKMs from RNA-seq in-
dicate the relative transcription levels of the genes within
a sample, rendering across-sample comparisons impossible.
For example, a cell type with all genes highly expressed has
the same RPKMs as another cell type with all genes lowly
expressed. To this end, we assume that the most highly tran-
scribed genes of different eukaryote cell types have similar
transcription activity, which are the limit of the transcrip-
tion machinery. In a sample containing multiple cell types,
the genes with the highest RPKMs are very likely the most
transcribed genes in the majority cells. Taken together, we
normalized the RPKMs of coding genes in each sample so
that the five most highly expressed genes from the different
samples had the same average, and then used the median of
the normalized coding gene expression to indicate the tran-
scriptome activity of the sample.

Note that for a sample with multiple cell types, the high
median after normalization may be also because the many

cell types express quite different genes from each other in
the genome, indicating that on average a large fraction of
the genome in the sample are actively transcribed. We also
expect many spurious sites from such genomes. As a result,
we used the medians of the normalized transcriptomes to
roughly suggest their activity. Although it is a rough ap-
proximation, the activity of the different samples is indeed
highly correlated with the numbers of spurious sites per 100
Mb identified from the samples (Spearman’s ρ = 0.89, P <
9.2e–5). With linear regression, the transcriptome activity
accounts for a large fraction of the variance in spurious site
abundance (r2 = 0.92, P < 6.5e–7; Figure 2A), supporting
our proposed mechanism of generating spurious sites.

In addition, we tested the correlation between genome
accessibility and spurious-site abundance. The genome ac-
cessibilities of the six human cell lines were calculated from
the DNase-seq data generated by the ENCODE consortium
and processed uniformly by the ENCODE pipeline (12).
The genome accessibility also explained a substantial frac-
tion of the variance in spurious site abundance (r2 = 0.84,
P = 0.007; Figure 2B). As expected, given their high growth
rates, the five cancer cell lines had higher genome accessibil-
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Figure 2. Associations between spurious site abundance and genome activity. The number of spurious sites per 100 million base pairs (Mb) in the genome
is linearly regressed with the transcriptome activity. For display purposes, the number of spurious sites is transformed into log space (A). The number of
spurious binding sites is linearly regressed with genomic accessibility for human samples (B) and worm samples (C). The number of spurious sites per 1 Mb
is calculated for promoter regions of highly expressed, lowly expressed, and unexpressed genes in K562, worm embryo, and fly embryo (D). ‘**’ indicates
P-value < 0.01, based on the Binomial test.

ity than the GM12878 cell line, and thus had more spurious
binding sites (Figure 2B). For worm samples, Daugherty et
al. generated ATAC-seq data and determined accessible re-
gions from the data (22). The linear regression of these data
again confirmed the strong association between genome
accessibility and spurious-site abundance (r2 = 0.99, P =
0.007; Figure 2C). Note that we paired the genome acces-
sibility of L3 with the spurious site abundance of L4, due

to lack of ATAC-seq data at the L4 stage. This mismatch
renders the observed strong correlation more conservative.

Our proposed mechanism of spurious site generation pre-
dicts that highly expressed genes are likely associated with
more spurious sites than lowly expressed genes. To test this,
we first classified coding genes as expressed and unexpressed
(<1 RPKM). The expressed genes were further split evenly
into highly and lowly expressed genes. Gene-associated ge-
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nomic regions were defined as 2 kb regions both upstream
and downstream of the transcription starting site(s). Within
each of the three groups, overlapping regions were merged
to avoid redundancy. Genomic regions that fell into mul-
tiple groups were reclassified into the highest expression
group. For each of the three expression groups, the num-
ber of spurious sites whose summits lay within its genomic
region was normalized by the total length of the regions.
For all the samples, we consistently observed that the re-
gions associated with the highly expressed genes contained
more spurious sites than other regions (Figure 2D & Sup-
plementary Figure S1). The GM12878, HepG2, and HeLa-
S3 samples were excluded from this analysis due to insuffi-
cient spurious sites.

The human mock IPs utilized IgG antibodies respectively
from rabbit, mouse and goat, while the fly and worm mock
IPs used anti-GFP antibodies. If the GFP antibodies have
more nonspecific interactions than the other antibodies, this
would result in the more spurious sites in the fly and worm
samples. To test this, from the ENCODE portal, we col-
lected two sets of GFP mock IPs for K562 and paired the
sets respectively with multiple DNA input controls to pre-
dict spurious sites (Supplementary Table S9). As a result,
the average number of spurious sites (573) is similar to the
one (666) from using the rabbit IgG antibodies (Figure 2A
and B). Moreover, we used goat IgG antibodies to generate
mock IPs for the fly embryos. This set of IgG mock IPs has
6059 spurious sites, and this number is similar to that (6110)
of the GFP mock IPs (Figure 2A). Our embryo samples are
a mix of fly embryos between zero to 24 h. Rieder et al. pro-
duced a set of mock IPs using rabbit IgG antibodies for the
2–4hr embryos (Supplementary Table S1) (31). From this
set, we detected 3844 spurious sites, which is larger than that
(2785) extrapolated from the regression between spurious-
site abundance using GFP antibodies and fly transcriptome
activity (Supplementary Figure S2).

In addition, we found six human TFs in the ENCODE
portal, and each has its IPs generated respectively using the
GFP antibodies and other antibodies for the same cell line
sample (Supplementary Table S10). Moreover, these TFs
also have their binding motifs determined by in vitro exper-
iments (23). For these TFs, using the GFP antibodies re-
sulted in a slightly higher motif enrichment in the detected
binding peaks than using those other antibodies (Supple-
mentary Figure S3). Taken together, these results suggest
that the GFP antibodies are comparable to the other an-
tibodies used in the current ChIP-seq practice. Therefore,
the difference in spurious site abundance among human cell
lines, worm, and fly is likely sample-specific rather than due
to different antibody quality.

The ENCODE ChIP-seq pipeline requires at least two IP
replicates to predict the number of sites. We tested the ro-
bustness of spurious-site abundance to the number of repli-
cates used. For the fly embryos and prepupae, respectively,
we used two out of the three mock IP replicates to predict
spurious sites. The spurious-site abundance was reduced by
only 15% on average to 5086 and 6143, respectively, presum-
ably due to reduced detection power with fewer replicates
(Supplementary methods; Supplementary Figure S4). This
small reduction indicates that using two replicates is likely
sufficient for ChIP-seq. This reduction does not change

the result that fly samples have substantially more spurious
sites than the other samples (Figure 2; Supplementary Ta-
ble S11). In addition, this observation that using more repli-
cates do not reduce spurious sites indicates that systematic
biases rather than technical noises likely result in the spuri-
ous sites.

In addition, the spurious-site abundance is not correlated
with the sequencing depth, indicating that the spurious sites
are unlikely due to insufficient sequencing depths (Supple-
mentary methods; Supplementary Table S11). Moreover,
we predicted spurious sites from the mock IPs produced by
Jain et al. This set of mock IPs has two replicates from fly
embryos and was generated using a very different experi-
mental protocol from ours, including a different antibody
(Supplementary Table S1) (15). However, the spurious-site
abundance (5586) was very close to the average (5086) pre-
dicted by our GFP mock IPs using two replicates (Supple-
mentary Figure S4), suggesting the spurious sites robust to
experimental protocols. Considering computational proto-
cols, using another popular peak caller (HOMER) also re-
sulted in large numbers of spurious sites (Supplementary
Table S12) (32). Moreover, using a very conservative sta-
tistical protocol of the ENCODE computational pipeline
resulted in only a 15% reduction in spurious sites (Supple-
mentary Table S12).

Removing spurious binding sites from ChIP-seq using mock
IP

Presumably due to the nonspecific interactions, many spu-
rious sites have been identified from mock IPs using DNA
input as a control, and such spurious sites likely persist in
IP experiments when DNA input controls are used. The use
of mock IP controls is expected to remove these spurious
sites from the IPs. To test this, we used the IPs of 113 ChIP-
seq datasets across six human cell lines and 499 ChIP-seq
datasets from the three stages each in worm and fly. These
ChIP-seq data have matched mock IP and DNA input con-
trols. Consistent with our prediction, using mock IP con-
trols for binding site prediction resulted in fewer binding
sites than using DNA input controls (Figure 3A). The re-
duction was marginal for human cell lines, but was substan-
tial for worm and fly samples. As expected, this reduction
was highly correlated with the ratio between the numbers of
the spurious sites detected from mock IP and the total sites
detected from IP, respectively, using DNA input as a con-
trol (Supplementary Figure S5A). As expected, compared
to the sites detected using the mock IP control, the sites ob-
tained with the DNA input control are indeed more similar
to the spurious sites (Supplementary Figure S5B).

Motif enrichment in binding sites predicted using mock IP

Compared to using DNA input control, the mock IP con-
trol removes many potentially spurious sites, and thus the
resultant peaks are expected to enrich for more TF bind-
ing motifs. To test this prediction, we focused on the TFs
with their binding motifs discovered by in vitro experiments
such as PBM (23). Indeed, the mock IP controls substan-
tially outperformed the DNA input controls in motif en-
richment for fly and worm binding peaks (Figure 3B and C).
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Figure 3. Reducing spurious sites from IP experiments using mock IP as controls. Compared to DNA input controls, the mock IP controls lead to fewer
binding sites detected from IP experiments (A). The Wilcoxon signed-rank test was used. The numbers of ChIP-seq datasets were 113, 182 and 317
respectively for human, worm, and fly. To compare the motif enrichments of binding sites predicted by different approaches, we focused on the ChIP-seq
data with known TF binding motifs. The sample sizes for fly (B), worm (C) and human (D) were 127, 44, 29, respectively. The whiskers in panels B, C and
D indicate the standard errors of the means of motif fractions. From these ChIP-seq data, the motifs of unique TFs were used to calculate motif entropies
(E). The samples sizes were 122, 23 and 41 TFs for fly, human, and worm. The Wilcoxon rank sum test was used.

The improvements in average motif enrichment were 37%
(Sign test, P < 6.4e–4) and 18% (P = 0.007), respectively,
for the top 50 peaks ranked by the SPP signal (9). For all the
predicted binding sites, such improvements were 66% (P <
9.3e–7; Supplementary Figure S6A) and 25% (P < 5.3e–6;
Supplementary Figure S6B). We also provided an example
that mock IP controls can prevent both false-positive and
false-negative predictions (Supplementary Figure S7).

The improvements we observed for fly and worm TFs
were robust to different parameters (Supplementary meth-
ods; Supplementary Figure S8) and peak callers (Supple-
mentary Figure S9) (32). For human cell lines, the spuri-
ous site abundances were quite low, and thus for the top
predicted sites, the improvement in motif enrichment using
mock IP controls was also small (Sign test, P = 0.06; Fig-
ure 3D). In addition, we tested whether the improvement in
motif enrichment might be due to different GC content. To
this end, we shuffled the nucleotides of the predicted bind-
ing peaks to scramble motifs, but maintained the GC con-
tent of the peaks. We observed no difference in motif enrich-
ment between using mock IP and DNA input controls (Fig-
ure 3B–D). Therefore, the observed improvements are not
due to potential GC content difference between the binding
peaks in comparison.

Even with mock IP controls, the predicted binding peaks
of worm and fly TFs still have lower motif enrichments than
those of human TFs (Figure 3B–D). However, we postulate
that this comparison between different TFs is not informa-
tive for two reasons. First, the human, fly, and worm mo-
tifs are generated using different techniques such as B1H,
SELEX and PBM (24–27). These high-throughput experi-
ments may have quite different accuracies. Obviously, low
accuracy diminishes the actual motif enrichment in bind-
ing peaks. Second, it may be that some TFs are more per-
missive than others and bind to a larger number of various
DNA sequences, and thus even spurious sites tend to have
such motifs by chance. Note that the existence of a motif
does not necessarily indicate a TF binding event; for exam-
ple, the DNA with the motif needs to be accessible to the
TF.

The high entropy of a motif indicates that the DNA se-
quences of the motif are very diverse. The high entropy
can be attributed to relaxed evolutionary constraints (e.g.
permissive TFs) and/or inevitable technical noise in the in
vitro experiments that determines the motif. The noise en-
tropies are difficult to estimate directly; however, reduced
constraints are expected in species with small effective pop-
ulation sizes (33). We calculated the motif entropies of fly,
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Figure 4. Inferring spurious site abundance in human tissues and organs.
The human tissues and organs have much higher genome accessibilities
than the human cell lines and primary cells (A). The Wilcoxon rank sum
test was used, and sample sizes of the cells and tissues are 150 and 60 re-
spectively. From the regression between genome accessibility and the num-
ber of spurious sites, the spurious site abundances were predicted from the
genome accessibilities of the cell lines/primary cells and tissues/organs (B).
Note that the number of spurious sites is defined as the sites detected from
mock IP using DNA input as the control. Only a fraction of such spuri-
ous sites persists in the binding peaks predicted from the IPs with DNA
input controls. More spurious sites remained results in lower motif en-
richment in the predicted binding peaks. The binding peaks detected from
organs/tissues contained fewer motifs than those from cell lines and pri-
mary cells (C). The whiskers in panel C indicate the standard errors of the
means of motif fractions for the seven TFs.

human and worm (Figure 3E; see Methods). The human
motifs have higher entropies (Figure 3E) and higher enrich-
ments in the binding peaks than the fly motifs (Figure 3D).
Because high entropy due to technical noise is expected to
artificially reduce motif enrichment, the high entropy of the
human data may be partially due to the small effective pop-
ulation size (∼104) of human (34–38) compared to that of
fly (39). As for worm, its effective population size is com-
parable to that of human (40,41). However, the worm mo-
tifs have higher entropies and lower enrichments than the
human motifs (Figure 3), likely suggesting more technical
noise in the worm motifs.

Predicting potentially spurious site abundance in human tis-
sues

We observed that spurious site abundance increases with
genome accessibility. The human tissue/organ samples in
the ENCODE portal have substantially more accessible
chromatin than human cell lines/primary cells (Figure 4A).
Unfortunately, there is a lack of comparable DNA input

and mock IP controls for human tissues in the ENCODE
portal, rendering direct estimation of spurious-site abun-
dance impossible. Instead, we used genome accessibility of
human tissues/organs to estimate their spurious site num-
bers. Extrapolating from the regression (Figure 2B), the me-
dian of spurious sites in human tissues and organs is 9819,
which is much larger than that estimated from the human
cell lines (Figure 4B). This estimation is very rough, but sug-
gests the necessity of extra examinations for the ChIP-seq
data from human organs and tissues, which are being widely
used for studying human diseases.

The high spurious-site abundance predicted in
tissues/organs indicates low motif enrichment. How-
ever, as discussed above, the motifs of different TFs are
likely not comparable. Therefore, we focused on seven hu-
man TFs, RXRA, EGR1, SP1, MAX, GABPA, YY1 and
HNF4A, in the ENCODE portal. Each of the TFs has
ChIP-seq data generated in both a human cell line/primary
cell and a human tissue. These TFs also have binding
motifs determined by in vitro experiments in the Cis-bp
database. With DNA input as the control, the binding sites
of these TFs in tissues indeed enriched for fewer motifs
than those in the cell lines (Figure 4C). This reduction in
average motif enrichment was 17% for the top 50 binding
peaks ranked by SPP binding signal, which was much
larger than that (1%) between the sites predicted from cell
lines with mock IP and DNA controls, respectively (Figure
3D). For all the predicted sites, the average reduction was
28% (Sign test, P = 0.06). Note that we used only genome
accessibility for spurious site prediction because adding
transcriptome activity did not significantly improve the
regression in Figure 2B.

Prevalence of potentially spurious sites in ChIP-seq using
DNA input as a control

Spurious sites are defined as the sites detected from mock IP
experiments with DNA input controls. These sites are spu-
rious due to the lack of specific interactions in the mock
IPs (i.e. the antibodies and their target TFs). Therefore,
nonspecific interactions are presumably the main factor
causing these sites. Different from mock IPs, IP experiments
contain specific interactions, which may deplete the nonspe-
cific interactions, and in turn reduce spurious sites for the
IPs. Estimating the prevalence of persisting spurious sites
in the IPs is extremely difficult, if not impossible, simply be-
cause bona fide sites are largely unknown. As a rough esti-
mation, for each TF we first detected binding sites from its
IP experiment, with DNA input and mock IP as controls.
The sites predicted using mock IP controls were then con-
sidered bona fide sites. In the sites detected using DNA in-
put controls, the ones not overlapped with the approximate
bona fide sites are likely the spurious sites that remain.

This rough estimation suggests that in worm and fly sam-
ples on average ∼60% and ∼80% sites predicted from IPs
with DNA input controls are potentially spurious, whereas
this number is ∼10% in human cell lines (Figure 5A). The
prevalence of spurious sites is expected to be TF specific.
For example, a genomic region predicted as a spurious site
from the mock IPs may actually have the target TF binding,
and thus is bona fide in the IPs. The spurious sites detected
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Figure 5. Sample and TF specificities of spurious site prevalence. A large fraction of binding sites detected using DNA input controls are potentially
spurious in worm and fly samples, and the fraction is relatively small in the human cell lines (A). The sample sizes are 113, 182 and 317 ChIP-seq datasets,
respectively, for human, worm, and fly. The fly TFs that tend to activate gene expression have smaller fractions of potentially spurious sites, compared to
the repressive TFs (B). The numbers of activating and repressing fly TFs with ChIP-seq data from embryo stage are 48 and 56. When mock IP controls are
used, the activating TFs tend to have more binding sites than the repressive TFs (C). ‘*’ indicates P-value < 0.05, based on the Wilcoxon rank sum test.

from mock IPs are enriched in actively transcribed regions,
and thus tend to overlap with the bona fide binding sites of
activating TFs. To test the influence of TF functionality on
spurious site prevalence, we classified the TFs into activat-
ing and repressing groups according to the Gene Ontology
(GO) database (42). For the fly TFs in embryos, the activat-
ing TFs indeed had lower spurious site prevalence than the
repressing TFs using DNA input controls (Wilcoxon test, P
= 0.04; Figure 5B). No significance was observed for other
samples that had much smaller sample sizes. As expected,
using mock IP controls, the activating TFs had more bind-
ing sites than the repressing TFs (Figure 5C).

We showed that for worm and fly TFs, most of the sites
predicted from IP experiments using DNA input controls
did not overlap with the sites predicted using mock IP con-
trols, suggesting a high prevalence of potentially spurious
sites. In contrast, most of the sites (∼80%) predicted by
mock IP controls overlapped with the sites by DNA input
controls (Supplementary Figure S6C and D). Although the
top binding sites predicted by DNA input controls enriched
for binding sites by mock IP controls, the enrichment was
not much higher than that of the lower ranked sites (Sup-
plementary Figure S6E and F). Therefore, focusing only on
the very top binding sites by DNA input controls may lose
many bona fide binding sites.

Combining mock IP and DNA input to predict TF binding
sites

Although the mock IP control removes spurious sites more
efficiently than the DNA input control, the DNA input is
still informative in binding site detection and may acquire
more DNA material from a sample than the mock IP. In
addition, different scoring metrics have been developed for
binding site detection. For example, the signal score in SPP

depends directly on the enrichment of sequencing reads in
the IP, compared to its control. Another widely used metric
is the statistical significance of the read enrichment (43). We
developed a simple framework that takes advantage of using
both mock IP and DNA input controls as well as multiple
scoring metrics. We focused on the ChIP-seq data of worm
and fly TFs. Each of the datasets has IP replicates (denoted
as i) with a DNA input control (d) as shown in Figure 1A,
and a mock IP (m’) control with a corresponding DNA in-
put (d’) as shown in Figure 1B.

These experiments were scaled to the same sequencing
depth. For each TF, we used SPP to identify the peak re-
gions in the genome using the IP (i) and the mock IP (m’).
For each peak region, ni , nd , nm′ and nd ′ are the numbers
of reads in the four experiments mapped to the region.
The probability for the region being a binding site is indi-
cated by P(θ1 > 0.5, θ1 > θ2), where θ1 = ni/(ni + nd ) and
θ2 = nm′/(nm′ + nd ′ ) for estimation purposes. We assume
ni following a binomial distribution, i.e., ni ∼ Bin(n1, θ1),
where θ1 ∼ U (0, 1) = Beta(1, 1) is the prior distribution
and n1 is the number of total reads from the region in i
and d. Because Beta(1, 1) is an uninformative conjugate
prior, the posterior distribution of θ1 is P (θ1 | ni , n1) =
Beta(θ1 | ni + 1, nd + 1). With the same assumptions, we
have P (θ2 | nm′ , n2) = Beta(θ2 | nm′ + 1, nd ′ + 1), where n2
is the number of total reads from the region in m’ and d’.
With this setting, P(θ1 > 0.5, θ1 > θ2) can be expressed as
in Equation 2.

P(θ1 > 0.5 & θ1 > θ2) =
θ1∫

θ2=0

1
∫

θ1=0.5
Beta (θ1 | ni + 1, nd + 1)

Beta (θ2 | nm′ + 1, nd ′ + 1) dθ1dθ2

(2)
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Due to lack of an analytical solution, we estimate the in-
tegral by simulation.

The higher probability indicates the genomic region is
more likely to be a TF binding site. The genomic regions,
as binding peaks, are ranked by this probability, and the
ranked peaks of the multiple IP replicates then passed to
the tool of IDR (19) in the ENCODE pipeline to deter-
mine binding sites. When DNA input is the only control,
the probability is simply P(θ1 > 0.5). With the same deriva-
tion, the probability of using only mock IP as a control is
also calculated as described in the Methods section. As ex-
pected, multiple controls substantially outperform respec-
tively DNA input or mock IP alone (Supplementary Figure
S10). However, the probability with both controls performs
similar to, but not always better than, the SPP score using
only mock IP as a control (Figure 3B&C). This observation
is probably due to the fact that compared to the probability,
the SPP score is more informative by considering not only
the read enrichment but also the distribution of the reads at
a genomic region.

To take advantage of the SPP score and the probability
calculated from both the mock IP and DNA input controls,
we rank the peaks of a TF with the two scoring metrics re-
spectively, resulting in two rankings for the one set of peaks.
For each of the peaks, we sum its ranks in the two rank-
ings and sort all the peaks again according to their summed
ranks. This new ranking is then subjected to IDR for bind-
ing site detection. This strategy is reasonable because IDR
is a robust model that uses only the rank of each peak for
binding site detection. This novel method increases motif
enrichments by 21% (Sign test, P < 1.4e–4, Figure 3B) and
8% (P = 0.24, Figure 3C) for the top 50 binding sites of fly
and worm TFs, compared to the SPP method with mock
IP controls. The improvement for worm is small and not
statistically significant presumably because the spurious site
prevalence of worm is relatively low and the sample size is
small. Currently, summing up the ranks of a peak implicitly
assigns equal weights to the rankings by the two metrics.
Using equal weights is appropriate in this case because the
two metrics perform similarly in binding site detection (Fig-
ure 3B and C). This strategy we developed can be extended
to incorporate more metrics and controls.

Comparing the respective spurious sites of different antibod-
ies

We have shown that the GFP, IgG, and ACF1 antibodies
have similarly large numbers of spurious sites in fly em-
bryos, suggesting that these antibodies have similar levels
of interactions with nonantigens. However, these antibod-
ies may still prefer different nonantigens, resulting in dif-
ferent spurious sites. To test this, we generated another set
of GFP mock IPs for fly embryos. The spurious-site over-
lap (i.e. the number of overlapping sites divided by the total
sites) between the two sets of GPF mock IPs is 74% (Fig-
ure 6A). Between the IgG mock IPs (0–24 h embryos) and
the GFP mock IPs (0–24 h embryos), the average overlap
is only 36% (Figure 6A). Between the ACF1 mock IPs and
the GFP mock IPs, the percentage remained similarly low
at 38% (Figure 6A). The ACF1 mock IPs were generated
by Jain et al. for the 0–12 h embryos of fly, which may con-

tribute to the low overlap. However, these ACF1 mock IPs
showed a moderate overlap (62%) with the IgG mock IPs we
generated (Figure 6A). As expected, because our IPs were
generated with the GFP antibodies, using the GFP mock
IPs as controls excluded many spurious sites and resulted
in fewer predicted sites compared to using the other mock
IPs (Figure 6B). The predicted binding sites were also highly
enriched with target motifs (Figure 6C).

DISCUSSION

Our results indicate that many spurious sites may be gener-
ated by ChIP-seq experiments when DNA input is used as
the control. These spurious sites are likely due to the non-
specific interactions between the antibodies and nonanti-
gens during IP, and the spurious-site abundance of a sample
is highly correlated with its genome activity. The strong and
positive correlation holds, regardless of whether the samples
are collected from the same or different species. In addition,
the spurious-site abundance is also TF specific. We found
that the TFs that activate gene expression had much fewer
spurious sites than the repressive TFs. The abundance of
spurious sites is robust to different experimental and com-
putational protocols. More importantly, we demonstrated
that using mock IP controls removed spurious sites and
thus substantially improved motif enrichment in the bind-
ing sites predicted from complex samples.

We showed that different antibodies resulted in similarly
large numbers of spurious sites in fruit fly embryos. How-
ever, the spurious sites of different antibodies tend to not
overlap, suggesting that the antibody-nonantigen interac-
tions, though referred to as nonspecific interactions, may be
antibody specific. In line with this, the mock IPs produced
using the same antibodies as IPs outperformed other mock
IPs in filtering out spurious sites. These results together sug-
gest that mock IPs are more effective if generated using the
same antibody, same protocol, and from the same sample
as the IPs. Due to the experimental design, our mock IPs
of a sample can be used as the controls for the many IPs
targeting different TFs in the sample, rendering our mock
IPs cost-efficient. With such mock IPs, the detected binding
sites contained many more target motifs than those detected
with DNA input controls.

We expect that the ChIP-seq bias removed by mock IP
controls can be also removed by optimizing each of the
many steps in the ChIP-seq process, such as antibodies,
buffers, and cross-linking time (8,10,11,44,45). Nonetheless,
our results suggest that different samples, TFs, or antibod-
ies likely require different calibrations. Therefore, it is diffi-
cult to find all the optima for different TFs from different
samples. For example, the specificity of a TF may be suffi-
cient for a simple sample but not for a complex sample. In
contrast, we showed that using the mock IPs substantially
improved binding site prediction for many complex sam-
ples. This improvement required the mock IPs generated by
the same protocol as the IPs. Therefore, we preferred mock
IP controls for our project to produce ChIP-seq data for
many TFs from many different samples. However, the pro-
tocols still need optimization for example to acquire suffi-
cient DNA material.
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Figure 6. Comparing mock IP experiments generated by different antibodies from fly embryos. The spurious binding sites were detected from the IgG
antibody mock IP, GFP antibody mock IP, and ACF1 antibody mock IP using their corresponding DNA input controls. The consistency between the two
sets of spurious sites is indicated by the number of overlapped sites divided by the number of total sites (A). Compared to the DNA input, the IgG antibody
mock IP, and ACF1 antibody mock IP, the GFP antibody mock IPs predicted much fewer binding sites from ChIP-seq (B), and the resulting binding sites
contained more target motifs (C). The whiskers in panel C indicate the standard errors of the means of motif fractions. The samples sizes are 127 and 44
respectively for fly and worm.

With DNA input controls, the binding sites of many TFs
have been predicted from cell lines, tissues, and organs. Our
results suggest that different samples or different TFs may
have very different spurious-site abundance, which may im-
pair comparative analyses of those binding sites. For exam-
ple, tissues may have gene regulatory networks artificially
more connected than cell lines. In addition, the TF speci-
ficity of spurious sites further exacerbates the comparabil-
ity. Our discoveries also provide potential insight into highly
occupied targeted (HOT) regions (46,47). A HOT region is
a genomic region with binding sites of more TFs than ex-
pected. The abundant spurious sites unlikely influence HOT
regions qualitatively because the existence of spurious sites
in a genomic region indicates abundant regulatory protein
binding in that region, which by definition is likely a HOT
region.

The three species, human, worm, and fly, have similar
numbers of coding genes as potential targets of TFs. How-
ever, using mock IP controls, TFs in human cell lines tend
to have substantially more binding sites than TFs assayed in
whole worm or fly, and the fly TFs have slightly more bind-
ing sites than the worm TFs (Figure 3A). These numbers
of binding sites across the three species are proportional to
their genome sizes. This proportion to the genome size may
be due to the fact that the larger genome contains more
motifs for TF binding by chance. The more motifs in the
larger genome may be favored by natural selection to attract
TFs around the chromosomes, which increases the utility of
TFs. Moreover, a larger genome may have more ‘TF reser-
voirs’, which are DNA sequences containing weak binding
affinities to TFs and might be used to buffer the system and
maintain an optimal amount of available TFs in the nucleus
(48,49).

In summary, we provide evidence for a potential mech-
anism and a corrective approach to address the issue of
spurious-site abundance in ChIP-seq data. The abundance
in a sample is strongly associated with its genome acces-
sibility. With low accessibility, the human cell lines have
small numbers of spurious sites, and thus using DNA input
and mock IP controls performed similarly for the ChIP-seq.

This might have led to the notion that DNA input controls
are sufficient for ChIP-seq. However, in complex samples,
the abundance of spurious sites is substantial using DNA
input controls, whereas using mock IP controls results in
more accurate and comparable binding sites across samples.
For further improvement, we developed a novel method
that incorporates both DNA input and mock IP controls as
well as different scoring metrics for binding site detection.
This enhanced method will better capture the true binding
sites of TFs to gain a better understanding of their roles in
development and physiology.
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