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Background: Glioblastoma (GBM) is the most common and malignant type of brain
tumor. A large number of studies have shown that the immunotherapy of tumors is
effective, but the immunotherapy effect of GBM is not poor. Thus, further research on the
immune-related hub genes of GBM is extremely important.

Methods: The GBM highly correlated gene clusters were screened out by differential
expression, mutation analysis, and weighted gene co-expression network analysis
(WGCNA). Least absolute shrinkage and selection operator (LASSO) and proportional
hazards model (COX) regressions were implemented to construct prognostic risk models.
Survival, receiver operating characteristic (ROC) curve, and compound difference analyses of
tumor mutation burden were used to further verify the prognostic risk model. Then, we
predicted GBM patient responses to immunotherapy using the ESTIMATE algorithm, GSEA,
and Tumor Immune Dysfunction and Exclusion (TIDE) algorithm.

Results: A total of 834 immune-related differentially expressed genes (DEGs) were
identified. The five hub genes (STAT3, SEMA4F, GREM2, MDK, and SREBF1) were
identified as the prognostic risk model (PRM) screened out by WGCNA and LASSO
analysis of DEGs. In addition, the PRM has a significant positive correlation with immune
cell infiltration of the tumor microenvironment (TME) and expression of critical immune
checkpoints, indicating that the poor prognosis of patients is due to TIDE.

Conclusion: We constructed the PRM composed of five hub genes, which provided a
new strategy for developing tumor immunotherapy.

Keywords: biomarker, infiltrated immune cell, glioblastoma, prognostic risk model, tumor immune
microenvironment

INTRODUCTION

Glioblastoma (GBM) accounts for 45.2% of primarymalignant tumors in the central nervous system (Louis
et al., 2016). GBM has remarkable communication ability with the tumor microenvironment (TME) and
heterogeneity, which show a significant role in proliferation, invasion, and migration (Li G et al., 2017).
Although significant progress has beenmade in the treatment of GBM, including surgery, radiotherapy, and
chemotherapy, the prognosis of GBM is still unsatisfactory (Sathornsumetee et al., 2007; Onishi et al., 2011).

At present, immunotherapy for glioma is the most agreeable option, and a lot of related research is
underway, such as programed cell death 1 ligand 1 (PDL-1) (Mathios et al., 2016), indoximod (IDO)
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(Lukas et al., 2019), and cytotoxic T lymphocyte antigen 4
(CTLA-4) (Fong et al., 2012). Increasing evidence shows that
the effect of immunotherapy is not only related to tumor cells but
also to the tumor microenvironment (TME) (Wu and Dai, 2017).
Recent research has found that new immunoresponse therapies
improve the prognosis of patients by enhancing the ability of the
human immune system to recognize and attack tumor cells (Pitt
et al., 2016; Gieryng et al., 2017).

In this study, we screened immune-related DEGs that are closely
related to GBM and determined its prognostic value so as to
investigate new GBM predictive models and potential biomarkers.
Next, based on the TCGA database and CGGA database, a five-gene
PRM that may be involved in immune infiltration was constructed.
In addition, independent prognostic analysis, ROC curve and tumor
mutation load analysis, and nomogram further verified the effect of
the PRM in prognostic prediction. A robust immune-related PRM
has been identified as an effective independent prognostic indicator
for the subsequent personalized treatment of GBM.

MATERIALS AND METHODS

Patients and Datasets
The gene expression matrix data, sample gene mutation data, and
clinical information were downloaded from The Cancer Genome

Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA). The
CGGA dataset contained 374 GBM samples. The TCGA dataset
contained 156 GBM samples and five normal samples.

Screening of Immune-Related DEGs
The immune-related genes (IRGs) were obtained from the
InnateDB database and Analysis Portal (ImmPort) database
(Bhattacharya et al., 2014). A total of 6196 IRGs were used for
further analysis. The immune-related DEGs were screened via the
“pheatmap” and “limma” packages of the R language between
normal and tumor tissues in GBM.

Tumor Mutation Burden
The tumor mutation burden (TMB) score was calculated using
“Maftools” packages of the R language. According to median data
of the TMB score, we could divide GBM samples into high-and
low-TMB groups.

Weighted Gene Co-Expression Network
Analysis
WGCNA was used to transform the association between
genes and phenotypes into the association between some
genomes and phenotypes via the R software package
“WGCNA.”

FIGURE 1 | Flowchart of the workflow of the immune-related PRM.
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LASSO Analysis and Construction of a
Prognostic Risk Model
The gene expression matrix of GBM patients in the TCGA
database is defined as the training group, and that of GBM
patients in the CGGA database is defined as the testing group.
We carried out the regression analysis of the least absolute
shrinkage and selection operator (LASSO). Then, we calculated
the individualized risk score with the coefficient and constructed

a prognostic risk model (PRM) to distinguish the high-risk group
from the low-risk group. The PRMwas established to evaluate the
accuracy of the univariate prognostic model, and a multivariate
prognostic model was built based on the area under the curve
(AUC) of the receiver operating characteristic (ROC) curve using
the “pROC” software package of R language.

Clinical characteristics and pathological features including
gender, age, BRAF V600E, IDH status, Karnofsky performance
status (KPS) scores, promoter methylation status of O6-

FIGURE 2 | Immune-related DEGs in GBM from the TCGA database. (A) Heatmap visualizing the DEGs screened using the “limma” package. (B,C) Functional
enrichment analysis of DEGs.
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methylguanine-DNA methyltransferase (MGMT), and
original subtype were collected from the TCGA database.
Multivariate proportional hazard model (COX) regression
analysis proves the prognostic value of the risk score.

Immunotherapy Response Prediction
The relative levels of abundance of the immune cell types were
evaluated by the single sample gene set enrichment analysis
(ssGSEA), which can quantify the scores of signature genes
based on transcriptomic data (Hanzelmann et al., 2013). The
CIBERSORT algorithm in the Tumor Immune Evaluation
Resource (TIMER) online database is used to calculate the
abundance of immune cells (Newman et al., 2015; Li T. et al.,
2017). Furthermore, the Tumor Immune Dysfunction and
Exclusion (TIDE) score was used to model the primary
mechanisms of tumor immune evasion.

Gene Set Enrichment Analysis
GSEA was used to analyze the biological function of a single
gene. To analyze the main function of the different genes, the

“clusterProfiler” package was used for GO and KEGG
analyses.

The Establishment and Evaluation of the
Nomogram
The nomogram is used to integrate the related factors of tumor
recurrence. The prediction ability of the model is further evaluated
and quantified using the calibration curve of the nomogram.

RESULTS

In our study, we analyzed and verified a PRM based on
differentially expression profiling of immune-related genes that
may be used to aid prognostic analysis in patients with GBM. The
PRM was associated with immune infiltration, immune
checkpoint gene expression, and clinical characteristics. In
summary, the risk model in our study can be used as a
prognostic immune biomarker for GBM (Figure 1).

FIGURE 3 | Identification of modules associated with the clinical traits of GBM in theWGCNA. (A) Analysis of the scale-free index for various soft-threshold powers
(β). (B) Analysis of the mean connectivity for various soft-threshold powers. (C) Dendrogram of all differentially expressed genes clustered based on the measurement of
dissimilarity (1-TOM). (D) Heatmap of the correlation between the module eigengenes and CDCP1 expression level of GBM. The color band shows the results obtained
from the automatic single-block analysis.
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Screening for Immune-Related DEGs and
Functional Analysis
We identified 834 immune-DEGs from the TCGA database.
The DEGs comprised 652 upregulated genes and 182
downregulated genes, using the criteria of |log2(FC)| > 1
(Figure 2A).

We annotated the functions of immune-related DEGs
using GO functional analysis and KEGG enrichment
analysis. The result of GO functional analysis for biological
process analysis indicated that the DEGs are enriched in
T-cell activation, regulation of the immune effector
process, and regulation of innate immune response,
(Figure 2B, p < 0.05). Furthermore, KEGG enrichment
pathway analysis also demonstrated that the immune-
related DEGs are mainly enriched in Th17 cell
differentiation, Th1 and Th2 cell differentiation, and
cytokine–cytokine receptor interaction (Figure 2C).

WGCNA Analysis to Select the
Co-Expression Modules and Hub Genes
We tried to use WGCNA to highlight the gene partial correlation.
We used the expression matrix of GBM patients in the TCGA
database to perform WGCNA analysis. Consequently, we built
the adjacency matrix and constructed the topological overlap
matrix (Figures 3A,B). Finally, three modules were identified
based on average hierarchical clustering and dynamic tree
clipping (Figure 3C). The MEblue, MEbrown, and
MEturquoise modules were related to tumor development,
which contained 289, 56, and 391 genes, respectively
(Figure 3D). Interestingly, MEblue, which is the most
statistically significantly different module, was also the most
correlated module (correlation coefficient = 0.85, p < 0.001).
The complex PPI network of the MEblue module consists of 95
nodes and 1,690 edges (Supplementary Figure S1).

Construction of a Prognostic Model
A total of 289 genes of the MEblue module were selected to
perform LASSO and COX regression. The TCGA cohort and
CGGA cohort were defined as the training group and testing
group, respectively. Furthermore, the 12 key genes (PSMC2,
STAT3, MPO, DES, PTK2B, SEMA4F, FGF17, GREM2, MDK,
SH3BP2, SREBF1, and TOLLIP) were constructed with LASSO
regression, when the log value (lambda) was between -3 and -4
(Figures 4A,B). The Akaike information criterion (AIC) value is
used for further analysis by multivariate COX regression with
LASSO penalty (Table 1). Then, we screened out the core gene
with the minimum AIC value and constructed a prognostic risk

FIGURE 4 | Construction of a prognostic model based on the 289 genes of the MEblue module in the training set. (A,B) Twelve survival-related genes by LASSO
penalized regression. (C) Five potential prognostic genes via multiple Cox regression with LASSO penalty. (D,E) Prognostic classifier analysis of the patients in the
internal testing set. (F) ROC curve of the potential prognostic genes.

TABLE 1 | Details of features selected by the multivariate Cox proportional hazard
regression model with LASSO penalty.

Gene COFF HR p

STAT3 0.305 1.357 0.035
SEMA4F 0.540 1.716 0.005
GREM2 0.539 1.715 0.019
MDK 0.338 1.402 <0.001
SREBF1 0.207 1.230 0.056

HR, hazard ratio
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model comprising core genes. Using this method, we obtained
five potential prognostic genes as hub genes, namely, STAT3,
SEMA4F, GREM2, MDK, and SREBF1 (Figure 4C). We
established the PRM using the selected hub genes STAT3,
SEMA4F, GREM2, MDK, and SREBF1. By excluding the
influence of gender, age, BRAF V600E, IDH status, KPS score,
methylation status of MGMT promoter, and original subtype on
prognosis, the PRM is substantiated to be an independent
prognostic risk factor for GBM patients. The result showed
that the hazard ratio (HR) of the PRM was 1.41 (95%
confidence interval, CI: 1.20–1.58) in the TCGA database
(Figure 4D). Further analysis of hub genes showed that the
survival time of high-risk patients was significantly less than
that of the low-expression group (Figure 4E). As shown by the
ROC curve of the PRM in Figure 3F, the AUC value was 0.72. We
further verified the reliability of the PRM through CGGA
database prognostic analysis and ROC curve analysis
(Supplementary Figures S2A,B).

We further analyzed the correlation between the PRM and
clinical features (gender, age, BRAF V600E, IDH, KPS,
MGMT, and original subtype) and tumor mutation burden
(TMB). The results showed that GBM patients in the high-risk
group were older, MES-GBM accounted for a larger
proportion, and PN-GBM was lower (Supplementary
Figure S3A). Also, TMB of the low-expression group is
lower (Supplementary Figure S3B).

Biological Function of the Prognostic Risk
Model
The GSEA was used to predict the possible biological functions of
the PRM in the TCGA dataset. The KEGG pathway enrichment

FIGURE 5 | GSEA of KEGG pathway enrichment analysis of the
prognostic risk model (PRM) in the TCGA database. (A) High-risk group. (B)
Low-risk group.

FIGURE 6 |Heatmap of tumor mutation burden of the PRM in the TCGA
database. (A) High-risk group. (B) Low-risk group.
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analysis showed that high expression of the PRMwas significantly
correlated with focal adhesion, MAPK signaling pathway, and
regulation of actin cytoskeleton (Figure 5A) and the low
expression of the PRM was significantly correlated with cell
cycle and oxidative phosphorylation (Figure 5B). The GO
enrichment analysis indicated that the PRM was correlated
with the cellular response to hormone stimulus, peptide
transport, and cytochrome complex (Supplementary Figures
S4A,B).

Risk Score Was Correlated With Genomic
Aberration Features
In total, we used the “maftools” package to analyze the tumor
mutation profiles of high PRM expression and low PRM
expression. As shown in the waterfall plot, the tumor
mutation burden was observed in 67 (85.90%) samples of the
high-risk group and in 66 (86.84%) samples of the low-risk group.
PTEN, TP53, TTN, EGFR, and MUC16 are the top five mutated
genes in high-expression PRM group samples, and PTEN
mutations are found in more than 30% of high-expression
PRM group samples (Figure 6A). In the low-expression PRM
group patients, TP53, EGFR, TTN, PTEN, and MUC16 are the
top five mutant genes. The TP53 mutations are found in more
than 35% of low-expression PRM group samples (Figure 6B).

Immune Infiltration Landscape
The CIBERSORT algorithm was used to analyze the immune
infiltration in GBM tissues. Figure 7A shows the proportions of
immune cells in each GBM sample in different colors, and the
lengths of the bars in the bar chart indicate the levels of the
immune cell populations. Compared with the low-expression
PRM group, we identified that the high-expression PRM had
relatively high percentages of activated CD4+ memory
T cells (Figure 7B). The results show that the difference in the

tumor-infiltrating immune cell (TIIC) subgroup level among
individuals partly reflects the prognosis. As shown in
Figure 7, M0 macrophages and neutrophils were negatively
correlated to overall survival (OS) in patients with glioma
(Figures 7C,F). However, M1 macrophages, resting memory
CD4+ T cells, and monocytes were positively related to OS
(Figures 7D,E,G). The study suggests that the TIIC subgroup
can provide the potential prognostic value for GBM treatment.

We further evaluated the correlation between the PRM and the
characteristics of the tumor immunemicroenvironment through the
“GSVA” package of R language. The result showed significant
differences in immune cell infiltration and immune function,
especially for regulatory T (Treg) cells and dendritic cells (DCs).
Moreover, the higher CCR, parainflammation, and T-cell
stimulation scores and type II IFN response scores were present
in the high-expression PRM group rather than the low-expression
PRM group (Figure 8A). We further verified the prognostic
implications of immune cell infiltration and immune function by
overall survival (OS) (Supplementary Figures 5A–W).

The expression of immune checkpoint genes, which play a key
role in cellular immune regulation, in the PRM was further
studied. It was found that compared with the low-risk group,
the expression of most checkpoint genes (such as CD44, IL-6, and
ITGAM) was upregulated in the high-risk group (Figures 7B–G).
In conclusion, the consistency between PRM prognosis and TME
characteristics suggests that this classification is reliable and
reasonable. The dysfunction and TIDE scores were
significantly higher for the high-risk group than for the low-
risk group (Figures 9A,B).

Establishment and Evaluation of Clinical
Predictive Models
The receiver operating characteristic (ROC) curve showed that
the AUC of the 1-, 2-and 3-year survival rate of PRM was greater
than 0.7 and the AUC of the 3-year survival rate was 0.819, which

FIGURE 7 | Immune infiltration in GBM samples as assessed in CGGA data. The proportions of tumor-infiltrating immune cells (TIICs) in 22 GBM patients from the
CGGA database (A). Correlation analysis between CDCP1 expression and various types of infiltrating immune cells (B). Survival analysis of the TIIC subsets (C–G).
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indicated the superiority of our method (Figure 10A). The result
shows that our PRM can accurately indicate the prognosis of
GBM patients. The ROC curves were used to evaluate the
predictive efficacy of the PRM and the TIDE. The AUC values
for the PRM and TIDE were 0.719 and 0.591, respectively
(Figure 10B).

The PRM and the clinical relevance and prognostic value of age,
gender, IDH status, methylation status of MGMT promoter, and
KPS scores were combined to construct a nomogram. Each factor in
this nomogram is given a certain score (Figure 9C). The analysis of
the nomogram and calibration curve proved that the PRM is reliable
and accurate (Figures 10D,E). On the other hand, by comparing the
factors in the nomograms, we found that the prognostic risk model
had a high score, and this model played an important role.

DISCUSSION

Glioblastoma (GBM) is the most common malignant tumor in
the central nervous system (CNS) (Davis, 2018), and there is no
targeted therapy to ensure the maximum survival rate of glioma
patients (Filbin and Suva, 2016; Louis et al., 2016). In the recent
years, a large number of researchers used bioinformatics to
analyze the data of thousands of expressed genes in the
human genome through high-throughput sequencing and
microarray analysis, which can be used to identify the
immune-related gene characteristics existing in GBM and
reveal its potential mechanism (Zhou et al., 2018).

As the basic unit of the immune system, cells are usually
heterogeneous in the analyzed samples. The CIBERSORT

FIGURE 8 | Correlation between the PRM and tumor immunemicroenvironment features. (A) Enrichment scores of 16 immune cells and 13 immune functions in the high-
risk and low-risk groups of the PRM. The differential expression ofmost checkpoint genes, CD44 (B,C), IL-6 (D,E), and ITGAM (F,G) in the high-risk group and the low-risk group.
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FIGURE 9 | Boxplots showed the scores of immune infiltrations and functions among the PRM. (A) Dysfunction. (B) TIDE.

FIGURE 10 | Establishment and verification of the prognostic risk model. (A) ROC curve of the PRM comprising STAT3, SEMA4F, GREM2, MDK, and SREBF1
expression at 1-year survival, 2-year survival, and 3-year survival. (B) Comparison between the traditional TIDE model and prognostic risk model. (C) Nomogram based
on the PRM and clinicopathological factors. Calibration plot evaluating the predictive accuracy of the nomogram at 1-year survival (D) and 2-year survival (E).
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algorithm was used to identify cell types so as to capture the
background centered on cells and at the whole system level.
Researchers have performed a lot of research to verify the
effectiveness of the calculation method. The composition of
immune cells in cancer tissues has been verified and
successfully evaluated by flow cytometry and other methods
(Cackowski et al., 2019). Infiltrating immune cells play an
important role in promoting and/or regulating tumor
progression and growth (Whiteside, 2008). These tumor
immune cells produce various cytokines and chemokines,
which are necessary for infiltrating immune cells to function
in promoting inflammation or eliminating inflammation and
have a great influence on the progress of glioma and the drug
resistance of therapeutic intervention (Boussiotis and Charest,
2018). Our study and the existing literature report on the
immune-related PRM of tumors all use R language to analyze
the gene expression matrix of the public database, but we added
LASSO regression, multivariate Cox regression analysis, and
WGCNA analysis and further used nomograms to verify the
model (Chen et al., 2020; Qian et al., 2021). The immune-related
genes selected in this study are specific markers.

We finally screened five genes (STAT3, SEMA4F, GREM2,
MDK, and SREBF1) by WGCNA and LASSO analysis of
immune-related DEGs. The gene signal transducer and
activator of transcription 3 (STAT3, Gene ID: 6774) is a
transcription factor that is activated by various signal-induced
phosphorylation. In the microenvironment of glioma and in the
tumor microenvironment, the EGFR and the IL6 signaling
pathway play important roles in activating STAT3 (Wang
et al., 2013; Kim et al., 2016). STAT3 is abnormally activated
in various immune cells, creating amicroenvironment of immune
escape (Wang et al., 2004; Melillo et al., 2010). The gene
ssemaphorin 4F (SEMA4F, Gene ID: 10505) encodes a
transmembrane class IV semaphorin family protein, which
plays a role in neural development (Gabrovska et al., 2011;
Shergalis et al., 2018), and the previous study found that
SEMA3B was found to be a marker for poor survival in
patients over 50 diagnosed with GBM (Rich et al., 2005).
Gremlin-2 (GREM2, Gene ID: 64388) has been found to have
the highest concentration in the brain but much lower in the
kidney and lung (Church et al., 2017). It can inhibit the
canceration and progression of endometrial cancer (Sun et al.,
2020). Midkine (MDK, Gene ID: 4192) encodes a member of a
small family of secreted growth factors that binds heparin and
responds to retinoic acid (Guo et al., 2020). Sterol regulatory
element binding transcription factor 1 (SREBF1, Gene ID: 6720)
is essential for squamous cell carcinoma (SCC) viability and

migration, and its overexpression is associated with poor
survival in SCC patients (Li et al., 2021).

In our study, immune-related differential genes were
screened out through differential expression, and then the
PRM was constructed through bioinformatics. It was
verified that the PRM was significantly positively correlated
with immune cell infiltration and the expression of key
immune checkpoints in the TME. These preliminary results
provide a perspective for exploring the role of immune escape
in GBM. However, this study has the following limitations.
First of all, our research lacks further verification by in vivo
experiments. Second, this research study is based on the public
database, lacking the analysis of sequencing data in our
institution to verify our research results.

In conclusion, we identified a five-gene prognostic risk model
based on the differential expression profiling of immune-related
genes that may be used to aid prognostic analysis in patients with
GBM. The low-risk and high-risk groups of the PRM exhibit
significant differences with respect to immune infiltration, TMB,
and tumor immune evasion. The nomogram established and
validated to the PRM is not only reliable but also showed that the
accuracy of predicting survival in each patient was high. These
findings provide novel insights into the design of
immunotherapeutic strategies against GBM.
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