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were startling because the then-dominant mode of thought was 
that proprioceptive information was essential for performance of 
this complexity. The rich history of research on spinal reflexes in 
vertebrates and the common observation of irreversible flaccid 
paralysis following spinal injury shaped a consensus that coor-
dinated limb movements required cycle-by-cycle proprioceptive 
feedback and intact descending control from “higher centers” 
(Grillner, 1975, 1981; Clarac, 2008). Hughes and Wiersma (1960) 
and Wilson (1961) contradicted that consensus. The Discussions 
of both papers explicitly addressed this contradiction, and pointed 
out the broad significance of their results. Wilson’s Discussion ends 
with “It seems not too early to conclude that central oscillators in 
arthropods are of such fundamental importance that they are used 
even when other mechanisms might suffice.”

Wiersma and his students promptly looked more closely at the 
organization of the neural circuits that coordinated and control-
led swimmeret movements (Ikeda and Wiersma, 1964; Wiersma 
and Ikeda, 1964). They compared the swimmeret motor pattern in 
intact animals with the patterns recorded from swimmeret nerves 
when the chain of six abdominal ganglia were isolated in vitro. 
They reported that the periods and durations of bursts of spikes in 
motor neurons were the same in isolated preparations and in intact 
animals, and that isolated preparations maintained the posterior-
to-anterior progression of firing characteristic of the intact ani-
mal’s movements (Figure 1B). They showed that no one ganglion 
served as a unique pacemaker for the system, that the intersegmen-
tal coordination pathways were bilateral, and postulated that each 
swimmeret had its own center that controlled its alternating power-
stroke (PS) and return-stroke (RS) movements. In all respects, these 

Fifty years ago, two groups of zoologists working independently on 
the neural basis of locomotion in arthropods made similar startling 
observations. At Cal Tech, C. A. G. Wiersma1 and his colleague G. 
M. Hughes, visiting from Cambridge, found that the deafferented 
crayfish abdominal nerve cord sometimes continued to produce 
coordinated bursts of spikes in motor axons that innervated dif-
ferent swimmerets (Hughes and Wiersma, 1960), a motor pattern 
that drives coordinated swimmeret beating during normal forward 
swimming(Figure 1). They recognized that this meant the complex 
motor pattern that coordinated movements of four pairs of limbs 
(Figure 1B) could not depend on cycle-by-cycle proprioceptive 
feedback from the limbs themselves because they had severed all 
connections to those limbs.

Donald M. Wilson2, a postdoc working on locust flight in Torkel 
Weis-Fogh’s Copenhagen laboratory, found that the detailed motor 
pattern that drove wing beats continued even though he had sys-
tematically severed connections from the periphery to the thoracic 
ganglia (Wilson, 1961). He too recognized that these behaviorally 
significant motor patterns were being produced by the animal’s 
central nervous system (CNS) in the absence of cycle-by-cycle pro-
prioceptive feedback (Edwards, 2006). These direct experimental 
demonstrations of complex centrally generated motor patterns 
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conclusions have proven to be correct. Recent results have begun 
to explain how these properties emerge from the system’s cellular 
and synaptic organization (Smarandache et al., 2009).

Wilson and Weis-Fogh (1962) described the skeletal mechanics, 
musculature, and motor innervation of the locust flight system, and 
carefully demonstrated the timing of firing in different motor units 
relative to wing position, wing-beat frequency, and power-output 
of the flight system (Wilson and Weis-Fogh, 1962). Once Wilson 
was established on the UC Berkeley faculty, his students continued 
a productive analysis of how the CNS regulated fundamental fea-
tures of locust flight (Waldron, 1967). He also began a compara-
tive investigation of flight mechanisms in other insects, including 
flies (Wilson and Wyman, 1963; Nachtigall and Wilson, 1967). 
Grasshoppers and moths are “neurogenic” fliers, whose detailed 
motor patterns determine each cycle of wing movements. Flies, 
bees, and beetles are “myogenic” fliers, whose wing movements 
are a resonant property of their thoracic musculo-skeletal system. 
Unlike the coordinated activity of locust motor neurons innervat-
ing different muscles (Figure 2), Wilson’s student R. J. Wyman 
discovered that fly motor neurons innervating different muscles 
do not maintain a fixed phase relative to one another, or relative 
to movements of the wings. However, different neurons innervat-
ing the same muscle do maintain a fixed phase (Wyman, 1965). 
For one pair of muscles that are each innervated by five motor 
neurons, the neurons innervating each muscle fire at precisely the 
same frequency, but at different phases that produce a repeating 
sequence of spikes in the five neurons (Wyman, 1965). Thus, major 
features of neural control of flight were very different in these dif-
ferent classes of insects.

Here, we will first summarize work on four difficult questions 
that arose immediately from Wiersma’s and Wilson’s insights, and 
then consider how the field changed in the following decade.

What neural mechanisms generate these complex 
motor patterns?
How, in terms of neurons and synapses, does the CNS do it? No 
amount of statistical analysis of the motor output could reveal the 
structure of the neural circuits that generated this output. The abil-
ity to record informative results from circuits within the CNS using 
microelectrodes was a decade in the future (Hoyle and Burrows, 
1973; Pearson and Fourtner, 1975). Wilson applied what is today 
computational neurobiology to the problem of pattern-generating 
mechanisms. In an influential paper, Wilson (1966) constructed 
alternative models of both the locust flight controller and the fly 
motor neuron circuit. He used both analog and digital models to 
explore alternative hypotheses about the organization of the locust 
and fly pattern-generating circuits. He demonstrated properties of 
reciprocally inhibitory circuits of two, three, and four integrate-
and-fire neurons. In a paper published in an Engineering journal 
(Wilson and Waldron, 1968), he extended this analysis of the locust 
system and addressed differences in the stability of the output of 
circuits with different numbers of layers.

Turning his attention to the fly’s motor patterns, Wilson (1966) 
proposed that the neurons that innervated each of the muscles 
Wyman had studied were organized by reciprocal inhibitory syn-
apses among members of the pool. This prediction was tested by 
antidromic stimulation of individual motor neurons (Mulloney, 
1970), which reset the sequence of firing as would be expected if the 
circuit of inhibitory synapses occurred among the motor neurons 
themselves. This result was later confirmed repeatedly and extended 
by Wyman’s students (Levine and Wyman, 1973; Harcombe and 
Wyman, 1977).

Hughes and Wiersma (1960) suggested that there was a “center 
of coordination” for each swimmeret, and these centers were 
interconnected to produce the characteristic posterior-to-anterior 

Figure 1 | Coordinated motor output in swimmeret motor nerves 
recorded from isolated abdominal nerve cords of crayfish. (A) Three 
cycles of motor output to the pair of swimmerets on left and right sides of 
one abdominal segment. Firing of axons that innervate power-stroke (PS) 
muscles and return-stroke (RS) muscles can be recorded from separate 
branches of the paired swimmeret nerve. Bursts of spikes occur 
simultaneously in PS axons innervating left and right swimmerets. These 
bursts alternate with bursts in their antagonist RS motor neurons. (B) Eight 
simultaneous recordings that show two cycles of firing of PS axons 

innervating four pairs of swimmerets of four segments of the abdomen. Each 
cycle begins with a burst of spikes in PS axons in the most posterior 
swimmeret ganglion (PS5). PS motor neurons in more anterior ganglia, PS4, 
PS3, PS2, follow in order with increasing lags. In each segment, left and right 
PS bursts occur simultaneously. Note: These recordings are our own work. The 
original figures in Hughes and Wiersma (1960) show only two traces, 
photographed with a 16-mm camera from the screen of a Dumont 322 
oscilloscope. The totality of their observations can be grasped only by comparing 
multiple figures.
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ganglion are the anatomical loci of the “centers of coordination,” 
where alternating bursts of spikes in PS and RS motor neurons are 
organized by local pattern-generating circuits (Figure 3D).

hoW does the cns control these  
pattern-generating circuits?
Hughes and Wiersma (1960) observed that stimulating small bun-
dles of axons dissected from the interganglionic connectives had 
marked effects on expression of the swimmeret motor pattern. 
Wiersma and Ikeda (1964) mapped the locations of five pairs of 
axons in the connectives (out of about 2500 pairs in the whole 
connective) that, if stimulated with regular trains of pulses at 
30–100 Hz, would elicit active expression of the swimmeret motor 
pattern. Stimulating each of three other pairs of axons, at different 
locations in the connective, would promptly inhibit the system. 
This was the first thorough description of command neurons, a 
term they introduced in the title of their paper. The idea of com-
mand neurons as neural components controlling expression of 
specific behaviors was appealing, and was promptly extended to 

progression of PSs in each cycle. This suggestion of “centers of 
 coordination” was borne out by later descriptions of the motor 
innervation of individual swimmerets. Each swimmeret is inner-
vated by a discrete pool of motor neurons in one ganglion. The cell 
bodies of these neurons are located on the same side as the swim-
meret they innervate, anatomically separated from the neurons 
innervating the swimmeret on the contralateral side (Mulloney and 
Hall, 2000; Mulloney et al., 2003). The non-spiking local interneu-
rons that coordinate the neurons in each pool have unilateral struc-
tures. Their branches are restricted to the Lateral Neuropil (Skinner, 
1985), near the base of the swimmeret nerve through which the 
motor axons project to their targets (Heitler and Pearson, 1980; Paul 
and Mulloney, 1985a,b). If conduction of coordinating information 
between Lateral Neuropils is blocked, the circuits on opposite sides 
of each swimmeret ganglion can continue to produce alternating 
oscillations of membrane potentials in functionally antagonistic 
neurons within one Lateral Neuropil, and these oscillations are 
not coordinated with activity in the opposite neuropil (Murchison 
et al., 1993). Thus, the two Lateral Neuropils of each swimmeret 

Figure 2 | Motor patterns that drive flight in locusts and other neurogenic 
insects. (A) Two sections of typical flight motor output recorded as muscle action 
potentials in a flying locust, from Waldron (1967). Electrodes in a wing elevator 
(elev) muscle and a wing depressor (dep) muscle recorded alternating spikes 
from these antagonistic muscles. Since transmission from the motor neurons to 
each muscle is one-for-one (Wilson and Weis-Fogh, 1962), these recordings 
report each spike in the motor neurons that innervate each muscle. These two 
sections of a continuous recording were separated by several seconds during 
which the locust increased its power-output by increasing its wing-beat frequency 
and increasing the numbers of spikes each neuron fired in a cycle from one to 

two or three spikes. (B) Wilson’s diagram of the locust flight motor pattern 
assembled from recordings from forewing and hindwing flight muscles, plotted 
along with the elevation of each wing (Wilson, 1967). The cartoons of the flying 
locust show the wing positions at maximal elevation and depression of the 
fore- and hindwings. (C) Simultaneous recordings from an elevator (elev) and a 
depressor (dep) muscle in an locust whose wings and all wing proprioceptors 
had been removed (cartoon). In response to a steady wind directed toward the 
animal’s head, the motor neurons that innervated these muscles began to fire in 
the characteristic flight pattern, although at a lower wing-beat frequency than 
would an intact locust. Reproduced from Wilson (1964)
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Figure 3 | The neural circuit that coordinates swimmeret movements. 
(A) Simultaneous recordings from PS and RS branches of a nerve innervating 
one swimmeret and from axons of coordinating neurons that project from the 
local circuit that controls firing of the swimmeret’s motor neurons. Bursts of 
spikes occur in the anterior-projecting coordinating axon (ASC) simultaneously 
with each PS burst. These bursts alternate with bursts in the posterior-projecting 
axon (DSC) that occur simultaneously with RS bursts. Each burst in ASC or DSC 
encodes when the corresponding burst of spikes in motor neurons began, how 
long it lasts, and how strong it is (Mulloney et al., 2006). (B) Simultaneous 
recordings of a burst of spikes in an ASC coordinating axon and the EPSPs in a 
ComInt 1 commissural neuron (C1) onto which the ASC axon synapses. The 
cartoon shows the positions of the two recording electrodes on ganglia of the 
abdominal nerve cord preparation. A2, A3, A4, A5: the second through fifth 
abdominal ganglia, each of which innervates a pair of swimmerets. (C) A 
phase-response curve that shows how the phase at which a pulse of 
depolarization in a ComInt 1 neuron affects the period of the local circuit’s 

output. Here, phase is defined as the point in the cycle of PS–RS alternation at 
which the stimulus began. Stimuli early in a cycle, during the PS burst (gray bar), 
prolong the period of the cycle, but later stimuli shorten the period. The period 
difference is the difference between the measured period and the expected 
period if the stimulus had no effect. The dotted horizontal line marks zero 
change. The solid line is a “locally weighted estimate” fit to the data 
(Smarandache et al., 2009). (D) A diagram of the circuit that coordinates local 
pattern-generating circuits in ganglia A2, A3, A4, and A5. In each ganglion, local 
interneurons (1, 2) determine when the PS and RS motor neurons fire. In each 
ganglion, an ASCE and a DSC neuron encode information about the PS and RS 
activity and conduct it to other ganglia. This information converges onto ComInt 
1 neurons (C1) that synapse onto one of the local pattern-generating neurons. 
Colors mark the ganglion in which each coordinating axon originates. Triangles 
symbolizes excitatory synapses; larger triangles mark relatively stronger 
synapses. Small black circles symbolize inhibitory synapses. Arrows show the 
direction of impulse conduction in each coordinating axon.
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to confirm their coordinating capabilities by constructing more 
detailed phase-response curves, and to demonstrate the corre-
lation of the numbers of spikes in each burst with the timing, 
duration, and strengths of simultaneous bursts in motor neurons 
(Mulloney et al., 2006; Mulloney and Hall, 2007). So, Hughes and 
Wiersma’s (1960) suggestions that the system included local “cent-
ers of coordination” that are interconnected to produce effective 
limb movements was correct.

How do these coordinating axons achieve this performance? Since 
in the swimming animal the different swimmerets are synchronized 
to the same period, their local pattern-generating circuits can be 
considered a chain of coupled oscillators (Kopell and Ermentrout, 
1988). Skinner et al. (1997) applied formal coupled oscillator theory 
to the swimmeret system, and described fundamental features that 
ascending and descending coordinating information must have 
in order to synchronize different oscillators so they have the same 
period and the same posterior-to-anterior phase progression like 
that of the swimmerets. To tie these theoretical results together with 
the newly identified coordinating neurons (Namba and Mulloney, 
1999), Skinner and Mulloney (1998b) constructed a cellular model 
of the local pattern-generating circuit, and constructed a series of 
alternative models of the coordinating circuit that couples a chain of 
these local circuits together. These models were interesting because 
they were restricted by physiological and anatomical knowledge of 
the system, and just one of the alternative models performed as did 
the system itself. That model maintained a posterior-to-anterior 
phase progression despite changes in the period of the system’s 
oscillations like those caused by changes in excitation of the real 
system. Thus, that model could be viewed as a prediction of the 
cellular organization of the swimmeret system. Jones et al. then used 
tools from coupled oscillator theory to explain why a coordinating 
circuit like this could preserve stable phase differences in the face 
of large changes in period (Jones et al., 2003; Jones and Kopell, 
2006). This series of computational models not only illuminated 
how Hughes and Wiersma’s “activity fibers” could enable stable 
intersegmental phase differences, but also how the ascending and 
descending “coupling-functions” of coupled oscillator theory could 
be embodied in the bursts of spikes in specific coordinating axons 
(Skinner and Mulloney, 1998a).

In each ganglion to which they project, each of these coor-
dinating axons synapses onto a commissural neuron, ComInt 1 
(Mulloney and Hall, 2003), that integrates the information that they 
transmit and affects the timing and strength of one local circuit’s 
motor output (Mulloney and Hall, 2007). Because of the differ-
ent phases at which ascending and descending coordinating neu-
rons in each local circuit fire and the phase lag between segments 
(Figure 3), bursts of spikes in ascending and descending axons 
from neighboring ganglia arrive simultaneously at each ComInt 
1 (Mulloney and Hall, 2003). These synapses onto ComInt 1 are 
excitatory, and their excitatory postsynaptic potentials (EPSPs) are 
quite brief (Smarandache et al., 2009). The effects of depolarizing 
pulses injected into a ComInt 1 neuron depend on the phase at 
which the pulse occurs; pulses that occur early in the cycle delay the 
next PS burst, but pulses that occur later in the cycle advance the 
next PS burst (Figure 3C). Thus, bursts of spikes in coordinating 
axons from different segments converge onto ComInt 1 neurons 
that integrate the EPSPs these spikes cause, transmit this infor-
mation to local pattern-generating circuits, and so entrain these 

other behaviors (Atwood and Wiersma, 1967; Kennedy and Davis, 
1977). In an elegant paper, Kennedy et al. (1966) performed a key 
control that many later authors skipped: using two extracellular 
electrodes, they recorded from the same axon in different seg-
ments of the body while they also recorded the motor output. 
With this “double-header” method, they could demonstrate that 
a command axon ran continuously between the two electrodes, 
and so was the axon of a long projection neuron, and that the 
effects of stimulation on the motor system appeared only if the 
stimulus was above that axon’s threshold. Later authors neglected 
this control, and the term “command neuron” was sometimes 
applied to neurons whose anatomy and physiology clearly did 
not merit the term. Critics and supporters of the idea began a 
dialectic that continues, and has led to more restricted use of the 
term command neuron (Kupfermann and Weiss, 1978). Despite 
this controversy, Wiersma and Ikeda’s original description of exci-
tatory and inhibitory swimmeret command neurons has been 
confirmed and extended, and excitation by three of the five exci-
tatory command neurons linked to the their release of a peptide 
neurotransmitter (Acevedo et al., 1994).

hoW are pattern-generating circuits located in 
different segments coordinated?
Hughes and Wiersma (1960) also described “activity fibers” that 
fired busts of spikes whenever the system was actively expressing 
the swimmeret motor pattern. These “fibers” could be located at 
specific places in the interganglionic connectives, and were not 
axons of primary sensory afferents projecting within the CNS. 
Kennedy’s student Paul Stein demonstrated that these axons func-
tioned as “coordinating fibers” whose bursts of spikes originated 
in their home ganglion and affected the timing of PS bursts in 
their target ganglion(a). The influence of these bursts depended 
on the phase of the motor pattern at which they arrived, the 
phase-dependent properties that ensure entrainment and coor-
dination of a chain of coupled oscillatory circuits (Stein, 1971, 
1974). Stein’s experiments were technically demanding because 
he had first to find and stimulate excitatory command neurons 
in order to locate and stimulate coordinating fibers; there was no 
other way known to elicit expression of the swimmeret motor 
pattern and with it to activate these axons. The discovery that 
the neuropeptide proctolin and the cholinergic agonist carba-
chol would reliably elicit expression in isolated ventral nerve cord 
preparations (Mulloney et al., 1987; Braun and Mulloney, 1993; 
Chrachri and Neil, 1993) enabled additional analysis of mecha-
nisms of swimmeret coordination.

The characteristic coordination of local circuits that control 
different swimmerets requires information encoded in each 
circuit by two intersegmental projection neurons (Stein, 1971; 
Namba and Mulloney, 1999). The axon of one neuron projects 
anteriorly to targets in more anterior ganglia, and fires a burst 
of spikes simultaneously with each burst in PS motor neurons in 
their home ganglion (Figure 3A). The axon of the second neuron 
projects posteriorly to targets in more posterior ganglia, and fires 
a burst of spikes simultaneously with each burst in RS motor neu-
rons (Tschuluun et al., 2001). Using dye-filled microelectrodes to 
record from and to stimulate individual coordinating neurons in 
their home ganglion while the system was actively generating the 
swimmeret motor pattern allowed us to describe their structures, 
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Phillips, 1967), thoracic ganglia in cockroaches (Pearson, 1972), 
and segmental ganglia in leech (Kristan Jr. and Calabrese, 1976) 
all yielded evidence that CPGs were at work driving swimming, 
walking, breathing, and calling in most animals (Delcomyn, 1980). 
Within the decade, Wilson’s conclusion had begun to shape experi-
mental questions and design even in leading mammalian physiol-
ogy laboratories. Fictive locomotion from isolated spinal cord of 
lamprey was a critical result because it demonstrated unequivocally 
the capacities of spinal CPGs (Cohen and Wallén, 1980). Pearson 
and Rossignol’s meticulous demonstration of fictive locomotion 
in spinal cats challenged the last holdouts for mammalian excep-
tionalism (Pearson and Rossignol 1991), and forced new clinical 
approaches to treating spinal injuries.

With the realization that CPGs were widespread came the need 
to discover how they were structured. Concerted efforts to iden-
tify pattern-generating neurons and their synaptic organization 
– the neural circuits that generated specific motor patterns – often 
encountered technical and biological obstacles. The comprehen-
sive descriptions of the lobster stomatogastric circuitry (Mulloney 
and Selverston, 1974a,b; Selverston and Mulloney, 1974; Maynard 
and Selverston, 1975; Mulloney, 1977; Eisen and Marder, 1982) 
and the swimming circuit in leech (Friesen et al., 1976) exploited 
particularly favorable preparations where we could record synaptic 
interactions among key neurons in preparations that were actively 
expressing the behaviorally significant motor patterns. This link to 
overt behavior that distinguish Hughes and Wiersma (1960) and 
Wilson (1961) remains key to progress in discovering the organiza-
tion of neural circuits of all kinds, and understanding the neural 
basis of natural behaviors.

It is a remarkable commentary on the influence of social 
factors on acceptance of scientific results that the existence of 
CPGs in the mammalian spinal cord had been well demonstrated 
50 years before (Graham Brown, 1911), and essentially ignored by 
received opinion. In 1960, a magisterial review in the Handbook 
of Physiology (Denny-Brown, 1960) made no mention of Graham 
Brown’s papers on locomotion. His papers began to be read again 
and recognized in the renaissance that followed Wilson (1961). 
Stuart and Hultborn (2008) recount the resurrection from obscu-
rity of Graham Brown’s work and ideas by Lundberg (1969), as 
the new perspective on pattern-generation and motor control 
took hold.

Neuroscience as a discipline has often advanced because of 
technical innovations, but less commonly because of theoretical 
achievements. Contemporary research takes as a starting point that 
central neural circuits can produce essential patterned activity, not 
only in motor systems (Grillner, 2006; Marder and Bucher, 2007) 
but even in mammalian cortex (Yuste et al., 2005). The insights in 
Hughes and Wiersma (1960) and Wilson (1961) are one of those 
less common contributions where skillful experiments and astute 
interpretation changed the ways we think about what nervous sys-
tems do and how they are organized.
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circuits to the same period. We think that the systematic differences 
in strengths of synapses in this coordinating circuit (Smarandache 
et al., 2009), combined with differences in the numbers of spikes 
per burst in coordinating axons from different segments (Mulloney 
et al., 2006), are the basis for the posterior-to-anterior progression 
of PS bursts (Figure 1B).

if cpgs can produce the effective motor patterns 
needed for most behaviors, Why do animals have so 
many proprioceptive reflexes?
The discovery that many behaviors in many kinds of animals were 
driven by centrally generated motor patterns, and that sensory 
reflexes were gated by these central circuits led many students of 
the time to dismiss the contributions of reflexive information to 
natural behaviors. Wilson himself fell into this error for a while, 
but then realized the mistake. In a paper remarkable both for 
experimental design and clarity of thought (Wilson, 1968), he 
demonstrated two independent factors that could make a motor 
pattern maladaptive: individual developmental asymmetries and 
unpredictable environmental or life-history events. Using flying 
locusts free to roll about their anterior–posterior axis, he showed 
experimentally that if an animal could detect the maladaptive 
behavior these factors caused, it would promptly modify its motor 
output to correct the error. He showed that proprioceptive infor-
mation, vision from both ocelli and compound eyes, and wind-
receptors on the head could each contribute to effective flight, that 
the flight system could continue effectively if any single sensory 
component was eliminated, and that the system failed only gradu-
ally as these sources of information were progressively eliminated 
one-by-one (Wilson, 1968).

The first understanding of how the locust CNS integrated exte-
roceptive information to tune the flight motor output followed 
Martin Wilson’s description of the optics of locust ocelli and their 
detection of pitch and roll about the animal’s major body axes 
(Wilson, 1977). A remarkable study used microelectrodes in flying 
preparations (Robertson and Pearson, 1982) to record integra-
tion of activity in descending ocellar interneurons (Rowell and 
Reichert, 1986) by the local thoracic flight CPGs. This ocellar activ-
ity is inherently aperiodic, but to tune the motor output to cor-
rect for pitch or roll required that it affect elevator and depressor 
motor neurons at different phases in the flight pattern (Figure 2B). 
Reichert and Rowell (1985, 1986) demonstrated that the aperiodic 
descending input makes EPSPs with these motor neurons that 
must sum with periodic excitation from the local CPG in order 
to cause firing in the postsynaptic neuron. This periodic excita-
tion from the CPG reaches antagonistic motor neurons at differ-
ent phases in each cycle, so the descending signals can affect the 
strengths of motor output without disrupting phase coordination 
of antagonistic motor neurons.

the impact of this Work on our concepts of the 
neural basis of natural behaviors
There was at first a natural tendency to think of CPGs as a fea-
ture limited to arthropod locomotion in fluid media – air and 
water. Then, experimental deafferentation of whole limbs in newts 
(Szekely et al., 1969), vocal apparatus in birds (Murphey and 
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