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Abstract

Background: High-throughput molecular approaches for gene expression profiling, such as Serial
Analysis of Gene Expression (SAGE), Massively Parallel Signature Sequencing (MPSS) or
Sequencing-by-Synthesis (SBS) represent powerful techniques that provide global transcription
profiles of different cell types through sequencing of short fragments of transcripts, denominated
sequence tags. These techniques have improved our understanding about the relationships
between these expression profiles and cellular phenotypes. Despite this, more reliable datasets are
still necessary. In this work, we present a web-based tool named S3T: Score System for Sequence
Tags, to index sequenced tags in accordance with their reliability. This is made through a series of
evaluations based on a defined rule set. S3T allows the identification/selection of tags, considered
more reliable for further gene expression analysis.

Results: This methodology was applied to a public SAGE dataset. In order to compare data before
and after filtering, a hierarchical clustering analysis was performed in samples from the same type
of tissue, in distinct biological conditions, using these two datasets. Our results provide evidences
suggesting that it is possible to find more congruous clusters after using S3T scoring system.

Conclusion: These results substantiate the proposed application to generate more reliable data.
This is a significant contribution for determination of global gene expression profiles. The library
analysis with S3T is freely available at http://gdm.fmrp.usp.br/s3t/. S3T source code and datasets can
also be downloaded from the aforementioned website.

Background of cellular phenotypes, which has led to a new area of
One of the major challenges in the post-genomic erais the  research named "functional genomics" [1] referring to a
understanding of the genetic basis of gene expression reg-  comprehensive analysis at the protein (proteome) and
ulation. This involves the deciphering of molecular mech- ~ RNA levels (transcriptome) of any cellular phenotype

anisms that governs the establishment and maintenance  associated with the expression of whole sets of genes. This
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is characterized by high throughput or large-scale experi-
mental methodologies combined with statistical and
computational approaches.

The correlation between mRNA and protein expression is
typically not strong, as previously reported [2]. On the
other hand, transcription is one of the most important
steps in gene regulation, and information about transcript
levels is important to estimate gene activity and to charac-
terize a molecular signature for a cellular phenotype. In
this context, new methods have been developed for tran-
scriptome analysis and gene expression profiling [3].

Serial Analysis of Gene Expression (SAGE) [4] is one of
the widest used techniques for this purpose. SAGE
method allows a quantitative and parallelized analysis of
a large number of gene transcripts in any particular cDNA
library derived from cells or tissues [5], without prior
knowledge of the genes. The SAGE technique is based on
the isolation of short sequence tags that are extracted from
defined positions of the transcript (3'-most anchoring
enzyme restriction site; Nlalll is the most commonly used
enzyme for this purpose). These tags, in theory, are
strongly associated with individual genes [6]. The tags are
concatenated into long DNA molecules, which subse-
quently are identified by conventional DNA sequencing.
Sequence tags are extracted from raw sequence concatam-
ers using a parsing program that tabulates the occurrence
of each tag and creates an abundance level report file.

Although being advantageous in many aspects [3], SAGE
protocol can be also subject to sequence errors, mainly
introduced by the polymerase chain reaction (PCR) and
sequencing steps. The occurrence of these errors produces
sequence-based artifacts, introducing noise into the sam-
pled transcriptome profile. Massively Parallel Signature
Sequencing (MPSS) [7] is another sequencing-based
method that, similarly to SAGE, provides quantitative
gene expression data. This technique can generate mil-
lions of short signature sequences, providing a better cov-
erage of the transcriptome in a single cell population. It
has a routine sensitivity on a low-molecular level of
mRNA per cell.

Another recent technology with high sensitivity is Deep-
SAGE [8], which is similar to the initial steps of LongSAGE
[9] in conjunction with an ultra-high throughput DNA
sequencing [10].

In recent years, significant efforts have been directed
towards the development of new and reliable DNA
sequencing technologies [11]. All three commercially
available technologies today are characterized by the pro-
duction of millions of reads in a single experiment
[12,13], reducing the cost of sequencing.

http://www.biomedcentral.com/1471-2105/10/170

These technologies are available for quantitative measure-
ment of gene expression and, as in SAGE, individual
mRNAs can be identified through short tag sequences,
immediately adjacent to the 3'-most anchoring enzyme
restriction site. The throughput reached by these new
sequencing technologies allows also a shotgun strategy for
the transcriptome.

Although these represent technological advances, there
are still many factors that potentially contribute to the
production of artifact sequence tags, such as errors intro-
duced through reverse transcription, PCR, and others,
inherent to the cloning (when necessary) and sequencing
steps, leading to spurious molecular signatures. In order
to mitigate these negative traits, several studies were made
to define and explore the inherent implications, mainly to
the SAGE protocol. In addition, these studies disclosed
the impacts of the spurious sequences and proposed effi-
cient algorithms for detection and removal of these tags
[14-17]. In this work, we propose a new methodology to
index the sequence tags according to their reliability,
using a score system. We also present the implementation
of this methodology in a web-based tool, initially availa-
ble for human (Homo sapiens) and mouse (Mus musculus)
data. The main applications of this tool are the evaluation
of the sequenced library, and the identification and selec-
tion of the reliable tags, which can be considered more
effective for gene expression profiling, according to the
scoring system. To rank the tags, we established some
empirical rules merging relevant parameters, one based
on absolute tag frequency and the other, on matches in a
set of virtual tag databases. There is still another compo-
nent associated with the previous, based on a concept of
neighborhood [15], i.e. abundant tags can contaminate
those whose sequence is very close. The virtual tags are
predictions of a real tag that might be produced by a SAGE
(10 bps for short SAGE, 17 bps for long SAGE), MPSS (13
bps for short MPSS, 16 bps for long MPSS) or SBS (16 bps
or 17 bps) experiments using different anchoring
enzymes (Nlalll or DpnlIl). They are extracted from gene
transcript sequences from various sources with some rele-
vant attributes [18], considered in each score rule elabora-
tion. The other rule component, based on the absolute
frequency, assumes that the abundance and representa-
tion in the set of libraries presupposes more reliability.
The automated library analysis process involves a series of
searches on S3T database to retrieve relevant source infor-
mation from corresponding virtual tag for the application
of a specific classification rule set (Table 1). Another
approach to rank tags according to their nature, using a
relational database and a set of different transcript
sequence sources, was previously described [19]. However
it does not consider the possibilities of tags derived from
SAGE adapters or cloning vectors, or tags matching mito-
chondrial or nuclear genomes, or tags that can be technol-
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Table I: S3T Default Rule Set.

Score Source Condition
-4 Linker (*)

-3 mRNAs internally primed fix) =1

-2 fix) <5and (N(x) " T) =@
10 FL cDNAs, 3'most, poly(A) filx)> 10

9 FL cDNAs, 3'most, poly(A) I <fix)y<10
8 FL cDNAs, 3'most filx) > 5

7 FL cDNAs, 3'most I <f(x)<5
6 Consensus, 3'most, poly(A)  f(x) > 5

5 Consensus, 3'most, poly(A) | <f(x) <5
4 Alt. poly(A)/splicing, > | est  f(x) > |

3 Consensus, 3'most fix) > |

2 Alt. poly(A)/splicing, | est fix) =1

| FL cDNA:s, internal Tags

0 m(x) > fx)
-1 fix) =1

-5 Mitochondrion genome

-7 Nuclear genome

-6 Vector pZErO-1 (¥)

-8

Rule set used in S3T classification process of public SAGE data. The
f(x) represents the absolute frequency for tag x and m(x) the average
frequency for tag x, considering all libraries in our gene expression
database, the set N(x) represents the tag x neighbor tags (that differ
from it by a single nucleotide), the T set represents the highest
frequency tags of the library (top 20%). (* — This is applicable only for
SAGE data)

ogy-related artifacts, such as generated by sequencing
errors. The approach of S3T comprises these analyses,
using additional virtual tag datasets and still considers the
tag frequencies to rank the tags.

There is an online service platform, publicly available at
S3T website, for accessing and performing the referred
analysis. The source code is also available for a local
installation.

http://www.biomedcentral.com/1471-2105/10/170

The S3T approach was applied to a public SAGE dataset
and, in addition to the statistical comparisons; two hierar-
chical cluster analyses were performed using current
methodologies [20,21]. The resulting clusters were com-
pared and used to evaluate S3T effectiveness in the preven-
tion against some biases related to sequence-based
artifacts or possible contaminations (i.e. genomic DNA,
mitochondrial DNA, vectors or linkers).

Results and discussion

The system formerly described, concerning the classifica-
tion process, is available at S3T website. The services pro-
vided have been mainly used to select relevant
information from long lists of tags, which are hardly
meaningful. The entire library data can be submitted for
immediate scanning. The whole procedure takes about 5
minutes for a library with 80,000 unique tags. From these
results, it is possible to compare the proportions of each
score for the unique tags and their frequencies. The inter-
face provides the means to investigate the makeup of indi-
vidual tag lists for each score. These individual lists
contain the tags, as well as their associated genes and
descriptions.

According to the initial analysis using 359 public SAGE
libraries, it is possible to observe the large diversity among
proportions of tags throughout the established scores
(Figure 1). The high percentage of unique tags with -2
score (see Table 1) is evident; they may have arisen from
errors in abundant tags whose sequence is very close. This
indicates that errors in the tag sequence are the most prev-
alent. The correlation between the total of sequenced tags
in a library and the number of unique tags with -2 score is
strong (0.91), i.e. the number of unique tags with -2 score
increases according to the number of sequenced tags. The
correlations between the total of tags in a library and the
unique tags in the other scores were obtained and are
available at the supplemental section of the S3T website.

These results can illustrate the overall quality of tag librar-
ies. Those samples observed with a high percentage of tags
classified with negative scores, cannot be considered reli-
able for further analysis. Box plots were used to visually
summarize and compare the groups of data [22] (Figure
1). This diagram contains the distributions of unique tags
along the proposed scores. It is crucial to focus particularly
on those with positive scores that represent the effective
contribution for the biological information, the others,
with negative scores, possibly represent contamination or
technique errors inherent to the experimental process.
However, the tags with negative scores that had matches
in the genome sequences, or did not match on anything,
could also come from unknown transcripts [23]. But it is
also important to emphasize that these unknown tran-
scripts will probably be characterized through the con-
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Distributions of S3T analysis results. Distributions of unique tag percentages for each score group. This group is formed

by tags classified with certain score.

stant updates of the current transcript sequence databases,
especially with the use of new high-throughput sequenc-
ing technologies, which has high sensitivity to detect rare
transcripts. The hierarchical clustering analyses using the
selected histological groups (14) of SAGE libraries were
also performed. The clusters of samples with known his-

tological information, in a general way, were more con-
cordant with their predefined histological sample classes
(see Implementation), after filtering, in some cases
(32.65%). In the others, the filtering did not affect the
overall quality of cluster set (58.16%) and, in a few cases
(9.18%), the clusters after filtering were less concordant
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with their previously defined classes (Table 2). The brain
group is one of them, once there are many heterogeneous
samples into subgroups, leading to difficulties to distin-
guish them among other samples. The F-Measure [24] was
used to evaluate the cluster quality. This measure cluster
evaluation method combines the precision and recall
ideas. The F-Measure values are in the interval [0-1] and
larger F-Measure values indicate higher clustering quality.
The clusters formed before and after S3T filtering were
then compared using the Overall F-measure (Table 2), the
expectation was to find clusters more congruous after fil-

http://www.biomedcentral.com/1471-2105/10/170

tering, properly grouping samples from the same cellular
phenotypes together and closer than others (Figure 2).

In this analysis, applying the proposed set of rules (Table
1), the results (Figure 3) point that the tags with score -2
is the most abundant among those who received negative
scores. This was observed for almost all libraries, consid-
ering the count of unique tags and the sum of their fre-
quencies (95.26% and 99.16%, respectively). This
obviously affects the difference between the raw data and
the S3T-filtered data, and indicates which libraries do not

—— SAGE_Colon_adenocarcinoma_B_Tu98
SAGE_Colon_adenocarcinoma_CL_HCT116
SAGE_Colon_adenocarcinoma_CL_RKO
SAGE_Colon_adenocarcinoma_CL_Caco2

| SAGE_Colon_adenocarcinoma_CL_SW837

MVY e

a3d3aliid 9

Figure 2

SAGE_Colon_carcinoma_CL_Hct116_p53_knockout_Anoxia

SAGE_Colon_carcinoma_CL_Hct116_wildtype_p53_Anoxia

SAGE_Colon_carcinoma_CL_Hct116_p53_knockout_Normal_Oxygen

SAGE_Colon_carcinoma_CL_Hct116_wildtype_p53_Normal_Oxygen
— SAGE_Colon_adenocarcinoma_B_Tu102

SAGE_Colon_normal B _NC1
SAGE_Colon_normal B _NC2

T SAGE_Colon_adenocarcinoma_B_Tu102

— SAGE_Colon_adenocarcinoma_B_Tu98
SAGE_Colon_normal_B_NC1
SAGE_Colon_normal_B_NC2
SAGE_Colon_adenocarcinoma_CL_HCT116
SAGE_Colon_adenocarcinoma_CL_RKO
SAGE_Colon_adenocarcinoma_CL_Caco2
SAGE_Colon_adenocarcinoma_CL_SW837
SAGE_Colon_carcinoma_CL_Hct116_p53_knockout_Anoxia
SAGE_Colon_carcinoma_CL_Hct116_wildtype_p53_Anoxia
SAGE_Colon_carcinoma_CL_Hct116_p53_knockout_Normal_Oxygen
SAGE_Colon_carcinoma_CL_Hct116_wildtype_p53_Normal_Oxygen

Cluster analysis of colon SAGE libraries. Colon SAGE libraries clustered with Pairwise complete-linkage using Euclidean
distance of data before (a) and after (b) S3T filtering of tags classified with negative scores.
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Table 2: Evaluation of Hierarchical Clustering Quality.

Id Groups (Samples) Unique tags * (%) Overall F-measure

cluster3 [32]/simcluster [21]

M A S C

| 9(56) 29.21 0.65 0.69 0.62 0.57 0.55 0.54 0.52 0.52

0.70 0.72 0.65 0.64 0.49 0.58

2 2(7) 29.11 0.84 1.00 0.90 0.90 0.90 0.90 0.90 0.90

0.79 0.86 0.79 0.79 0.79 0.79

3 2(24) 30.88 0.88 0.88 0.88 0.88 0.88 0.90 0.88 0.88

0.88 0.94 0.87 0.88 0.83 0.87

4 4(12) 3335 0.94 1.00 0.94 1.00 0.94 0.94 0.94 0.94
1.00 1.00 0.94 1.00 0.90 0.89
5 2(4) 28.80 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83

0.83 0.83 0.83 0.83 0.83 0.83

6 2(4) 42.70 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

0.83 0.83 0.83 0.83 0.83 0.83

7 14(45) 34.72 0.72 0.74 0.69 0.64 0.64 0.64 0.6l 0.61

0.67 0.77 0.63 0.69 0.57 0.61

8 2(5) 27.57 0.88 1.00 0.88 1.00 0.88 1.00 0.88 0.88
1.00 0.88 1.00 0.88 0.87 0.88
9 2(5) 41.48 0.88 0.88 0.88 0.88 0.75 0.75 0.75 0.75

0.88 0.88 0.85 0.88 0.85 0.85

10 4(8) 45.00 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83

0.92 0.92 0.92 0.92 0.83 0.92

I 3(1) 40.70 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90

0.80 0.86 0.90 0.90 0.86 0.86

12 2(5) 28.30 0.77 0.80 0.77 0.77 0.77 0.77 0.77 0.77

0.77 0.88 0.72 0.88 0.72 0.85
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Table 2: Evaluation of Hierarchical Clustering Quality. (Continued)

http://www.biomedcentral.com/1471-2105/10/170

13 2(6) 37.71 0.90 1.00 0.90 0.90 0.90 0.90 0.90 0.90
0.80 0.80 0.80 0.80 0.80 0.80

14 5(12) 33.63 0.83 0.83 0.83 0.83 0.83 0.83 0.76 0.76
0.73 0.78 0.76 0.79 0.71 0.73

Groups of public SAGE libraries used in the hierarchical clustering analyses performed before and after (*) S3T filtering. Four clustering methods
were applied: Pairwise complete-linkage (M), Pairwise single-linkage (S), Pairwise centroid-linkage (C), Pairwise average-linkage (A). The histological
groups are: brain (1), cartilage (2), cerebellum (3), colon (4), liver (5), lung (6), mammary gland (7), other (8), ovary (9), pancreas (10), prostate (I 1),
retina (12), stomach (13), white blood cells (14). For each group we have the Overall F-measure values for clusters generated with cluster3 and
simcluster, respectively, in the first and second lines. The table cell pairs with values in bold represent cases where there was an improvement in
the overall quality of clustering, according to F-measure, i.e. the F-measure was greater (21.43% — cluster3; 47.62% — simcluster) or the quality
between clusters did not change (69.64% — cluster3; 42.86% — simcluster) after S3T filtering. The remaining table cell pairs, with values not in bold,
represent cases where the F-measure was lower after S3T filtering (8.93% — cluster3; 9.52% — simcluster), i.e. where the resulting cluster was less

concordant with their previously defined classes.

have enough tags with good quality; the criterion for this
consideration depends on the analysis stringency param-
eters.

The complete set of results can be found on the supple-
mentary information page at the S3T website, together
with other online resources for querying and download.

Conclusion

SAGE and SAGE-like techniques are useful and efficient
methods for quantitative evaluation of gene expression
level within a cell population. In addition, the computa-
tional approach proposed here enables a noticeable
enhancement, in accuracy and efficiency, for these tech-
niques. In this sense, the implementation of this approach

59

S = Hlab’% 1298 (388182 -2,-3,-4,-5,-6.,-7,-8)
o =
S |- ot freg req ency of tags “““““
o ‘ ‘ ‘
\“I“I“H\'|\|N“|\\W’NNNN“NNﬂ'“NN!“““W\|““N“““N\N““N“““NW““WNﬂ'ﬂ
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58
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O i
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Public SAGE Libraries
Figure 3

Contribution of tags with negative scores, especially score -2, in the final library size. Semi-log graph with unique
tags and total frequency of tags for 359 public human SAGE libraries analyzed with S3T, the unique tags and total frequency of
tags with negative scores (-1,-2,-3,-4,-5,-6,-7,-8) are also shown in this graph.
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provides means for automated analysis and selection of
the most reliable tag datasets. In a general way, it was
designed to provide researchers with more comprehensive
and detailed assessment of a given gene expression pro-
file.

Despite the satisfactory results obtained, one hindrance
remains towards tag classification for the process to be
deeply related and ingrained to the tag-mapping step. It
also depends on the virtual tag database definition and
this procedure may lead, in some cases, to tag-to-gene
assignments that can be ambiguous, incorrect, or unavail-
able [25]. This method must be reviewed to improve its
accuracy in the presented context. Moreover, the tool
allows adjustments to remake the rule sets in order to
improve the classification. Additional tests can be made to
develop more accurate rules for a precise evaluation of
SAGE, MPSS or SBS libraries.

Implementation

The methodology for quality evaluation of the tag librar-
ies, in a general way, comprises the following fundamen-
tal tasks:

1. Collecting experimental data, virtual tag datasets
and related information, and store them into the rela-
tional database;

2. Setting the score classification rule parameters
(Table 1);

3. Carrying out the searches on database and applying
the rules, that is a match of the experimental data with
one of the tag scoring rules.

4. Quantitating the unique tags and tag frequencies for
each score to perform a library quality evaluation.

The classification process is executed in a pipeline mode,
applying the rules in a pre-defined order to each and every
tag in the library (see Table 1 - from top to bottom). The
first attributed score is sustained when the rule is vali-
dated; otherwise, the next rule is triggered. A complete set
of tools were developed to implement this methodology,
which includes the automated process and the website
interface. They were developed using Object Oriented Perl
programming language and related modules, e.g. for data-
base connection (DBI), plot charts (GD::Graph) and
interface design (CGI). The S3T system allows multi-
threading for the classification process, and enables paral-
lel execution on a multiprocessor system. A complete
analysis to evaluate the proposed methodology was per-
formed using an experimental SAGE dataset.

http://www.biomedcentral.com/1471-2105/10/170

Virtual tag datasets

The sets of virtual tags were obtained from different
sources to characterize the experimental data and deter-
mine its reliability, based on the relevant characteristics of
each sources, as following:

eCloning vector (*) - sequence of cloning vector plas-
mid (pZERO-1) DNA;

¢ Mitochondrion genome - sequence of mitochon-
drial DNA, complete genome (GenBank accession
number [GenBank:NC_001807.4] for Homo sapiens
and [GenBank:NC_005089.1] for Mus musculus);

eLinker (*) - Adapter linker sequences used in SAGE
library construction and 1-bp variations sequences
(edit distance [26] equal to 1);

® FL cDNAs - full-length cDNA sequences from MGC
[27], RefSeq [28] and "20K set" [18] transcript data-
base;

e Consensus - sequences of trEST [29], a consensus
sequence database;

® Nuclear genome - sequence of nuclear DNA (cur-
rent build for Homo sapiens and Mus musculus);

The procedures for tag extraction in these datasets were
similar to the SAGE Genie methodology [18]. In addition,
we also considered alternative splicing events supported
by evidences found through pairwise comparisons of
Expressed Sequence Tag (EST) data. The cases where only
one individual EST confirmed the event of alternative
polyadenylation or splicing were isolated from those with
more than one EST confirming the event. The FL cDNAs
and Consensus datasets were divided into two subsets
based on the presence of poly(A) tail and signal: subsets
with both signal and tail and the remaining ones with nei-
ther signal nor tail (like [18]). Only sequences with some
evidences of their correct orientation were considered.
These evidences include a poly(A) tail of at least 5 adenos-
ines or one of the AAUAAA sequence variations
(AAUAAA, AUUAAA, AAUUAA, AAUAAU, CAUAAA or
AGUAAA) for poly(A) signal, and the results of ESTscan
[30] analysis. Possible internally primed polyadenylated
cDNA sequences were identified as a way to characterize
internal tags resulted from cDNA synthesis priming from
a poly(A) stretch other than the poly(A) tail. Alternative
polyadenylation events were figured from the alignment
of shorter transcript sequences with a poly(A) signal and
a poly(A) tail of 5 adenosines that aligned within the
longer entry. We also extracted virtual tags from the vector
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sequence, mitochondrial genomes, nuclear genomes and
linkers representing possible contamination with plas-
midial DNA, mitochondrial DNA, nuclear DNA and
SAGE adapters, respectively.

The main program receives as input parameters, the
library file (tag sequences and counts), the platform tech-
nology (SAGE, MPSS or SBS), the anchoring enzyme
(NlallI or DpnlI), the tags length and the species acronym
(Hs or Mm). These input parameters define the rule set to
be used in the S3T analysis. The online analysis has dis-
tinct preconfigured sets of rules. The rule set used in the
paper analyses of the public SAGE libraries (Table 1), were
defined by the following input parameters: SAGE, Nlalll,
10 and Hs. The intention of this rule set is to exclude any
tag matching SAGE adapters (-4), low frequency tags (f(x)
= 1) matching internally primed dataset (-3), and low fre-
quency tags (f(x) < 5) similar to the high abundant tags
(20% most frequent); the purpose is to detect possible tech-
nique artifacts; the next eleven score tests (10, 9, 8, 7, 6, 5,
4, 3,2, 1, 0) are used to identify tags matching known
transcript sequences from different sources and reliability;
the next score (0) is the last chance to accept tags, if the
average tag frequency in the gene expression database is
greater than its frequency in the library, which is being
evaluated (m(x) > f(x)); the next score test is to retain the
remained tags with frequency equal to 1, possibly errone-
ous tags; the subsequent scores (-5, -7, -6) are to test
match with mitochondrial, nuclear genome and cloning
vector, respectively; the last score (-8) is not a test, it
retains the remained tags.

Experimental SAGE data

The experimental SAGE data used in the evaluation were
collected chiefly from SAGE Genie [18], the effort of
CGAP SAGE Project to create a comprehensive database of
human gene expression [31] and contains several SAGE
libraries from normal and tumor tissues or cell-lines.
These libraries were constructed by using Nlalll as the
anchoring enzyme and BsmFI as the tagging enzyme as
originally described [4]. A set of public SAGE libraries,
319 from CGAP and 40 exclusively from NCBI Gene
Expression Omnibus (GEO), distributed among 35 histo-
logical groups, were loaded into our local database and
submitted as described in this work.

Data Repositories

There are two in-house MySQL relational databases that
are deeply related with the automated process for an
entire library evaluation. The main database contains the
virtual tags and their source-related information. The vir-
tual tag datasets, described before, with their respective
attributes were loaded in there. The tag evaluation process
requires a fast and accurate retrieval of the database con-
tent to check if the tag attributes satisfy any rule-based

http://www.biomedcentral.com/1471-2105/10/170

classification criteria. The other database, essential for the
classification process, contains the experimental data for
SAGE, MPSS and SBS, which is used to retrieve the tag fre-
quencies in other libraries. This database was designed to
provide a comprehensive and integrative repository for
gene expression data and related information. The infor-
mation in there can be accessed programmatically
through a SOAP interface or through a human-readable
web interface (see S3T web page). The main database,
with virtual tag datasets and the gene expression database,
with the experimental data, are regularly updated (every
six months).

Statistical description

All data were divided into two groups, each one respec-
tively corresponding to the tags classified with positive
scores and negative scores. The results were described in
reports using statistical methods from R statistical pack-
age. These reports contain the average of tag frequency,
the redundancy (Unique Tags/Frequency of Tags), and the
proportions of tags and frequencies in each group. The
samples were ordered according to their proportions of
tags with negative scores. The differences between unique
tags and frequencies of raw and filtered data (after elimi-
nating tags with negative score) were achieved from each
group of frequencies (1 to 10 and more than 10). Pearson
correlation was used to assess the relationship between
these differences.

Hierarchical clustering analysis

A hierarchical cluster analysis [20] was performed using
an open source clustering software [32] on same tissue
type samples in distinct biological conditions, typically
normal versus tumor, and/or sample preparation (e.g.
bulk, microdissection, cell line). The analysis used raw
datasets for all samples and these same datasets after filter-
ing.

These samples were classified according to their pheno-
types (e.g. normal, tumor, tumor grade and stage) and/or
sample preparation into their histological group, using
SAGE Genie information. Single-sample groups were
excluded from this analysis.

Clusters were generated using Euclidean distance with
four clustering methods: Pairwise complete-linkage, Pair-
wise single-linkage, Pairwise centroid-linkage and Pair-
wise average-linkage. Simcluster [21] were also used to
generate clusters using these same clustering methods
except the Pairwise centroid-linkage, which was not
implemented.

Front-end
An interface for library evaluation using this automatized
approach was built using Perl CGI scripts. This interface is
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contained into the S3T website, it provides useful infor-
mation to carry out an analysis and presents the results in
a user-friendly manner, where it is possible to explore the
submitted data. The methodology proposed by SAGE
Genie [18] provides the tag-to-gene assignment used in
the results page.

The S3T website is available online under Apache web
server running on a Linux box (2 x Intel® Xeon® CPU
E5410 @ 2.33 GHz).

Awvailability and requirements
Project name: S3T - Score System for Sequence Tags

Project home page: http://gdm.fmrp.usp.br/s3t/

Operating system(s): UNIX-like Platforms
Programming language: Perl

Other requirements: Perl v5.8.0 or higher, CPAN mod-
ules, MySQL 4.1.13 or higher

License: GNU GPL
Any restrictions to use by non-academics: licence needed
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