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Declines in mitochondrial functions are associated with aging. The combi-

nation of 5-aminolevulinic acid (5-ALA) and sodium ferrous citrate (SFC)

improves mitochondrial functions in cultured cells. In this study, we inves-

tigated the effects of dietary supplementation with 5-ALA and SFC (5-

ALA/SFC) on the healthspan and life span of Drosophila melanogaster.

Adult Drosophila fruit flies were fed cornmeal food containing various con-

centrations of 5-ALA/SFC. Locomotor functions, life span, muscle archi-

tecture, and age-associated changes in mitochondrial function were

analyzed. We found that feeding 5-ALA/SFC mitigated age-associated

declines in locomotor functions and extended organismal life span. More-

over, 5-ALA/SFC preserved muscle architecture and maintained the mito-

chondrial membrane potential in aged animals. Since 5-ALA phosphate/

SFC is used as a human dietary supplement, our results suggest that it

could be used to slow the age-related declines in muscle functions, prevent

age-associated clinical conditions such as frailty, and extend healthspan

and life span.

Aging can be defined as the progressive deterioration of

the functional properties of cells, tissues, and organs over

a life span [1]. Cumulative declines in multiple physiolog-

ical systems perturb homeostasis and adaptability to

internal and external stresses, resulting in increased vul-

nerability to disease and mortality [2]. Among the prob-

lematic features of aging, frailty is a common clinical

syndrome characterized by increased vulnerability to dis-

ease and mortality due to a decline in the functions of

physiological systems. The ability to cope with daily and

acute stressors is compromised, which increases the risk

of poor health outcomes such as falls, injuries, and

mortality [3]. The physical aspects of the frailty pheno-

type include low grip strength, gait speed, and muscle

mass, which overlap with the symptoms of sarcopenia

[4]. Although fragility is of increasing concern as popula-

tions age, therapeutic interventions for frailty and other

age-related conditions are limited.

The age-associated physiological decline is linked

with mitochondrial dysfunctions [1,5,6]. In aged tis-

sues, the activity of mitochondrial enzymes is reduced,

respiratory capacity is lower, and there is increased

production of reactive oxygen species (ROS). A reduc-

tion in mitochondrial function is particularly
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prominent in highly oxidative tissues such as skeletal

muscle [7].

Mitochondrial respiratory chain complexes II, III,

and IV, and cytochrome c contain heme; heme defi-

ciency may be an underlying cause of age-associated

mitochondrial dysfunction [8]. The biosynthesis of

heme, which is a porphyrin ring complexed with fer-

rous iron and protoporphyrin IX, starts in mitochon-

dria with the condensation of succinyl-CoA with the

amino acid glycine to generate 5-aminolevulinic acid

(5-ALA). This process is mediated and rate-limited by

ALA synthase [9]. Heme synthesis, ALA synthase

expression, and 5-ALA levels decline with increasing

age [10,11]. Treatment of cultured mouse cells and

human fibroblasts with 5-ALA and sodium ferrous

citrate (SFC) increases the activity of cytochrome c

oxidase, the expression of oxidative phosphorylation

complexes III, IV, and V, the oxygen consumption

rate, and the production of ATP [12–14]. Thus, we

hypothesized that 5-ALA treatment would protect

muscle function by increasing mitochondrial ATP syn-

thesis during aging.

In this study, we investigated the effects of 5-ALA/

SFC on age-related declines in physical activity and life

span using the fruit fly Drosophila melanogaster. Droso-

phila is a genetically tractable model system with the

relatively short life span and is used to study human

diseases and aging. Age-associated dysfunctions are

prominently observed in the muscle [15]. Here, we

report that supplementation of food with 5-ALA/SFC

significantly mitigated age-associated locomotor decline,

extended the organismal life span, improved sarcomere

structure, and maintained the mitochondrial membrane

potential in aged muscle tissue.

Methods

Fly stocks and husbandry

Adult flies (w1118) were maintained in standard cornmeal

media (10% glucose, 0.7% agar, 9% cornmeal, 4% yeast

extract, 0.3% propionic acid, and 0.1% n-butyl p-

hydroxybenzoate) containing 5-ALA/SFC at 25 °C under

light–dark cycles of 12 : 12 h. The flies were transferred to

fresh food vials for every 2–3 days.

5-ALA/SFC feeding

Flies were raised on the regular cornmeal. After eclosion,

male flies were maintained on regular cornmeal food mixed

with 5-ALA/SFC at the indicated concentration. Flies were

placed at 30 flies/vial, and food vials were changed every

2–3 days.

Chemicals

5-ALA hydrochloride (neo ALA Co. Ltd, Tokyo, Japan)

and SFC (Komatsuya Corporation, Osaka, Japan) were pro-

vided by SBI Pharmaceuticals Co., Ltd. (Tokyo, Japan)

Phalloidin (Sigma-Aldrich, St. Louis, MO, USA), TOPRO-3

(Invitrogen, Waltham, MA, USA), anti-ATP5A (Abcam,

Cambridge, UK), MitoTracker Deep Red FM (Thermo

Fisher, Waltham, MA, USA), MT-1 MitoMP Detection Kit

(DOJINDO LABORATORIES, Kumamoto, Japan), anti-4-

hydroxynonenal (4-HNE; Abcam), Alexa Fluor 488 anti-

mouse IgG (Thermo Fisher), Alexa Fluor 488 anti-rabbit

IgG (Thermo Fisher), sucrose, Tris, MgCl2, aminohexanoic

acid, Bis-Tris, Coomassie Blue G (FUJIFILM Wako Pure

Chemical, Osaka, Japan), Triton X-100 (Sigma), anti-citrate

synthase (CISY11-A; Alpha Diagnostics, San Antonio, TX,

USA), anti-rabbit IgG HRP-Linked Whole Ab Donkey (GE

Healthcare, Chicago, IL, USA), and ImmunoStar LD

(FUJIFILM Wako Pure Chemical) were purchased.

Quantification of 5-ALA levels in the fly food

5-ALA levels were analyzed as previously described with a

modification [16]. Briefly, fly food was mixed with 8 times vol-

ume of water and centrifuged (2655 g, 10 min at 4 °C). The
supernatant was collected and the process was repeated, and

subjected to fluorometric analysis as described in Ref. [16].

Climbing assay

The climbing assay was performed as previously described

[17]. Approximately 30 flies were placed in an empty plastic

vial (2.5 cm in diameter 9 8 cm in length). The vial was

gently tapped to knock the flies to the bottom, and the

height that the flies climbed in 10 s after tapping to the

bottom of the vials was measured. Experiments were

repeated more than three times, and a representative result

was shown. Food vials were changed every 2–3 days.

Life span analysis

Food vials containing approximately 25 flies were placed

on their sides at 25 °C under conditions of a 12-h : 12-h

light : dark cycle. Food vials were changed every 2–3 days,

and the number of dead flies was counted each time. At

least three vials for each genotype were prepared.

Phalloidin staining

The thoracic muscles of male flies were dissected in cold

Schneider’s Drosophila medium (SDM; Thermo Fisher Sci-

entific). First, an incision was made in the middle of the

thorax, and then, indirect flight muscles were dissected

from the thorax. The muscles were then fixed with 4%

paraformaldehyde (Wako) for 30 min at room temperature,
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incubated with 2 µg�mL�1 phalloidin/tetramethylrhodamine

B isothiocyanate peptide (Sigma-Aldrich) in PBS overnight

on a shaker at 4 °C, and imaged under a laser confocal

microscope (Zeiss LSM 710, Oberkochen, Germany) and

analyzed with IMAGEJ [18].

Blue NativePAGE

Blue NativePAGE to analyze mitochondrial respiratory

chain protein was carried out as described with a modifica-

tion [19,20]. Thorax from 35 flies was homogenized in 1 ml

of chilled mitochondrial isolation medium (250 mM sucrose,

10 mM Tris/HCl (pH 7.4), 0.15 mM MgCl2). The samples

were centrifuged twice for 10 min at 600 g at 4 °C to

remove debris. The supernatant was centrifuged again for

10 min at 7000 g at 4 °C. For BN-PAGE analyses, the Nati-

vePAGE Novex Bis-Tris Gel System (Life Technologies,

Carlsbad, CA, USA) was used according to the manufac-

turer’s protocol. Mitochondrial fractions were solubilized in

sample buffer (50 mM NaCl, Tris-HCl (pH 7.4) and 1% Tri-

ton X-100). After centrifugation for 5 min at 17,800 g at

4 °C, the supernatants were collected. Mitochondrial protein

levels were determined using a BCA assay. 30 µg mitochon-

drial protein was mixed with 109 loading dye solution (5%

Coomassie Blue G, 1 M aminohexanoic acid, 100 mM Bis-

Tris) and separated on 3%–12% NativePAGE gels. Gels

were stained with Coomassie Blue.

Western Blot

10 µg of mitochondrial protein was separated by 4–15% poly-

acrylamide gel electrophoresis, transferred to polyvinylidene

difluoride membranes using the Trans-Blot� Turbo Transfer

System (Bio-Rad Laboratories, Hercules, CA, USA), and

incubated with antibodies. Immunolabeled proteins were

detected using a chemiluminescence kit (ImmunoStar LD) and

a lumino-image analyzer [ChemiDoc MP System (Bio-Rad

Laboratories)]. The primary antibodies used were rabbit anti-

citrate synthase. The secondary antibodies used were anti-

rabbit IgG HRP-Linked Whole Ab Donkey (GE Healthcare).

Citrate synthase activity assay

Thoraxes from the 20 flies were homogenized, and citrate

synthase activity was measured by using Citrate Synthase

Activity Colorimetric Assay Kit (BioVision, Milpitas, CA,

USA) according to the manufacturer’s manual. Protein

levels were measured with the BCA Protein Assay Kit

(Thermo Fisher Scientific).

Bilirubin assay

Twenty thoraxes were homogenized, and bilirubin levels

were measured by using Bilirubin Assay Kit (Cell Biolabs,

Inc., San Diego, CA, USA) according to the manufac-

turer’s instruction.

qRT-PCR

Total RNA of the 20 thoraxes was purified according to

the protocol provided with the RNeasy Plus Universal

Mini Kit (Qiagen, Hilden, Germany). The amount and pur-

ity of the total RNA were measured using the NanoDrop

One Spectrophotometer (Thermo Scientific). cDNA was

synthesized from 0.5 lg of total RNA using the High

Capacity RNA-to-cDNA Kit (Life Technologies). The

expression level of each gene was measured using the

PowerUp SYBR Green Master Mix (Life Technologies)

and the StepOnePlus Real-Time PCR System (Life Tech-

nologies). Expression of genes of interest was standardized

relative to rp49. Primers were designed using DRSC FlyPri-

merBank (Harvard Medical School, Boston, MA, USA).

Primer sequences are shown in Table S1.

Analysis of mitochondrial morphology

Male flies were anesthetized, and the indirect flight muscle

was dissected in cold SDM. The muscles were then fixed

for 30 min with 4% paraformaldehyde at room tempera-

ture. After fixation, samples were washed three times with

0.1% PBST (0.1% triton in 19 PBS) for 5 min each time.

The samples were blocked with 1% normal goat serum

(NGS)/0.1% PBST for 30 min at room temperature. The

samples were then incubated with anti-ATP5A antibody

(1 : 250; Abcam) in 1% NGS/0.1% PBST overnight at

4 °C. The next day, the samples were washed three times

for 5 min in 0.1% PBST and then incubated in 1% NGS

with 0.1% PBST containing Alexa Fluor 488 anti-mouse

IgG (Thermo Fisher) at room temperature for 3 h. Subse-

quent to this, the samples were washed three times in 0.1%

PBST and mounted in VectaShield mounting medium (Vec-

tor Laboratories, Burlingame, CA, USA). Images were cap-

tured using a laser confocal microscope (Zeiss LSM 710)

and analyzed with ImageJ [18].

Mitochondrial membrane potential assay

Male flies were anesthetized, and the indirect flight muscles

were dissected in cold SDM. The muscles were then incu-

bated in SDM containing 100 nM MitoTracker Deep Red

FM (Thermo Fisher Scientific) and MT-1 Dye (1 : 1000;

DOJINDO LABORATORIES) for 30 min at room tem-

perature. Samples were washed three times for 5 min each

time with SDM, and fixed with 4% paraformaldehyde for

40 min at room temperature. After fixation, the samples

were washed three times for 5 min each time with SDM.

The samples were imaged under a laser confocal micro-

scope (Zeiss LSM 710) and analyzed with ImageJ [18].
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4-HNE staining

Male flies were anesthetized, and the indirect flight muscles

were dissected in cold SDM. The muscles were then fixed

for 40 min with 4% paraformaldehyde at room tempera-

ture. After fixation, samples were washed three times with

0.1% PBST (0.1% triton in 19 PBS) for 5 min each time.

The samples were blocked with 1% NGS/0.1% PBST for

5 h at room temperature. The samples were then incubated

with anti-4-HNE antibody (1 : 100; Abcam) in 1% NGS/

0.1% PBST overnight at 4 °C. The next day, the samples

were washed three times for 15 min in 0.1% PBST. Alexa

Fluor 488 anti-rabbit IgG (Thermo Fisher) and phalloidin

were then added to the samples, and kept at room tempera-

ture for 3 h. Subsequent to this, the samples were washed

three times in 0.1% PBST and mounted in VectaShield

mounting medium (Vector Laboratories). Images were cap-

tured using a laser confocal microscope (Zeiss LSM 710)

and analyzed with IMAGEJ [18].

Statistics

Statistics were done with Microsoft Excel (Microsoft, Red-

mond, WA, USA), Statcel-the Useful Addin Forms on

Excel-3rd ed. (OMS Publishing, Tokyo, Japan), Proc Lifet-

est of SAS version 9.4 (SAS, Cary, NC, USA), GRAPHPAD

PRISM9 (GraphPad Software, MDF Co. Ltd, Tokyo,

Japan), and R (R Core Team, 2021) [21]. Differences were

assessed using one-way ANOVA or logrank test followed

by Dunnett’s test or Tukey’s HSD. P values < 0.05 were

considered statistically significant.

Results

5-ALA is stable in fly food for up to 2 weeks

To examine the effect of 5-ALA on aging and life

span, we maintained flies on a diet of cornmeal food

containing 5-ALA and SFC. The addition of 5-ALA

(100 µM or higher) and SFC to the culture medium of

cells significantly increases the cellular oxygen con-

sumption rate [12]. However, it is not clear whether 5-

ALA/SFC mixed with food is efficiently absorbed and

distributed to fly tissues. Since the concentration of

dietary chemicals used in most fly studies is higher

than the concentrations of chemicals used in cultured

cells [22–26], we prepared food containing 0.05, 0.5, 5,

and 50 mM 5-ALA hydrochloride combined with SFC

at a ratio of 20 : 1.

We analyzed the stability of 5-ALA in the food

media with or without flies. 5-ALA was stable for at

least two weeks in fly food stored at 25 or 4 °C
(Table 1). Moreover, the 5-ALA concentration did not

reduce when flies were raised in food (Table 2), indi-

cating that the presence of fly excrement does not

affect the 5-ALA concentration in food.

5-ALA/SFC ameliorates the age-related decline in

locomotor activity

We used a climbing assay [27], which is a robust behav-

ioral assay that takes advantage of innate negative geo-

taxis behavior, to analyze the effects of 5-ALA/SFC on

the age-related declines in locomotor function. Flies

were raised in regular cornmeal food and after eclosion

were maintained in cornmeal food containing various

concentrations of 5-ALA and SFC. Flies maintained on

regular food begin to show an age-dependent decline in

climbing ability around 3 weeks of age [27]. Supplemen-

tation of the diet with 5-ALA/SFC significantly

improved the locomotor activity of 3-week-old flies in a

dose-dependent manner (Fig. 1). Locomotor function

was significantly improved by 0.05 mM 5-ALA and

Table 1. 5-ALA is stable in fly food for up to 2 weeks. Fly food was mixed with 50 mM 5-ALA and 2.5 mM SFC. The concentration of 5-ALA

was analyzed on the day on which the food was prepared (day 0) and after it had been stored for 1 week (day 7) or 2 weeks (day 14) at 4

or 25 °C. The concentration of 5-ALA in food stored at 25 °C was higher due to water evaporation (see the column headed ‘relative weight

of food’). The expected concentrations of 5-ALA without water evaporation are shown in brackets.

Amount of 5-ALA in 100 g of food (g) Relative weight of food (%) 5-ALA concentration (mM)

Theoretic al value Day 0 Day 7 Day 14 Day 0 Day 7 Day 14 Theoretical value Day 0 Day 7 Day 14

4 °C 0.60 0.54 0.54 0.53 100 99 98 50 44.5 44.5 44.0

25 °C 0.70 0.88 77 58 58.2 (49.2) 73.0 (50.8)

Table 2. 5-ALA is stable in food containing cultured flies. Flies

were cultured in food containing 5-ALA at 25 °C. When next-

generation flies eclosed after 10 days (day 10), flies and larvae

were removed from the food, and the 5-ALA concentration was

analyzed.

Amount of 5-ALA in

100 g of food (g)

5-ALA concentration

(mM)

Day 0 Day 10 Day 0 Day 10

25 °C with fly 0.52 0.66 52.5 67.5
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0.0025 mM SFC and was further improved by higher

concentrations (Fig. 1). These results suggest that diet-

ary supplementation with 5-ALA/SFC counteracts an

age-related physiological decline.

5-ALA/SFC extends life span

Next, we analyzed the effect of dietary 5-ALA/SFC sup-

plementation on life span. The life span of flies main-

tained on food containing 5 mM 5-ALA and 0.25 mM

SFC or 50 mM 5-ALA and 2.5 mM SFC was significantly

extended (P < 0.001, n = 214–231, logrank test). The

maximum life span of control flies was 57 days, while the

maximum life span of flies fed food containing 5 mM 5-

ALA and 0.25 mM SFC was 60 days, and the maximum

life span of flies fed food containing 50 mM 5-ALA and

2.5 mM SFC was 65 days (Fig. 2). These results indicate

that 0.5 mM 5-ALA/0.025 mM SFC extends healthspan,

and 5 mM 5-ALA/0.25 mM SFC or higher concentrations

extend both healthspan and life span.

5-ALA/SFC maintains muscle architecture during

aging

Muscle integrity is essential for locomotor function

and declines during aging [28]. We analyzed the

Fig. 1. 5-ALA/SFC ameliorates the age-

associated decline in the locomotor

activity of flies. Flies (22 days old) were

tapped to the bottom of a vial, and the

percentages of flies located at the top,

middle, and bottom of the vial after 10 s

were calculated. Data are expressed as

mean � SE. Numbers in the bars indicate

sample size (number of flies); **P < 0.01;

one-way ANOVA followed by Dunnett’s

test.

Fig. 2. 5-ALA/SFC extends life span. Flies were raised on regular cornmeal food then maintained on food containing the indicated

concentrations of 5-ALA and SFC after eclosion. The percentage of surviving flies was determined on various days (indicated on the

x = axis) after eclosion. Numbers in parentheses indicate sample size (the number of flies). ***P < 0.005, logrank test.
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sarcomere structure in the indirect flight muscles of

aged flies treated with or without 5-ALA/SFC. Muscle

architecture was disordered in control flies by 35 days

of age. Sarcomere structures were disrupted in aged

flies (arrows), but not in young flies (Fig. 3A, compare

0 mM 5-ALA/0 mM SFC at 1 and 35 days). In flies fed

food containing 5-ALA/SFC, sarcomeres were more

clearly observed (Fig. 3A, P < 0.005, compare 0 mM

5-ALA/0 mM SFC and 0.5 mM 5-ALA/0.025 mM SFC

or 50 mM 5-ALA/2.5 mM SFC in 35-day-old flies).

The number, size, and arrangement of myonuclei

are associated with muscle function [29]. Myonuclei in

the center of the myofiber are called central nuclei;

they are associated with myofibers that have degener-

ated and regenerated, and are a prominent feature of

aged skeletal muscle in mice [11–16]. We found that

the density of myonuclei was greater in aged flies than

in young flies (Fig. 3B, compare 1-day-old flies 0 mM

5-ALA/0 mM SFC and 35-day-old flies 0 mM 5-ALA/

0 mM SFC, P < 0.006). By contrast, there was no sig-

nificant difference in myonuclear density between

young and aged flies supplemented with 5-ALA/SFC

(P > 0.05 between 1-day-old flies 0 mM 5-ALA/0 mM

SFC and 35-day-old flies 0.5 mM 5-ALA/0.025 mM

SFC, or between 1-day-old flies 0 mM 5-ALA/0 mM

SFC and 35-day-old flies 50 mM 5-ALA/2.5 mM SFC).

These results suggest that the muscle of aged flies

treated with 5-ALA/SFC maintains a key feature,

namely myonuclear density, which is usually associated

with young muscle.

5-ALA/SFC maintains mitochondrial membrane

potential

Mitochondrial dysfunctions occur in aged muscle tis-

sues [15]. We sought to determine whether the protec-

tive effects of 5-ALA/SFC are accompanied by

improved mitochondrial functions. Analyses of the

expression of mitochondrial respiratory complexes by

blue NativePAGE showed that the aged flies with or

without 5-ALA/SFC expressed similar levels of mito-

chondrial respiratory complexes (Fig. 4A). The levels

of mRNA coding respiratory chain proteins such as

ND42, SdhA, UQCRC2, COX4, and ATP5A were

further analyzed by qRT-PCR. 5-ALA/SFC increased

the levels of mRNA coding SdhA, UQCRC2, and

COX4 but not the levels of ND42 or ATP5A

(Fig. 4B). The levels and activity of citrate synthase

were similar with or without 5-ALA/SFC treatment

(Fig. 4A,C), suggesting that 5-ALA/SFC does not

alter mitochondrial activity. Mitochondrial dynamics,

such as fission and fusions, act as quality control

mechanisms and decline during aging [30]. We ana-

lyzed mitochondrial morphology by immunostaining

with anti-ATP5A and found that 5-ALA/SFC feeding

did not affect mitochondrial size in the indirect flight

muscle in aged flies (Fig. 4D). We also investigated

whether 5-ALA/SFC affects overall heme metabolism

in flies. Treatment with 5-ALA/SFC feeding did not

significantly change the levels of bilirubin, the cata-

bolic product of heme metabolism (Fig. 4E).

Finally, we analyzed the mitochondrial membrane

potential by staining dissected tissues with mitochondrial

membrane potential-sensitive dyes. We used Mito-

Tracker, whose accumulation in mitochondria is depen-

dent upon their membrane potential and preserved after

fixation. We found that the MitoTracker signal intensity

was significantly increased in the muscles in aged flies

and was reduced by 5-ALA/SFC (Fig. 4F, compare

0 mM 5-ALA/0 mM SFC and 0.5 mM 5-ALA/0.025 mM

SFC or 50 mM 5-ALA/2.5 mM SFC). We also used

MT-1, another cationic dye sequestered to mitochondria

by their membrane potential [31]. MT-1 signals in young

animals and those in aged animals were not significantly

different, while 5-ALA/SFC significantly reduced them

(Fig. 4F, compare 0 mM 5-ALA/0 mM SFC and 50 mM

5-ALA/2.5 mM SFC).

The rate of ROS production depends on mitochon-

drial membrane potential, and hyperpolarization of

mitochondria could lead to an increase in ROS pro-

duction [32]. 5-ALA/SFC may preserve the mild depo-

larization of the mitochondrial inner membrane to

reduce ROS production. To test this hypothesis, we

analyzed ROS levels by using 4-HNE, a product of

lipid peroxidation and a biomarker of oxidative stress

[33]. The aged flies exhibited significantly increased 4-

HNE staining, indicating increased oxidative damage

(Fig. 4G, compare 1 and 35 days with 0 mM 5-ALA/

Fig. 3. 5-ALA/SFC maintains muscle integrity. (A) Indirect flight muscles were dissected from young (1 day old) or aged (35 days old) flies

and stained with phalloidin (red) to detect sarcomeres. The disruption of sarcomere structures in aged muscles is indicated by the arrows.

Representative images are shown in the top panel, and quantitation of the data is shown in the bottom panel. Data are expressed as

mean � SE, n = 6; *P < 0.05, ***P < 0.005; one-way ANOVA followed by Tukey’s test. Scale bar = 20 µm. (B) Nuclei in the indirect flight

muscles were stained with TOPRO-3 (magenta). Representative images are shown in the top panel, and quantitation of the data is shown

in the bottom panel. (Left) Number of nuclei; (Right) the size of nuclei. Numbers in the bars indicate the sample size (the number of muscle

samples). Data are expressed as mean � SE; **P < 0.01, ***P < 0.005; one-way ANOVA followed by Tukey’s test. Scale bar = 50 µm.
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0 mM SFC, P < 0.001). By contrast, no or less signifi-

cant differences in 4-HNE signal were found between

young flies and aged flies on the diet containing 5-

ALA/SFC (compare 1-day-old 0 mM 5-ALA/0 mM

SFC and 35-day-old 0.5 mM 5-ALA/0.025 mM SFC,

or 1-day-old 0 mM 5-ALA/0 mM SFC and 35-day-old

50 mM 5-ALA/2.5 mM SFC). These results suggest that

the supplementation of 5-ALA/SFC counteracts the

age-associated decline in the mechanisms regulating

mitochondrial activities.

Discussion

Administration of 5-ALA/SFC ameliorates mitochon-

drial dysfunction in fibroblasts from individuals with

mitochondrial diseases [12] and in white adipose tissue

from mice with diet-induced obesity [13]. Treatment

with 5-ALA/SFC also improves muscle function in

mice with sarcopenia and in a mouse model of chronic

kidney disease [34]. Here, we report for the first time

that 5-ALA/SFC protects against organismal aging.

The muscle architecture in aged flies treated with 5-

ALA/SFC was similar to that in young animals

(Fig. 3); this effect of 5-ALA/SFC on muscle architec-

ture may contribute to its protective effects on age-

dependent declines in locomotion (Fig. 1).

Reactive oxygen species induce oxidative damage to

cellular macromolecules due to their high chemical reac-

tivity and are believed to be a significant cause of aging

[35]. The respiratory chain is the primary production

site of superoxide, and ROS are formed as a by-

product of oxidative phosphorylation [35]. The rate of

ROS production depends on mitochondrial membrane

potential and the activity of the respiratory complexes

[32]. Dissipation of the mitochondrial membrane poten-

tial could increase ROS generation when respiration is

inhibited [36]. On the contrary, hyperpolarization of

mitochondria can also lead to ROS production [32,37].

In fact, mild depolarization of the mitochondrial inner

membrane has been reported as a defense mechanism

that prevents oxidant-mediated damage by reducing

mitochondrial ROS generation through an ADP-

recycling mechanism [36,38–40]. This mild depolariza-

tion decreases during aging in the skeletal muscle of

mice [41], suggesting that elevated oxidative damages

with aging may be partly caused by the loss of mild

depolarization of the mitochondrial inner membrane. In

agreement with this, we found that 5-ALA/SFC treat-

ment reduced the mitochondrial membrane potential

and oxidative damages in the aged muscles (Fig. 4).

These results suggest that 5-ALA/SFC has a novel

mechanism of action that benefits physical functions.

Further analyses of the molecular mechanisms by which

5-ALA/SFC regulates mitochondrial membrane poten-

tial would enhance our understanding of the roles of

mitochondria in aging.

5-ALA is a natural delta amino acid widely present

in nature [42]. In addition, 5-ALA/SFC is consumed

as a dietary supplement in several countries [43,44].

Age-associated conditions such as frailty are caused by

cumulative damage over a long time [45], so a dietary

supplement might be a suitable format for preventing

age-associated conditions. Our results suggest that 5-

ALA/SFC is a possible therapeutic intervention for

preventing frailty in elderly people.

Conclusions

Oral administration of 5-ALA/SFC mitigates age-

dependent declines in locomotor function, extends life

span, and maintains muscle architecture and mito-

chondrial membrane potential in aged Drosophila. Our

Fig. 4. 5-ALA/SFC maintains the mitochondrial membrane potential in the aged muscle. (A) (Top panel) Blue NativePAGE of thorax from

male flies at 35 days old. (CI, complex I; CV, complex V; CIII, complex III; CIV, complex IV; CII, complex II). (Bottom panel) Western blot

analysis of the samples with an anti-citrate synthase antibody. n = 3 and a representative image is shown. (B) 5-ALA/SFC slightly increased

the levels of mRNA of mitochondrial enzymes. qRT-PCR from the thorax of flies at 35 days old. Data are expressed as mean � SE, n = 3;

*P < 0.05, **P < 0.01; one-way ANOVA followed by Dunnett’s test. (C) Treatment with 5-ALA/SFC did not alter citrate synthase activity.

Citrate synthase activity was normalized to protein levels and shown as the ratio relative to flies not treated with 5-ALA/SFC. The data

shown are from an average of two independent experiments. (D) 5-ALA/SFC did not affect mitochondrial sizes significantly. Indirect flight

muscles were dissected from young (1 day old) or aged (35 days old) flies and stained with an anti-ATP5A antibody (green) to detect

mitochondria. Representative images are shown on the left, and quantitation of the data is shown on the right. Data are expressed as

mean, n = 3; P > 0.05; chi-squared test. Scale bar = 10 µm. (E) Treatment with 5-ALA/SFC did not alter bilirubin levels. Bilirubin levels were

normalized with protein levels and expressed as the ratio relative to the flies not treated with 5-ALA/SFC treatment. Data are expressed as

mean � SE, n = 3; P > 0.05; one-way ANOVA followed by Dunnett’s test. (F) Indirect flight muscles were stained with the mitochondrial

dye MitoTracker Deep Red FM (green) and MT-1 (red). Representative images (left) and quantification of the signal intensity (right) are

shown. Data are expressed as mean � SE, and numbers in the bars indicate n; ****P < 0.0001; one-way ANOVA followed by Tukey’s test.

Scale bar = 10 µm. (G) The indirect flight muscles were stained with an anti-4-HNE antibody (green) and phalloidin (red). Representative

images (left) and quantification of the areas of 4-HNE aggregates in the muscle (right) are shown. Data are expressed as mean � SE,

n = 25; *P < 0.05, ****P < 0.0001; one-way ANOVA followed by Tukey’s test. Scale bar = 10 µm.
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results also suggest that 5-ALA/SFC supports the

maintenance of the mitochondrial membrane potential

and suppresses ROS generation. Together, our findings

suggest that 5-ALA/SFC may be a possible therapeutic

intervention for age-related declines in muscle func-

tions and for preventing important symptoms of aging

such as frailty.
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